一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置

文档序号:319239 发布日期:2021-11-30 浏览:14次 >En<

阅读说明:本技术 一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置 (Low-energy-consumption direct-drive high-speed centrifugal air compression device special for hydrogen fuel cell ) 是由 温鲜慧 王爱玲 代克金 潘剑飞 于 2021-08-28 设计创作,主要内容包括:本发明公开了一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置,该空气压缩装置旨在解决现在的氢燃料电池因为空气压缩机输送氧气不及时造成电堆反应不充分,使电池能耗大大增高的技术问题。该空气压缩装置包括压缩腔、安装于所述压缩腔前端的水平驱动电机、设置于所述水平驱动电机右侧的垂直驱动电机、设置于所述压缩腔前侧中间的中壁板。该空气压缩装置采用一号气腔和二号气腔分离设置,分别控制氧气和无氧空气之间交互流动,在二号气腔内通过垂直混合排扇将氧气与无氧空气充分混合,利用压缩机控制氧气的输入量来控制混合气体的浓度,与氢燃料接触时,可以使氢燃料充分反应,提高氢燃料的有效利用率,降低电池的单位时间能耗。(The invention discloses a low-energy-consumption direct-drive high-speed centrifugal air compression device special for a hydrogen fuel cell, which aims to solve the technical problem that the energy consumption of the cell is greatly increased because an air compressor cannot deliver oxygen in time to cause insufficient reaction of a galvanic pile in the conventional hydrogen fuel cell. The air compression device comprises a compression cavity, a horizontal driving motor arranged at the front end of the compression cavity, a vertical driving motor arranged on the right side of the horizontal driving motor, and a middle wall plate arranged in the middle of the front side of the compression cavity. This air compression device adopts an air cavity and No. two air cavity separation settings, controls mutual flow between oxygen and the anaerobic air respectively, arranges the fan through the vertical mixing in No. two air cavities with oxygen and anaerobic air intensive mixing, utilizes the input of compressor control oxygen to control the concentration of mist, when contacting with hydrogen fuel, can make hydrogen fuel fully react, improves hydrogen fuel&#39;s effective utilization, reduces the unit interval energy consumption of battery.)

一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置

技术领域

本发明属于环保电池附属设备领域,具体涉及一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置。

背景技术

氢燃料电池是一种将氢和氧的化学能通过电极反应,转换成电能的装置,排出的废弃物只有水和热量,因为没有碳的排放,因此被认为是目前最有发展前途的一种能源,而氢作为能量来源就需要使用到空压机提供特定压力,为电堆反应提供必需流量的氧气。

空气压缩机向电堆输送氧气与氢燃料发生反应提供电池能量,氧气作为反应的催化剂,当单位反应时间内氧气供应量不足或不及时情况发生后,氢燃料无法充分与氧气接触反应,能量释放被大大削减,单位体积的氢原料有效利用率大大下降,造成电池的单位能耗增加。现有公开号:CN108666597A的发明专利,燃料电池系统,阴极气体冷却装置具备热交换器,该热交换器具有供阴极气体流入的第内部流路和被供给从燃料电池排出的水的第内部流路,并且利用在第内部流路中流动的水的汽化潜热对在第内部流路中流动的阴极气体进行冷却。第内部流路以及第内部流路在热交换器的内部成为各自独立的流路,由此使得因与在第内部流路中流动的阴极气体进行热交换而产生于第内部流路内的水蒸气不流入第内部流路,通过高效地进行阴极气体的冷却,又抑制燃料电池系统整体的冷却性能的降低,来控制电堆反应的稳定进行,降低电池能耗,但是该专利并未在燃料电池的氧气供应和空压机的排风效率方面做出改进。

因此,针对上述氢燃料电池空压机氧气输送不稳定造成电池能耗增高的情况,开发一种新型空压机排风结构,利用高速离心式的涡轮机构加强氧气输送的效率,提高氢燃料的有效利用率,降低电池的使用能耗。

发明内容

(1)要解决的技术问题

针对现有技术的不足,本发明的目的在于提供一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置,该空气压缩装置旨在解决现在的氢燃料电池因为空气压缩机输送氧气不及时造成电堆反应不充分,使电池能耗大大增高的技术问题。

