一种无水氯化亚钐及其制备方法

文档序号:372494 发布日期:2021-12-10 浏览:11次 >En<

阅读说明:本技术 一种无水氯化亚钐及其制备方法 (Anhydrous samarium chloride and preparation method thereof ) 是由 汪瑞 张瑞森 高淞 李璐 张光睿 赵长玉 彭维 王安丽 于 2021-10-18 设计创作,主要内容包括:本发明创造提供了一种无水氯化亚钐及其制备方法,所述方法首先在真空条件下脱去水合氯化钐中的结晶水,然后将无水氯化钐与金属M反应,并经过除杂及真空蒸馏过程,得到绝对纯度极高的无水氯化亚钐。除杂及蒸馏过程中在高真空环境中进行,严格隔绝了水和氧,避免产品被污染;此外工艺流程较短,操作简便,易于工业化生产。(The invention provides anhydrous samarium chloride and a preparation method thereof. The impurity removal and distillation processes are carried out in a high vacuum environment, water and oxygen are strictly isolated, and the product is prevented from being polluted; in addition, the process flow is short, the operation is simple and convenient, and the industrial production is easy to realize.)

一种无水氯化亚钐及其制备方法

技术领域

本发明创造属于稀土材料制备领域,尤其是涉及一种无水氯化亚钐及其制备方法。

背景技术

稀土元素是周期表中IIIB族镧系元素和钇之总称,是21世纪具有战略地位的元素,具有独特的光、电,磁等物理化学特性,广泛应用于国民经济和国防工业的各个领域,被称为“21世纪新材料的宝库”。

高纯无水稀土卤化物是重要的化工原料,是制备高纯稀土金属和新一代高性能稀土闪烁晶体的核心原材料,具有极其广阔的应用前景。但是在制备过程中,稀土卤化物极易发生水解反应,生成卤氧化物,对利用稀土卤化物所制备的稀土材料的性能产生不利影响。

众所周知,稀土元素一般以三价的形式稳定存在于各种化合物中。而钐、铕、铥等少数稀土元素除了存在三价稳定态,还可以以二价的亚稳态存在,其中Sm2+的还原能力比较强,离子半径较大,且具有很强的亲氧性。因此二价钐化合物正在逐渐引起人们的重视。二价钐化合物中的无水氯化亚钐有强还原性,易生成氨基化合物。本发明提供一种操作简单可行,产物品质纯净的制备无水氯化亚钐的方法,对材料的研究具有重要意义。

发明内容

有鉴于此,本发明创造旨在克服现有技术中的缺陷,提出一种无水氯化亚钐及其制备方法。

为达到上述目的,本发明创造的技术方案是这样实现的:

一种无水氯化亚钐的制备方法,包括如下步骤:

S1:以水合氯化钐做原料,在真空条件下,梯度升温脱水,得到脱去大部分结晶水的粗无水氯化钐;

S2:将步骤S1中粗无水氯化钐与金属M混合,置于真空炉中,并在真空条件下,梯度升温至680-700℃,进行反应和除杂过程;其中金属M为还原性较钐强的金属单质,且金属M的氯化物的熔沸点区别于氯化钐;

S3:更换除杂收集装置,继续将步骤S2中得到的混合物在真空条件下,升温至740-760℃,进行真空蒸馏过程,获得绝对纯度≥99.99%的高品质无水SmCl2产品。

优选的,所述金属M为Li、Na、K、Ca、Mg、Sm或La。

优选的,所述步骤S2中粗无水氯化钐与金属M的摩尔比为n:1,所述金属M与粗无水氯化钐生成MClx,其中n与x相等。

优选的,所述步骤S1中梯度升温脱水包括如下三个步骤:

S11:升温至160-180℃,并保温2-3h,使SmCl3·6H2O脱去部分结晶水,成为SmCl3·yH2O,其中y≤1;

S12:在步骤S11的基础上,继续升温至220-240℃,并保温2-3h,使SmCl3·yH2O继续脱去结晶水;

