一种外加电势强化厌氧微生物产中链脂肪酸的方法

文档序号:30236 发布日期:2021-09-24 浏览:61次 >En<

阅读说明:本技术 一种外加电势强化厌氧微生物产中链脂肪酸的方法 (Method for producing medium-chain fatty acid by using external potential to strengthen anaerobic microorganisms ) 是由 党岩 吴胜民 孙德智 刘传奇 陈骞 于 2021-06-28 设计创作,主要内容包括:本发明提供外加电势强化厌氧微生物产中链脂肪酸的方法,为:以厌氧产酸颗粒污泥作为接种菌源,施加电势,进行链延长功能微生物的驯化与富集,在驯化完全的链延长功能微生物的作用下,外加电势,以乙酸、乙醇为底物厌氧发酵生产丁酸和己酸。本发明采用外加电势的方法生产中链脂肪酸,既缩短了反应周期,又提高了丁酸的产量。(The invention provides a method for producing medium-chain fatty acid by strengthening anaerobic microorganisms with external potential, which comprises the following steps: anaerobic acidogenic granular sludge is used as an inoculation bacteria source, potential is applied to domesticate and enrich microorganisms with chain extension function, and under the action of the microorganisms with the chain extension function completely domesticated, potential is applied, and acetic acid and ethanol are used as substrates to produce butyric acid and caproic acid through anaerobic fermentation. The invention adopts the method of external potential to produce medium-chain fatty acid, which not only shortens the reaction period, but also improves the yield of butyric acid.)

一种外加电势强化厌氧微生物产中链脂肪酸的方法

技术领域

本发明属于环境微生物领域,具体涉及一种外加电势强化厌氧微生物产中链脂肪酸的方法。

背景技术

微生物碳链延长是一种低能耗、低运行成本的新型生物技术,该过程中产生的中链脂肪酸是一种较高经济价值的资源,能够在实现资源的回收利用的同时实现有机污染物的去除。微生物碳链延长是在功能微生物的作用下,每次循环增加两个碳原子,实现短链脂肪酸合成中链脂肪酸的过程。

目前,已实际应用的生产丁酸的方法具有技术条件严苛、成本高、会产生二次污染物等缺点,而且往往会伴随着一定的产物损失。微生物厌氧发酵技术具有反应条件温和,处理成本低,对环境友好等优点。相比其他升级技术,微生物法具有更好的经济效益,但是受限于多种功能微生物的参与(主要为克氏梭菌属Clostridium),且碳链延长反应易受到环境因素和功能微生物活性的影响(如pH、底物浓度等)。

专利CN112391292A报道了一种中链脂肪酸碳链延长功能微生物的富集方法及应用,并最终得到了3.4g/L的丁酸和2.5g/L的己酸;专利CN111909970A报道了添加外源介质通过厌氧微生物强化合成气生产中链脂肪酸,反应体系中添加铁负载铂固体介质可达到最大己酸生产量4.97g/L,反应体系中添加褐锰矿可达到最大丁酸生产量3.43g/L;专利CN110643644A和CN110643644B报道了畜禽粪便发酵液生产中链脂肪酸的方法;专利CN110656133A报道了通过氯化铵溶液预处理厌氧污泥,进行厌氧发酵生产中链脂肪酸;专利CN110734934A报道了利用亚硝酸钠溶液预处理厌氧污泥进行中链脂肪酸的生产;专利CN110734933A报道了添加零价铁粉末进行厌氧发酵生产中链脂肪酸。

如以上公开报道的专利所描述的利用厌氧微生物生产中链脂肪酸的方法,多为添加外源介质的方法,虽促进了丁酸的生产,但丁酸的产量仍较低,且反应周期较长。

发明内容

为了克服传统的厌氧微生物链延长底物利用率较低,丁酸、己酸产量不高等不足,本发明的目的是提供一种外加电势强化厌氧微生物产中链脂肪酸的方法,该方法能够富集链延长产酸微生物,并在短时间内提高丁酸产量。

本发明通过外加电势实现链延长功能微生物的驯化及其应用。提供电子供体和电子受体(如乙醇和乙酸),在链延长功能微生物的作用下,实现碳链的延长。本发明旨在提高丁酸、己酸的浓度,赋予更高的商业价值与经济价值。

本发明提供的用于碳链延长的装置,如图1所示,以厌氧颗粒污泥为链延长功能微生物的环境来源,向体系施加工作电势,成功实现了从厌氧污泥中驯化、富集链延长功能微生物,并达到快速高效生产丁酸、己酸的目的。因此,本发明有助于我国摆脱中链脂肪酸产量较低的困境,具有重要的经济价值和研究意义。

本发明所提供的外加电势强化厌氧微生物产中链脂肪酸的方法,为:以厌氧产酸颗粒污泥作为接种菌源,施加电势,进行链延长功能微生物的驯化与富集,在驯化完全的链延长功能微生物的作用下,外加电势,以乙酸、乙醇为底物厌氧发酵生产丁酸和己酸。

