超声速混合层混合增强闭环控制方法及系统

文档序号:31704 发布日期:2021-09-24 浏览:31次 >En<

阅读说明:本技术 超声速混合层混合增强闭环控制方法及系统 (Supersonic mixed layer mixing enhancement closed-loop control method and system ) 是由 谭建国 高政旺 刘瑶 张冬冬 姚霄 肖犇 侯廙 于 2021-06-21 设计创作,主要内容包括:超声速混合层混合增强闭环控制方法及系统,包括第一超声速流道、第二超声速流道、控制器、控制台、速度场测量系统以及计算机,第一超声速流道和第二超声速流道之间设置有混合增强板,混合增强板将第一超声速流道和第二超声速流道分隔开,第一股超声速气流和第二股超声速气流在混合增强板的末端外实现增强混合;控制器通过控制台将激励函数信号作用于混合增强板;速度场测量系统对混合增强板末端的流场速度进行实时测量并将测量到的数据传输给计算机,计算机中预先加载有机器学习算法,通过运行机器学习算法产生激励函数信号给控制器。本发明具有可适应宽范围工作状况、鲁棒性强、混合增强效果显著等特点。(The system comprises a first supersonic flow channel, a second supersonic flow channel, a controller, a console, a speed field measuring system and a computer, wherein a mixing reinforcing plate is arranged between the first supersonic flow channel and the second supersonic flow channel, the mixing reinforcing plate separates the first supersonic flow channel from the second supersonic flow channel, and the first supersonic air flow and the second supersonic air flow realize reinforced mixing outside the tail end of the mixing reinforcing plate; the controller acts the excitation function signal on the hybrid enhancement board through the console; the speed field measurement system measures the flow field speed at the tail end of the hybrid reinforced plate in real time and transmits the measured data to the computer, the computer is pre-loaded with a machine learning algorithm, and an excitation function signal is generated to the controller by running the machine learning algorithm. The invention has the characteristics of adaptability to wide-range working conditions, strong robustness, obvious mixing enhancement effect and the like.)

超声速混合层混合增强闭环控制方法及系统

技术领域

本发明涉及航空航天领域的混合增强控制

技术领域

,特别涉及一种超声速混合层混合增强闭环控制方法及系统,可以用于组合循环发动机中燃料和氧化剂混合增强的优化。

背景技术

混合层流动是工程应用中典型的流动类型,如在涡扇发动机中中心燃气与外涵空气的混合,如火箭基组合循环发动机中火箭燃气与冲压空气的混合。高效混合从而提高燃烧效率是提升这类发动机性能的关键技术之一,控制混合增强的方式主要可以分为两类:被动混合增强和主动混合增强。

被动混合增强通常是在流场中安装一些固定装置或者改变结构参数来改变流场剪切层的稳定性特征,实现混合增强。按照作用方式可以细分为两类,1)促使流动提前失稳,典型的如三角结构扰动装置和凹腔装置;2)诱导大尺度流向涡结构,常见的装置有波瓣混合器,斜坡装置,锯齿状装置以及V形装置等。但被动控制装置不能根据工况做出调整,自适应性差。

主动混合增强是指通过激励器向流场施加外部能量,激发流动不稳定性,调节混合层流场中的涡结构,促进不同流体之间的混合作用,从而实现混合增强。根据系统中是否存在反馈机制,主动控制可以分为开环控制和闭环控制两种。

开环控制系统按照预设的作用方式进行工作,不构成反馈控制,简单易操作。根据不同的激励方式可以分为平板扰动、等离子体激励和合成射流等开环控制混合增强措施。激励的频率、幅值和位置对混合层增长特性有重要影响。但开环控制系统不能根据流场的状态实时反应优化外部激励。

闭环控制混合增强技术在流场状态变化时显得特别重要,可以减少对系统变化参数和外部扰动的敏感性,鲁棒性强。但对于超声速混合层这种高维非线性特征的湍流流动而言,通过经典控制方法实现对其闭环控制仍然面临着很大的困难。

