一种基于无醚键聚芴的主链型碱性阴离子交换膜及其制备方法

文档序号:317131 发布日期:2021-11-30 浏览:20次 >En<

阅读说明:本技术 一种基于无醚键聚芴的主链型碱性阴离子交换膜及其制备方法 (Main chain type alkaline anion exchange membrane based on ether bond-free polyfluorene and preparation method thereof ) 是由 林本才 徐斐 丁建宁 陈燕波 李泾 于 2021-08-06 设计创作,主要内容包括:本发明涉及一种聚合物阴离子交换膜及其制备方法,尤其涉及一种基于无醚键聚芴的主链型碱性阴离子交换膜及其制备方法。本发明选用耐碱稳定性优异的哌啶阳离子,设计合成出9号位不同尺寸的亚甲基侧链取代的芴基单体。通过酸催化的Friedel-Crafts聚合制备出不含醚键的芴基聚合物,以提高阴离子膜的化学稳定性。整个制备过程简单,高效。在聚合物主链的疏水段引入亚甲基侧链,促进膜内部微相分离的形成,为离子的传输提供高速通道从而进一步提高膜的电导率。(The invention relates to a polymer anion exchange membrane and a preparation method thereof, in particular to a main chain type alkaline anion exchange membrane based on ether bond-free polyfluorene and a preparation method thereof. The invention selects piperidine cations with excellent alkali-resistant stability to design and synthesize the 9-position methylene side chain substituted fluorenyl monomer with different sizes. The fluorenyl polymer without ether bonds is prepared by acid-catalyzed Friedel-Crafts polymerization to improve the chemical stability of the anionic membrane. The whole preparation process is simple and efficient. A methylene side chain is introduced into a hydrophobic section of a polymer main chain, so that the formation of micro-phase separation inside the membrane is promoted, and a high-speed channel is provided for the transmission of ions, thereby further improving the conductivity of the membrane.)

一种基于无醚键聚芴的主链型碱性阴离子交换膜及其制备 方法

技术领域

本发明涉及一种聚合物阴离子交换膜及其制备方法,尤其涉及一种基于无醚键聚芴的主链型碱性阴离子交换膜及其制备方法。

背景技术

作为一种新型的能源转换装置,燃料电池由于其高效、清洁的优势近些年来受到了人们的广泛关注。燃料电池种类丰富,其中聚合物电解质膜燃料电池由于其更高的输出功率并且解决了传统燃料电池电解液渗漏的问题,成为了目前的研究热点。聚合物燃料电池根据所用电解质隔膜的不同,一般可分为质子交换膜燃电池和阴离子交换膜燃料电池。相较于质子交换膜燃料电池,阴离子交换膜燃料电池(AEMFC)技术有以下优点:(1)对催化剂要求较低,可使用银或镍来代替贵金属铂做催化剂;(2)是碱性阴离子交换膜中的阳离子均固定在聚合物链上、液相中不存在游离的盐,能避免传统的碱性燃料电池碱性液态电解质易与CO2反应的影响;(3)是膜内导电离子的传输方向与燃料扩散方向相反,有利于抑制燃料在膜中渗透。

阴离子交换膜(AEMs)作为AEMFCs的核心组件,其性能的好坏将直接决定 AEMFCs运行时的性能与寿命。然而,由于阴离子交换膜中作为导电离子的OH-自身的解离程度和迁移率都低于H+,所以AEMs的电导率较低。另外,导电基团的季铵阳离子基团在高温高碱性环境下会受到OH-的亲核进攻,发生诸如 Hofmann降解和Ylide反应,导致季铵阳离子基团被破坏降解。