所述方法,包括如下步骤:

1)链延长功能微生物的驯化与富集

(1)采集厌氧产酸颗粒污泥,热处理,抑制产甲烷菌活性,得到预处理厌氧颗粒污泥;

(2)对步骤(1)制得的厌氧颗粒污泥进行曝气,保持厌氧环境;

(3)将步骤(2)制得的厌氧颗粒污泥接种到微生物反应器中,施加电势,启动反应器,在高有机负荷的条件下进行链延长功能微生物的驯化与富集,待发酵液中乙醇的浓度下降和挥发性脂肪酸浓度上升至稳定时,链延长功能微生物驯化完成;

2)在驯化完全的链延长功能微生物的作用下,外加电势,以乙酸、乙醇为底物厌氧发酵生产丁酸和己酸。

上述方法步骤1)(1)中,所述厌氧产酸颗粒污泥取自北京市小红门污水处理厂剩余污泥厌氧消化装置,其平均粒径为0.6-2.5mm,厌氧污泥的挥发性悬浮物和总悬浮物的比值(VSS/TSS)为0.4-0.8,具体可为0.7;

步骤(1)中污泥热处理的温度可为90~100℃,处理时间可为1~1.5h;

步骤(2)中厌氧颗粒污泥曝气20分钟(N2:CO2=80:20);

步骤(3)中所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.7V;

步骤(3)中,所述高有机负荷通过如下操作实现:

启动反应器后,反应器以连续流的方式进水;

进水中含有乙酸、乙醇和2-BES(2-溴乙磺酸钠:产甲烷菌抑制剂),其中,乙酸、乙醇、2-BES浓度依次可为6.8-30g/L、4.8-25ml/L、1-10g/L;

驯化期间pH维持在5-6.8,具体可为5.5-6.5;温度可为28℃-37℃,培养时间可为30-40d。

步骤2)中,所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.8V。

外加电势在链延长功能微生物的驯化与富集中的应用也属于本发明的保护范围。

所述应用中,所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.7V。

外加电势强化厌氧微生物产中链脂肪酸的应用也属于本发明的保护范围。

本发明的应用机理及效果是:

(1)碳刷电极(12)的加入强化了厌氧系统的稳定性及微生物的富集能力;

(2)传递至阴极区的氢离子对乙酸的还原起积极作用;

(3)较低的pH可以抑制产甲烷菌生长、促使丁酸盐积累;

(4)乙酸和乙醇摩尔比较低,较大的有机负荷提高了丁酸生产率;

(5)2-BES抑制产甲烷菌生长,促进链延长反应;

(6)本发明从厌氧颗粒污泥中富集了链延长功能微生物,解决了链延长微生物来源受限的问题。

本发明采用外加电势的方法生产中链脂肪酸,既缩短了反应周期,又提高了丁酸的产量。

附图说明

图1为本发明所使用的反应装置示意图。其中,1:进水蠕动泵;2:进水口;3:取样口;4:出水口;5:气体采集口;6:电化学工作站;7:电脑;8:气体收集袋;9:参比电极;10:阳极(石墨棒电极);11:三相分离器;12:阴极(碳刷电极);13:伴热带;14:温控探头;15:进水桶;16:出水桶。

具体实施方式

下述实施例中所使用的实验方法如无特殊说明,均为常规方法。

下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。

本发明提供一种外加电势强化厌氧微生物产中链脂肪酸的方法,包括如下步骤:

1)链延长功能微生物的驯化与富集

(1)采集厌氧产酸颗粒污泥,热处理,抑制产甲烷菌活性,得到预处理厌氧颗粒污泥;

(2)对步骤(1)制得的厌氧颗粒污泥进行曝气,保持厌氧环境;

(3)将步骤(2)制得的厌氧颗粒污泥接种到微生物反应器中,施加电势,启动反应器,在高有机负荷的条件下进行链延长功能微生物的驯化与富集,待发酵液中乙醇的浓度下降和挥发性脂肪酸浓度上升至稳定时,链延长功能微生物驯化完成;

2)在驯化完全的链延长功能微生物的作用下,外加电势,以乙酸、乙醇为底物厌氧发酵生产丁酸和己酸。

上述方法步骤1)(1)中,所述厌氧产酸颗粒污泥取自北京市小红门污水处理厂剩余污泥厌氧消化装置,其平均粒径为0.6-2.5mm,厌氧污泥的挥发性悬浮物和总悬浮物的比值(VSS/TSS)为0.70;

步骤(1)中污泥热处理的温度可为90~100℃,处理时间可为1~1.5h;

步骤(2)中厌氧颗粒污泥曝气20分钟(N2:CO2=80:20);

步骤(3)中所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.7V;