发明内容

针对现有技术存在的缺陷,本发明提供一种超声速混合层混合增强闭环控制方法及系统,其具有可适应宽范围工作状况、鲁棒性强、混合增强效果显著等特点。可以最大程度地实现发动机中超声速混合层的混合增强。

为实现上述技术目的,本发明提出的技术方案为:

本发明提供一种超声速混合层混合增强闭环控制方法,包括:

S1.搭建超声速混合层混合增强闭环控制系统;

超声速混合层混合增强闭环控制系统包括第一超声速流道、第二超声速流道、控制器、控制台、速度场测量系统以及计算机,第一超声速流道和第二超声速流道之间设置有混合增强板,混合增强板将第一超声速流道和第二超声速流道分隔开,第一股超声速气流在混合增强板的上方顺着混合增强板的长度方向流向混合增强板的末端,第二超声速气流在混合增强板的下方顺着混合增强板的长度方向流向混合增强板的末端,第一股超声速气流和第二股超声速气流在混合增强板的末端外实现增强混合;控制器连接控制台,通过向控制台发送激励函数信号,控制控制台在混合增强板靠近其末端的尾段作用于混合增强板,使得混合增强板振动;速度场测量系统对混合增强板末端的流场速度进行实时测量并将测量到的数据传输给计算机,计算机中预先加载有机器学习算法,通过运行机器学习算法产生激励函数信号给控制器,通过控制台作用于混合增强板;

S2.通过计算机中预先加载的机器学习算法初始化若干激励函数信号,作为第一代激励函数信号;

S3.控制器通过控制台将当前代激励函数信号作用于混合增强板,同时速度测量单元实时测量每个激励函数信号下的混合增强板末端的流场速度并传输给计算机;

S4.利用流场速度定义代价函数,计算当前代激励函数信号所对应的代价函数大小,评估当前代每个激励函数信号的成本代价,然后当前代激励函数信号通过复制、杂交或/和变异进行更新操作,产生新一代激励函数信号;

S5.重复S3至S4,直至达到预设停止条件。

步骤S5中,重复S3至S4,当机器学习算法中不再有更小的代价函数产生时,表示算法已经收敛,此时最小代价函数所对应的激励函数信号即超声速混合层控制混合增强的最优激励函数信号。

作为本发明的优选方案,本发明中的机器学习算法采用线性遗传规划算法。

作为本发明的优选方案,本发明中激励函数信号b的形式为:

b=K(s(t),h(t))

其中s(t)为t时刻流场速度,h(t)为关于时间t的谐波信号,这里h(t)定义为自然频率fu或者自然频率fu的一半或者自然频率fu的两倍等:

h(t)=[cos(2πfut) cos(πfut) cos(2πfut) cos(2πfut) cos(2πfut)]

这里的谐波信号包含正弦和余弦函数,以构成激励函数信号的相位差异,这些相位差异可以对混合层产生重要的影响。

本发明S4中,利用流场速度计算脉动速度来评估混合层的脉动能量,脉动速度由移动平均计算获得,公式为:

s′(t)=s(t)-<s(t)>τ

其中s(t)为t时刻的流场速度,τ为移动平均时间,

每个激励函数信号在一定时间T内的平均累积脉动能量定义为:

为了实现混合层混合增强,也就是促进混合层的不稳定,则对应脉动能量K增加,因此定义混合增强的代价函数为:

J=1/K

计算得到当前代每个激励函数信号对应的代价函数,根据当前代每个激励函数信号对应的代价函数大小,机器学习算法按照预先设定的比例进行复制、变异和杂交等更新操作,产生新一代激励函数信号。

本发明提供一种超声速混合层混合增强闭环控制系统,包括第一超声速流道、第二超声速流道、控制器、控制台、速度场测量系统以及计算机,第一超声速流道和第二超声速流道之间设置有混合增强板,混合增强板将第一超声速流道和第二超声速流道分隔开,第一股超声速气流在混合增强板的上方顺着混合增强板的长度方向流向混合增强板的末端,第二超声速气流在混合增强板的下方顺着混合增强板的长度方向流向混合增强板的末端,第一股超声速气流和第二股超声速气流在混合增强板的末端外实现增强混合;