聚芴(PF)是一种高度共轭,刚性很强的全芳族聚合物,表现出良好的热稳定性和化学稳定性。然而,PF结构目前更多地应用于有机光电领域,在燃料电池领域的应用报道较少。

综上,为进一步推广阴离子交换膜的商业化使用,有待开发出一种具有良好离子导电能力,优异的耐碱稳定性以及出色的尺寸稳定性的阴离子交换膜。

发明内容

为制备出高离子电导率和高耐碱稳定性兼具的阴离子交换膜,本发明选用耐碱稳定性优异的哌啶阳离子,设计合成出9号位不同尺寸的亚甲基侧链取代的芴基单体。通过酸催化的Friedel-Crafts聚合制备出不含醚键的芴基聚合物,以提高阴离子膜的化学稳定性。整个制备过程简单,高效。在聚合物主链的疏水段引入亚甲基侧链,促进膜内部微相分离的形成,为离子的传输提供高速通道从而进一步提高膜的电导率。

为实现上述发明目的,本发明采用的技术方案是:一种阴离子聚合物,所述阴离子聚合物的重复单元如下所示:

其中,n为聚合度,是整数且不为0;x为1~12的整数;y为1~12的整数; R为甲基或H。

本发明采用的技术方案为:一种基于无醚键聚芴的主链型碱性阴离子交换膜的制备方法,具体包括以下步骤:

步骤(1)9,9-双烷基-2,7-二苯基芴单体的合成:

将9,9-双烷基-2,7-二溴芴与过量的苯硼酸搅拌溶解于甲苯中,以1 M Na2CO3为碱源,氮气保护下加入Pd(pph3)4,80~100℃下搅拌反应36-48小时。将所得溶液以二氯甲烷萃取,取有机层进行干燥,随后将粗产物柱层析分离提纯,得到目标产物9,9-双烷基-2,7-二苯基芴单体。

其中,Na2CO3用量为9,9-双烷基-2,7-二溴芴摩尔量的10-15倍;钯催化剂用量为9,9-双烷基-2,7-二溴芴摩尔量的0.1%-1%;柱层析分离时所用固定相为硅胶,洗脱剂为正己烷与二氯甲烷的体积梯度变化的混合液。

步骤(2)无醚键芴基聚合物的制备:

将9,9-双烷基-2,7-二苯基芴以及N-甲基-4-哌啶酮搅拌溶解于二氯甲烷中,冰水浴下,先后加入三氟乙酸和三氟甲磺酸,使得9,9-双烷基-2,7-二苯基芴和N-甲基-4-哌啶酮的质量分数为10~30wt%。混合物在0~20℃下机械搅拌 24~48小时,溶液变得高度粘稠。将粗产物先后用Na2CO3和去离子水进行超声清洗,直至将聚合物洗涤至中性,过滤,真空干燥。

步骤(3)无醚键聚芴基阴离子交换膜的制备:

将步骤(2)中制备的无醚键芴基聚合物搅拌溶解于有机溶剂中形成5wt%溶液,随后加入卤代烷,在20~60℃下反应12~24小时进行季铵化。将反应液倒在洁净的四氟乙烯模具内,在真空干燥箱中干燥成膜,得到卤素型聚合物膜。将卤素型聚合物膜浸泡在1M碱溶液中进行离子交换,最终得到OH-型阴离子交换膜。

其中,卤代烷与聚合物摩尔比为1:1;所用的有机溶剂为常见的极性溶剂,如DMSO、DMF、NMP等,所用碱为KOH或NaOH。

本发明所制备得到的无醚键芴基阴离子交换膜可应用于燃料电池,液流电池,电解,电渗析或分离膜。

由于上述技术方案的应用,本发明与现有技术相比具有以下优势:

芴具有高度共轭结构,具有出色的化学稳定性。基于芴设计合成不含醚键的聚合物骨架,选择化学稳定性优异的哌啶阳离子作为导电阳离子,从而可制备出耐碱稳定性优异的阴离子交换膜。

芴的9号位置的亚甲基具有极高的反应活性,便于修饰改性。在芴的9号位进行亚甲基化,既可以增加聚合物的分子量,改善聚合物的溶解性;另外,疏水侧链的引入便于聚合物内部微相分离结构的构建,为离子的传输提供高速通道,进而改善膜的离子导电性。