(2)技术方案

为了解决上述技术问题,本发明提供了这样一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置,该空气压缩装置包括压缩腔、安装于所述压缩腔前端的水平驱动电机、设置于所述水平驱动电机右侧的垂直驱动电机、设置于所述压缩腔前侧中间的中壁板,所述压缩腔后端固定安装有压缩机,所述压缩腔后端左侧固定安装有氧气供应腔,所述压缩腔后端右侧固定安装有无氧气体供应腔,所述压缩腔前端左侧设置有氧气供应口,所述压缩腔前端右侧设置有无氧气体供应口,所述压缩腔前端水平安装有一号气腔和二号气腔,所述一号气腔设置于所述二号气腔左侧,所述水平驱动电机前端活动连接有水平加速排扇,所述压缩腔前端固定连接有安装台,所述垂直驱动电机水平等距分布于所述安装台上端,所述垂直驱动电机上端活动连接有垂直混合排扇,所述水平加速排扇设置于所述垂直混合排扇左侧,所述一号气腔与所述二号气腔之间连接有固定环,所述中壁板安装于所述固定环内侧,所述二号气腔内侧安装有双端直驱风机,所述二号气腔前端安装有前置风叶,所述前置风叶活动连接于所述双端直驱风机前端,所述双端直驱风机后端活动连接有后置风叶,所述一号气腔前端固定安装有制冷机,所述制冷机后端固定安装有冷却管,所述冷却管设置于所述一号气腔内侧。

使用本技术方案的一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置时,压缩机将氧气在压缩腔内压缩并通过氧气供应口排入一号气腔,同时无氧空气进入二号气腔内,在水平加速排扇的高速旋转下带动氧气通过中壁板流入二号气腔,与空气接触后再通过垂直混合排扇高速旋转充分混合达到最佳的反应浓度,再通过双端直驱风机带动前置风叶和后置风叶加强氧气混合气体的排出速率,与氢燃料充分反应,降低电池能耗。

优选的,所述压缩腔上端横向开设有滤网槽,所述滤网槽内侧安装有过滤网,所述压缩腔内侧中间安装有一号隔板,所述一号隔板垂直于所述过滤网前侧,所述一号隔板设置于所述氧气供应口与所述无氧气体供应口之间。过滤网将进入压缩腔内的氧气和无氧空气内含有的杂质去除,防止最终形成的混合气体内的杂质在反应的过程中生产坚硬的固定颗粒物,不易清理,造成电池内部的结构损伤。

优选的,所述一号气腔后端设置有一号对接口和一号通口,所述氧气供应口活动于所述一号对接口内侧,所述水平驱动电机活动于所述一号通口内侧,所述水平加速排扇设置于所述一号气腔内侧。水平驱动电机带动水平加速排扇高速旋转,利用外侧均匀设置的片状翼板结构加速一号气腔内氧气的流动,令氧气单位时间内流入二号气腔的量增大。

优选的,所述二号气腔后端设置有二号对接口和二号通口,所述无氧气体供应口活动于所述二号对接口内侧,所述安装台活动于所述二号通口内侧,所述垂直驱动电机和所述垂直混合排扇设置于所述二号气腔内侧。垂直驱动电机带动垂直混合排扇高速旋转,令氧气与无氧空气的混合更加均匀,在与氢燃料接触反应时可以提高燃料的有效利用率,节少氢燃料的浪费。

优选的,所述一号气腔内侧下端开设有导排口,所述导排口设置于所述冷却管下方,所述导排口下端固定连接有L型密封排水腔,所述密封排水腔下端设置于所述一号气腔左侧。氧气内含有的水蒸气在接触到冷却管时生成冷凝水沿冷却管表面流入导排口并最终通过密封排水腔排出,密封排水腔的L型弯折结构防止杂质气体进入一号气腔。

优选的,所述二号气腔内侧下端横向连接有导向支座,所述导向支座内侧滑动连接有L型二号隔板,所述二号隔板设置于所述双端直驱风机后侧,所述后置风叶安装于所述二号隔板内侧。双端直驱风机前后两端的驱动机构同时带动前置风叶和后置风叶高速转动,在两组风叶之间形成低压环境,加速二号气腔内混合气体的流入速度,使单位时间内混合气体与氢燃料的接触量增大。

优选的,所述二号气腔前端固定连接有密封圈,所述密封圈设置于所述前置风叶外侧。二号气腔的前端与电池内的氢燃料反应腔对接,通过密封圈将对接部位密封,防止混合气体外泄引起安全问题。