控制器连接控制台,通过向控制台发送激励函数信号,控制控制台在混合增强板靠近其末端的尾段作用于混合增强板,使得混合增强板振动,速度场测量系统对混合增强板末端外的流场速度进行实时测量并将测量到的数据传输给计算机;

计算机中预先加载有机器学习算法,根据流场速度计算当前的激励函数信号所对应的代价函数大小,并产生新的激励函数信号给控制器,通过控制台作用于混合增强板,直至不再有更小的代价函数产生,最小代价函数所对应的激励函数信号即超声速混合层控制混合增强的最优激励函数信号。

与现有技术相比,本发明的优点在于:

1、本发明给出的超声速混合层混合增强闭环控制方案,自适应程度高、鲁棒性强。本发明克服了开环控制系统不能根据流场的状态实时反应优化外部激励的缺陷。

2、本发明通过机器学习算法全局搜寻获得的为最优激励函数信号,可以最大程度地实现混合层的混合增强,避免了人为设定频率和幅值有限的局限性。

3、由于机器学习是一种无模型的基于数据驱动的建模方法,不需要考虑复杂的因果关系,应用于超声速混合层控制时,不需要任何流体力学和非线性动力学的先验知识。因此可以推广到更多高维非线性控制系统。

附图说明

为了更清楚地说明本发明实施例中或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。

图1是本发明一实施例中超声速混合层混合增强闭环控制系统的原理框架图;

图2是本发明一实施例中所采用的线性遗传规划算法工作过程示意图;

本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步的说明。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚明白,下面将以附图及详细叙述清楚说明本发明所揭示内容的精神,任何所属技术领域技术人员在了解本发明内容的实施例后,当可由本发明内容所教示的技术,加以改变及修饰,其并不脱离本发明内容的精神与范围。本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。

本发明一实施例提供一种超声速混合层混合增强闭环控制方法,包括以下步骤:

S1.搭建超声速混合层混合增强闭环控制系统;

参照图1,超声速混合层混合增强闭环控制系统包括第一超声速流道1、第二超声速流道2、混合增强板3、控制器4、控制台5、速度场测量系统6以及计算机7,第一超声速流道1和第二超声速流道2之间设置有混合增强板3,本实施例中混合增强板3为设置在第一超声速流道1和第二超声速流道2之间的一块薄平板,混合增强板3将第一超声速流道1和第二超声速流道2分隔开,第一股超声速气流在混合增强板3的上方顺着混合增强板3的长度方向流向混合增强板3的末端,第二超声速气流在混合增强板3的下方顺着混合增强板3的长度方向流向混合增强板3的末端,第一股超声速气流和第二股超声速气流在混合增强板的末端外实现增强混合,本实施例中第一超声速气流中的气体为燃气如甲烷,第二超声速气流中的气体为空气。

控制器4连接控制台5,通过向控制台5发送激励函数信号b,控制控制台5在混合增强板3靠近其末端的尾段作用于混合增强板3,使得混合增强板3振动。所述控制台5采用VR9500振动控制器。

速度场测量系统6为PIV系统,PIV系统对混合增强板末端的流场速度场进行实时监测,拍摄流场速度场快照同时反馈给计算机7。计算机7中预先加载有机器学习算法,通过运行机器学习算法产生激励函数信号给控制器,通过控制台作用于混合增强板。

S2.通过计算机中预先加载的机器学习算法初始化若干激励函数信号,作为第一代激励函数信号。

第一代激励函数信号采用与蒙特卡洛类似的方法随机产生,设定其总数量为N。本实施例中的激励函数信号b的形式拟设定为:

b=K(s(t),h(t))

其中s(t)为t时刻的流场速度,h(t)为关于时间t的谐波信号,可以定义h(t)为自然频率fu或者自然频率fu的一半或者自然频率fu的两倍等:

h(t)=[cos(2πfut) cos(πfut) cos(2πfut) cos(2πfut) cos(2πfut)]