步骤(3)中,所述高有机负荷通过如下操作实现:

启动反应器后,反应器以连续流的方式进水;

进水中含有乙酸、乙醇和2-BES(2-溴乙磺酸钠:产甲烷菌抑制剂),其中,乙酸、乙醇、2-BES浓度依次可为7.5g/L、20ml/L、5g/L;

驯化期间pH维持在5-6.8;温度可为28℃-37℃,培养时间可为30-40d。

步骤2)中,所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.8V。

外加电势在链延长功能微生物的驯化与富集中的应用也属于本发明的保护范围。

所述应用中,所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.7V。

外加电势强化厌氧微生物产中链脂肪酸应用也属于本发明的保护范围。

本发明采用外加电势的方法生产中链脂肪酸,既缩短了反应周期,又提高了丁酸的产量。

实施例1

链延长功能微生物通过以下方法驯化富集:

(1)采集新鲜的来源于北京市小红门污水处理厂剩余污泥厌氧消化装置,其平均粒径为0.6-2.5mm,厌氧污泥的挥发性悬浮物和总悬浮物的比值(VSS/TSS)为0.70,摇晃均匀后置于烧杯中进行水浴100℃加热处理,处理时间为1h,抑制产甲烷菌活性,得到预处理厌氧颗粒污泥;

(2)将步骤(1)制得的厌氧颗粒污泥用N2:CO2=80:20混合气曝气20min,保持厌氧环境;

(3)将处理后的活性污泥接种到体积为1L微生物反应器(图1所示)中;打开电化学工作站6,向厌氧反应器的工作电极12(阴极:碳刷电极)施加一个特定的电势-0.7V(相对于标准氢电极),通过试验室蠕动泵(保定兰格BT100-2J),以连续流的方式进水;进水中含有乙酸、乙醇和2-BES(2-溴乙磺酸钠:产甲烷菌抑制剂),具体的乙酸、乙醇、2-BES浓度分别为7.5g/L、20ml/L、5g/L;驯化期间pH维持在5.8;温度35℃;进行链延长功能微生物的驯化与富集,培养时间40天。

(4)待发酵液中乙醇的浓度下降和挥发性脂肪酸浓度上升至稳定时,链延长功能微生物驯化完成。

实施例2

本发明提供的用于微生物碳链延长生产中链脂肪酸的装置如图1所示。

将实施例1中驯化完全的功能微生物接种到如图1所示的2个厌氧反应器中;

连续流方式进水,含有进水中含有乙酸、乙醇和2-BES(2-溴乙磺酸钠:产甲烷菌抑制剂),具体的乙酸、乙醇、2-BES浓度分别为6.8g/L、22ml/L、2.5g/L;温度为35℃;

打开电化学工作站6,向其中一个厌氧反应器的工作电极12(阴极:碳刷电极)施加一个特定的电势-0.8V(相对于标准氢电极);另一个不加电势;

通过采用上述方法,本发明可以达到如下效果:

反应施加了-0.8V的阴极电势,体系内迅速生产丁酸,在第五天的时间内丁酸产量达到了137.5mM,己酸产量为3.3mM;在接下来的15天内,丁酸产量有所降低,维持在100mM左右,己酸的产量增加到24.5mM;乙酸转化率达到在80%-90%;乙醇转化率达到85%-90%;随着己酸的生成丁酸的产率由60%下降到45%左右;总碳效率基本保持在70%-80%左右;未施加工作电势的反应器中,丁酸在第二十天左右达到最大浓度125.1mM,己酸在第60天达到15.2mM;乙酸转化率基本保持在80%-85%,乙醇转化率在70%-80%左右。与未加电势的相比,外加-0.8V电势所产丁酸和己酸分别提高了12.4mM和9.3mM,乙酸转化率提高了5%左右,乙醇转化率提高了10%-15%。

反应体系施加-0.8V电势可以在短时间内生成137.5mM丁酸和24.5mM己酸,实现了乙酸和乙醇的高度利用与转化,同时,碳刷电极促进了功能微生物的富集,阴极区的电子对乙酸起着积极的还原作用,促进了丁酸和己酸的生成。

反应体系施加不同的工作电势对丁酸和己酸的生产存在一定的影响。反应施加-0.7V的阴极电势,丁酸产量基本维持在97mM左右,己酸最高达19.5mM;反应施加-0.6V的阴极电势,丁酸产量基本维持在116mM左右,同时,己酸产量下降至13mM左右;反应施加-0.5V的阴极电势,丁酸产量维持在100mM左右,己酸提高到19mM;反应施加-0.4V的阴极电势丁酸产量维持在120mM左右,己酸产量为5mM左右。

施加上述工作电势,均可在短时间内实现丁酸和己酸的生产,但电势不同,对丁酸与己酸的产量也存在差别。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高蛋白昆虫发酵生产氨基酸的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!