优选的,所述固定环左右两端均开设有卡扣槽,所述中壁板左右两端均固定连接有卡扣头,所述卡扣头卡扣连接于所述卡扣槽内侧,所述中壁板右端竖向分布有开口倾斜向上的定向排气口。中壁板通过卡扣槽和卡扣头的卡扣连接,方便安拆更换,定向排气口的倾斜向上结构令氧气进入二号气腔时处于结构的上半部分,利用压缩冷却氧气的自重自然下沉到结构下部,过程中与无氧空气充分混合。

(3)有益效果

与现有技术相比,本发明的有益效果在于:本发明的一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置采用一号气腔和二号气腔分离设置,分别控制氧气和无氧空气之间交互流动,在一号气腔内通过水平加速排扇加大氧气的单位之间通过量,并在二号气腔内通过垂直混合排扇将氧气与无氧空气充分混合,利用压缩机控制氧气的输入量来控制混合气体的浓度,使其达到最佳的反应浓度,与氢燃料接触时,可以使氢燃料充分反应,提高氢燃料的有效利用率,降低电池的单位时间能耗。

附图说明

为了更清楚的说明本发明

具体实施方式

或现有技术中的技术方案,下面将对具体实施方式或现有技术中描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施方式,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置具体实施方式的组装结构示意图;

图2为本发明一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置具体实施方式的压缩腔结构示意图

图3为本发明一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置具体实施方式的一号气腔结构示意图;

图4为本发明一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置具体实施方式的二号气腔结构示意图。

附图中的标记为:1、压缩腔;2、压缩机;3、氧气供应腔;4、无氧气体供应腔;5、氧气供应口;6、无氧气体供应口;7、一号气腔;8、二号气腔;9、水平驱动电机;10、水平加速排扇;11、安装台;12、垂直驱动电机;13、垂直混合排扇;14、固定环;15、中壁板;16、双端直驱风机;17、前置风叶;18、后置风叶;19、制冷机;20、冷却管;21、滤网槽;22、过滤网;23、一号隔板;24、一号对接口;25、一号通口;26、二号对接口;27、二号通口;28、导排口;29、密封排水腔;30、导向支座;31、二号隔板;32、密封圈;33、卡扣槽;34、卡扣头;35、定向排气口。

具体实施方式

为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面对本发明具体实施方式中的技术方案进行清楚、完整的描述,以进一步阐述本发明,显然,所描述的具体实施方式仅仅是本发明的一部分实施方式,而不是全部的样式。

实施例1

本具体实施方式是用于一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置,其组装结构示意图如图1所示,压缩腔1结构示意图如图2所示,一号气腔7结构示意图如图3所示,二号气腔8结构示意图如图4所示,该空气压缩装置包括压缩腔1、安装于压缩腔1前端的水平驱动电机9、设置于水平驱动电机9右侧的垂直驱动电机12、设置于压缩腔1前侧中间的中壁板15,压缩腔1后端固定安装有压缩机2,压缩腔1后端左侧固定安装有氧气供应腔3,压缩腔1后端右侧固定安装有无氧气体供应腔4,压缩腔1前端左侧设置有氧气供应口5,压缩腔1前端右侧设置有无氧气体供应口6,压缩腔1前端水平安装有一号气腔7和二号气腔8,一号气腔7设置于二号气腔8左侧,水平驱动电机9前端活动连接有水平加速排扇10,压缩腔1前端固定连接有安装台11,垂直驱动电机12水平等距分布于安装台11上端,垂直驱动电机12上端活动连接有垂直混合排扇13,水平加速排扇10设置于垂直混合排扇13左侧,一号气腔7与二号气腔8之间连接有固定环14,中壁板15安装于固定环14内侧,二号气腔8内侧安装有双端直驱风机16,二号气腔8前端安装有前置风叶17,前置风叶17活动连接于双端直驱风机16前端,双端直驱风机16后端活动连接有后置风叶18,一号气腔7前端固定安装有制冷机19,制冷机19后端固定安装有冷却管20,冷却管20设置于一号气腔7内侧。

针对本具体实施方式,双端直驱风机16前后两端均设置有驱动机构,分别与前置风叶17和后置风叶18连接,当前置风叶17和后置风叶18同时转动时,两组风叶之间的气体流速加快,气压降低,使二号气腔8内的混合气体加速流入前置风叶17和后置风叶18之间,加速混合气体的单位时间排出量。

其中,压缩腔1上端横向开设有滤网槽21,滤网槽21内侧安装有过滤网22,压缩腔1内侧中间安装有一号隔板23,一号隔板23垂直于过滤网22前侧,一号隔板23设置于氧气供应口5与无氧气体供应口6之间。过滤网22将进入压缩腔1内的氧气和无氧空气内含有的杂质去除,防止最终形成的混合气体内的杂质在反应的过程中生产坚硬的固定颗粒物,不易清理,造成电池内部的结构损伤