本发明所制备出的无醚键芴基聚合物为芳香族聚合物,具有优异的尺寸稳定性、热稳定性和机械性能。

附图说明

图1为实施例1制备的无醚键芴基聚合物的1H NMR图谱。

具体实施方式

下面结合具体实施案例对本发明做进一步说明。

实施例1

(1)将9,9-二己基-2,7-二溴芴(1.72g,3.5mmol)溶解于35ml甲苯中,加入35ml 1MNa2CO3水溶液。混合液加热至100℃,氮气保护下加入苯硼酸(1.28 g,10.5mmol)以及Pd(pph3)4(4.2mg,0.1mmol),搅拌反应36小时。将反应液用二氯甲烷和水进行萃取,收集干燥有机层。将粗产物用正己烷和二氯甲烷的体积梯度变化的混合液进行柱层析分离提纯,得到9,9-二己基-2,7-二苯基芴,收率~95%。

(2)将9,9-二己基-2,7-二苯基芴(2.2g,4.5mmol)和N-甲基-4-哌啶酮 (0.56g,4.95mmol)溶解于9ml二氯甲烷中。冰水浴下先后加入0.5ml三氟乙酸和6ml三氟甲磺酸。混合液在室温下机械搅拌48小时,混合液变得高度粘稠。将混合液用Na2CO3水溶液和去离子水分别清洗直至聚合物变成中性,得到无醚键芴基聚合物。

(3)将制备出的芴基聚合物60℃溶解于二甲基亚砜中,加入过量的碘甲烷进行季铵化反应。将反应液倒在洁净的四氟乙烯模具内,真空干燥,得到卤素型芴基聚合物电解质膜,其化学结构如图1所示。将该卤素聚合物电解质膜浸泡于1M KOH中进行离子置换24小时得到OH-型阴离子交换膜。

所制备得到了阴离子交换膜在80℃下离子电导率为77.86mS cm-1,80℃下溶胀度仅为6.6%。拉伸强度为25.6MPa。将该膜浸泡于80℃2M KOH溶液中 30天,电导率仅损失10.13%。

实施例2

本实施例与实施例1相似,所不同的是在芴的9号位修饰的是正丁烷,其化学结构如图所示:

所制备得到了阴离子交换膜在80℃下离子电导率为70.11mS cm-1,80℃下溶胀度仅为6.1%。拉伸强度为21.2MPa。将该膜浸泡于80℃2M KOH溶液中 30天,电导率仅损失12.42%。

实施例3

本实施例与实施例1相似,所不同的是在芴的9号位修饰的是甲烷,其化学结构式如图所示:

所制备得到了阴离子交换膜在80℃下离子电导率为66.68mS cm-1,80℃下溶胀度仅为5.7%。拉伸强度为20.2MPa。将该膜浸泡于80℃2M KOH溶液中30天,电导率仅损失14.48%。

实施例4

本实施例与实施例1相似,所不同的是在最后的季铵化过程中选用的是溴代正丁烷替代碘甲烷,所制备得到的芴基阴离子交换膜的结构如图所示:

所制备得到了阴离子交换膜在80℃下离子电导率为76.68mS cm-1,80℃下溶胀度仅为6.8%。拉伸强度为24.1MPa。将该膜浸泡于80℃2M KOH溶液中30天,电导率仅损失11.48%。

实施例5

本实施例与实施例二相似,所不同的是在最后的季铵化过程中选用的是溴辛烷替代碘甲烷,所制备得到的芴基阴离子交换膜的结构如图所示:

所制备得到了阴离子交换膜在80℃下离子电导率为64.38mS cm-1,80℃下溶胀度仅为5.9%。拉伸强度为21.3MPa。将该膜浸泡于80℃2M KOH溶液中 30天,电导率仅损失13.52%。

对比例1

本对照例与实施例1相似,所不同的是在芴的9号位未进行修饰,其化学结构为进行步骤(3)的操作时,在步骤(2)中得到的物体物质不溶于DMSO,不能得到聚合物膜。

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种双氮杂晕苯二酰亚胺n-型聚合物及其制备方法和用途

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!