这里的谐波信号包含正弦和余弦函数,以构成信号的相位差异,这些相位差异可以对混合层产生重要的影响。

S3.控制器通过控制台将当前代激励函数信号作用于混合增强板,同时速度测量单元实时测量每个激励函数信号下的混合增强板末端的流场速度并传输给计算机。

S4.利用流场速度定义代价函数,计算当前代激励函数信号所对应的代价函数大小,评估当前代每个激励函数信号的成本代价,然后当前代激励函数信号通过复制、杂交或/和变异进行更新操作,产生新一代激励函数信号;

代价函数用来评估激励函数所对应的成本代价,混合层的流动状态与其所携带的能量密切相关。本发明利用速度测量单元采集到的流场速度计算脉动速度来评估混合层的脉动能量,脉动速度由移动平均计算获得,公式为:

s′(t)=s(t)-<s(t)>τ

其中s(t)为t时刻的流场速度,τ为移动平均时间,

每个激励函数信号在一定时间T内的平均累积脉动能量定义为:

这里T为每个激励函数在实验过程中流场速度测量的时间范围,足以消除速度的偶然误差和保证K的收敛。

为了实现混合层混合增强,也就是促进混合层的不稳定,则对应脉动能量K增加,因此定义混合增强的代价函数为:

J=1/K

计算得到当前代每个激励函数信号对应的代价函数,根据当前代每个激励函数信号对应的代价函数大小,机器学习算法按照预先设定的比例进行复制、变异和杂交等更新操作,产生新一代激励函数信号。

S5.重复S3至S4,直至达到预设停止条件。

将新一代激励函数信号再通过控制台作用于混合增强板,速度测量单元实时测量每个新一代激励函数信号下的混合增强板末端的流场速度并传输给计算机……如此重复。本实施例中的预设停止条件,当机器学习算法中不再有更小的代价函数产生时,表示算法已经收敛,此时最小代价函数所对应的激励函数信号即超声速混合层控制混合增强的最优激励函数信号。

本发明一实施例中采用的机器学习算法为线性遗传规划算法。图2为本发明一实施例中采用线性遗传规划算法工作过程示意图,首先随机初始化若干激励函数信号,作为第一代激励函数信号,每一个激励函数信号经过代价函数评估,然后通过复制、杂交和变异等操作产生新一代激励函数信号,不断重复直至达到预设停止条件。

参照图1,本实施例提供一种超声速混合层混合增强闭环控制系统,参照图1,超声速混合层混合增强闭环控制系统包括第一超声速流道1、第二超声速流道2、混合增强板3、控制器4、控制台5、速度场测量系统6以及计算机7,第一超声速流道1和第二超声速流道2之间设置有混合增强板3,本实施例中混合增强板3为设置在第一超声速流道1和第二超声速流道2之间的一块薄平板,混合增强板3将第一超声速流道1和第二超声速流道2分隔开,第一股超声速气流在混合增强板3的上方顺着混合增强板3的长度方向流向混合增强板3的末端,第二超声速气流在混合增强板3的下方顺着混合增强板3的长度方向流向混合增强板3的末端,第一股超声速气流和第二股超声速气流在混合增强板的末端外实现增强混合,本实施例中第一超声速气流中的气体为燃气如甲烷,第二超声速气流中的气体为空气。

控制器4连接控制台5,通过向控制台5发送激励函数信号,控制控制台5在混合增强板靠近其末端的尾段作用于混合增强板,使得混合增强板振动,速度场测量系统6对混合增强板末端外的流场速度进行实时测量并将测量到的数据传输给计算机;

计算机7中预先加载有机器学习算法,根据流场速度计算当前的激励函数信号所对应的代价函数大小,并产生新的激励函数信号给控制器,通过控制台作用于混合增强板,直至不再有更小的代价函数产生,最小代价函数所对应的激励函数信号即超声速混合层控制混合增强的最优激励函数信号。

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种多层装配结构的复合装配方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类