同时,一号气腔7后端设置有一号对接口24和一号通口25,氧气供应口5活动于一号对接口24内侧,水平驱动电机9活动于一号通口25内侧,水平加速排扇10设置于一号气腔7内侧,二号气腔8后端设置有二号对接口26和二号通口27,无氧气体供应口6活动于二号对接口26内侧,安装台11活动于二号通口27内侧,垂直驱动电机12和垂直混合排扇13设置于二号气腔8内侧,固定环14左右两端均开设有卡扣槽33,中壁板15左右两端均固定连接有卡扣头34,卡扣头34卡扣连接于卡扣槽33内侧,中壁板15右端竖向分布有开口倾斜向上的定向排气口35。水平驱动电机9带动水平加速排扇10高速旋转,利用外侧均匀设置的片状翼板结构加速一号气腔7内氧气的流动,令氧气单位时间内流入二号气腔8的量增大,垂直驱动电机12带动垂直混合排扇13高速旋转,令氧气与无氧空气的混合更加均匀,在与氢燃料接触反应时可以提高燃料的有效利用率,节少氢燃料的浪费,中壁板15通过卡扣槽33和卡扣头34的卡扣连接,方便安拆更换,定向排气口35的倾斜向上结构令氧气进入二号气腔8时处于结构的上半部分,利用压缩冷却氧气的自重自然下沉到结构下部,过程中与无氧空气充分混合。

另外,一号气腔7内侧下端开设有导排口28,导排口28设置于冷却管20下方,导排口28下端固定连接有L型密封排水腔29,密封排水腔29下端设置于一号气腔7左侧。氧气内含有的水蒸气在接触到冷却管20时生成冷凝水沿冷却管20表面流入导排口28并最终通过密封排水腔29排出,密封排水腔29的L型弯折结构防止杂质气体进入一号气腔7。

此外,二号气腔8内侧下端横向连接有导向支座30,导向支座30内侧滑动连接有L型二号隔板31,二号隔板31设置于双端直驱风机16后侧,后置风叶18安装于二号隔板31内侧,二号气腔8前端固定连接有密封圈32,密封圈32设置于前置风叶17外侧。双端直驱风机16前后两端的驱动机构同时带动前置风叶17和后置风叶18高速转动,在两组风叶之间形成低压环境,加速二号气腔8内混合气体的流入速度,使单位时间内混合气体与氢燃料的接触量增大,二号气腔8的前端与电池内的氢燃料反应腔对接,通过密封圈32将对接部位密封,防止混合气体外泄引起安全问题。

使用本技术方案的一种低能耗的氢燃料电池专用直驱高速离心式空气压缩装置时,压缩机2将氧气从氧气供应腔3内抽出并在压缩腔1内压缩,然后通过氧气供应口5排入一号气腔7,同时无氧空气被压缩机2压入二号气腔8内,过滤网22的设置,防止气体中的杂质进入电池内部,反应生产杂质颗粒污染电池,一号气腔7内的氧气先与冷却管20接触,将温度降低,使氧气的体积减小,氧气内混入的水蒸气在冷却管20上冷凝成水珠后通过导排口28和密封排水腔29排出,然后被压缩的氧气在水平加速排扇10的高速旋转的带动下通过中壁板15右端的定向排气口35流入二号气腔8,定向排气口35倾斜向上的结构令氧气进入二号气腔8的时候处于二号气腔8的上部,因为氧气的自重较空气大,自然沉降的过程中与无氧空气之间起到混合的效果,然后再通过垂直混合排扇13加速氧气与无氧空气的混合,通过压缩机2的精确控制氧气输入量,保证混合气体的含氧浓度达到最佳的反应浓度,混合完成的气体再通过双端直驱风机16带动前置风叶17和后置风叶18加强流速,排出二号气腔8后与氢燃料充分反应,提高氢燃料的单位体积有效利用率,节省氢燃料原材,降低电池单位时间的能耗。

以上描述了本发明的主要技术特征和基本原理及相关优点,对于本领域技术人员而言,显然本发明不限于上述示范性具体实施方式的细节,而且在不背离本发明的构思或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将上述具体实施方式看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。

此外,应当理解,虽然本说明书按照各实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种风扇控制方法、系统及相关组件

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!