S13:在步骤S12的基础上,继续升温至240-260℃,并保温2-3h,待反应结束后,得到除去绝大部分结晶水的粗无水氯化钐。

优选的,所述步骤(2)中梯度升温包括如下两个步骤:

S21:升温至500-540℃,并保温3-4h,使无水氯化钐和金属M完全反应,生成相应的SmCl2和MClx

S22:在步骤S21的基础上,继续升温至680-700℃,并保温3-4h,利用杂质与SmCl2及SmCl3熔点、沸点及蒸气压的区别,除去原料中的低沸点杂质及残留少量的SmCl3

优选的,所述步骤S1中的真空度为0.001MPa-0.01Mpa。

优选的,所述步骤S2中的真空度为不大于10Pa。

优选的,所述步骤S3中的真空度为不大于0.1Pa。

本发明还提供一种由上述方法制备得到的无水氯化亚钐,所述无水氯化亚钐纯度达到99.99%,金属杂质含量均小于1ppm,水、氧含量均不大于20ppm。

本发明所述的无水氯化亚钐的制备方法,在处理得到粗无水SmCl3后,于真空、绝水、绝氧环境中进行反应、除杂和蒸馏过程,在除杂过程中,可将原料中较SmCl2饱和蒸气压大的杂质(如FeCl2、CaCl3、NaCl及残留碳等杂质)除去;在蒸馏过程中,给与适当的温度,将目标SmCl2气化蒸出并予以收集,而较SmCl2蒸气压小的杂质物质更多的残留在料管中,从而达到严格除水、除氧,并与卤氧化物、氧化物杂质高度分离的目的,最终得到杂质元素和水、氧含量都极低的高品质的无水SmCl2

相对于现有技术,本发明创造具有以下优势:

本发明所述的制备方法,首先在真空条件下脱去水合氯化钐中的结晶水,然后将无水氯化钐与还原性较钐强,且金属氯化物的熔沸点与氯化钐区别较大的金属M反应,便于在除杂和蒸馏过程中分离,并经过除杂及真空蒸馏过程,得到绝对纯度极高的无水氯化亚钐。除杂及蒸馏过程中在高真空环境中进行,严格隔绝了水和氧,避免产品被污染;此外工艺流程较短,操作简便,易于工业化生产。

附图说明

图1为本发明所述的制备方法的流程示意图。

具体实施方式

除有定义外,以下实施例中所用的技术术语具有与本发明创造所属领域技术人员普遍理解的相同含义。以下实施例中所用的试验试剂,如无特殊说明,均为常规生化试剂;所述实验方法,如无特殊说明,均为常规方法。

下面结合实施例来详细说明本发明创造。

实施例1:

称取1000g水合氯化钐,置于真空设备中,体系抽真空至0.01MPa以下,开始梯度程序升温脱水,分别在160℃、220℃及250℃保温3h,得到约705g脱去大部分结晶水的粗无水氯化钐。按2:1的摩尔比将粗无水氯化钐和金属镁混合(其中粗无水氯化钐稍过量),转移至真空蒸馏装置中,抽真空后(此时真空度≤10Pa)开始升温至520℃保温4h,使粗无水氯化钐与金属镁完全反应;然后继续升温至700℃,以除去原料中的低沸点杂质,此时氯化镁被升华出来。更换收集器后抽高真空(此时真空度≤0.1Pa)后继续升温至760℃保温4h,并接收蒸馏出来的氯化亚钐,降温冷却后处理得到高纯无水氯化亚钐。

经检测分析,本实施例得到的产物为无水氯化亚钐,金属杂质元素Fe、Ca、Cu等均≤1ppm,水含量≤20ppm,氧含量≤20ppm,高纯无水氯化亚钐绝对纯度≥99.99%。

实施例2:

称取500g水合氯化钐,置于真空设备中,体系抽真空至0.01MPa以下,开始梯度程序升温脱水,分别在180℃、240℃及260℃保温2h,得到约353g脱去大部分结晶水的粗无水氯化钐。按2:1的摩尔比将粗无水氯化钐和金属钙混合(其中粗无水氯化钐稍过量),转移至真空蒸馏装置中,抽真空后(此时真空度≤10Pa)开始升温至550℃保温3h,使粗无水氯化钐与金属镁完全反应;然后继续升温至700℃,以除去原料中的低沸点杂质。更换收集器后抽高真空(此时真空度≤0.1Pa)后继续升温至760℃保温3h,并接收蒸馏出来的氯化亚钐,降温冷却后处理得到高纯无水氯化亚钐。

经检测分析,本实施例得到的产物为无水氯化亚钐,金属杂质元素Fe、Ca、Cu等均≤1ppm,水含量≤20ppm,氧含量≤20ppm,高纯无水氯化亚钐绝对纯度≥99.99%。

实施例3:

称取500g水合氯化钐,置于真空设备中,体系抽真空至0.01MPa以下,开始梯度程序升温脱水,分别在180℃、240℃及260℃保温2h,得到约350g脱去大部分结晶水的粗无水氯化钐。按3:1的化学计量比将粗无水氯化钐和金属镧混合(其中粗无水氯化钐稍过量),转移至真空蒸馏装置中,抽真空后(此时真空度≤10Pa)开始升温至550℃保温3h,使粗无水氯化钐与金属镧完全反应;然后继续升温至700℃,以除去原料中的低沸点杂质。更换收集器后抽高真空(此时真空度≤0.1Pa)后继续升温至760℃保温3h,并接收蒸馏出来的氯化亚钐,降温冷却后处理得到高纯无水氯化亚钐。

经检测分析,本实施例得到的产物为无水氯化亚钐,金属杂质元素Fe、Ca、Cu等均≤1ppm,水含量≤20ppm,氧含量≤20ppm,高纯无水氯化亚钐绝对纯度≥99.99%。

实施例4:

称取1000g水合氯化钐,置于真空设备中,体系抽真空至0.01MPa以下,开始梯度程序升温脱水,分别在180℃、240℃及260℃保温2h,得到约711g脱去大部分结晶水的粗无水氯化钐。按2:1的化学计量比将粗无水氯化钐和金属钐混合(其中粗无水氯化钐稍过量),转移至真空蒸馏装置中,抽真空后(此时真空度≤10Pa)开始升温至550℃保温3h,使粗无水氯化钐与金属钐完全反应;然后继续升温至700℃,以除去原料中的低沸点杂质。更换收集器后抽高真空(此时真空度≤0.1Pa)后继续升温至760℃保温3h,并接收蒸馏出来的氯化亚钐,降温冷却后处理得到高纯无水氯化亚钐。

经检测分析,本实施例得到的产物为无水氯化亚钐,金属杂质元素Fe、Ca、Cu等均≤1ppm,水含量≤20ppm,氧含量≤20ppm,高纯无水氯化亚钐绝对纯度≥99.99%。

实施例5:

称取500g水合氯化钐,置于真空设备中,体系抽真空至0.01MPa以下,开始梯度程序升温脱水,分别在180℃、240℃及260℃保温2h,得到约355g脱去大部分结晶水的粗无水氯化钐。按1:1的化学计量比将粗无水氯化钐和金属钾混合(其中粗无水氯化钐稍过量),转移至真空蒸馏装置中,抽真空后(此时真空度≤10Pa)开始升温至550℃保温3h,使粗无水氯化钐与金属钾完全反应;然后继续升温至700℃,以除去原料中的低沸点杂质。更换收集器后抽高真空(此时真空度≤0.1Pa)后继续升温至760℃保温3h,并接收蒸馏出来的氯化亚钐,降温冷却后处理得到高纯无水氯化亚钐。

经检测分析,本实施例得到的产物为无水氯化亚钐,金属杂质元素Fe、Ca、Cu等均≤1ppm,水含量≤20ppm,氧含量≤20ppm,高纯无水氯化亚钐绝对纯度≥99.99%。

对比例1

称取500g水合氯化钐,置于真空设备中,体系抽真空至0.01MPa以下,开始梯度程序升温脱水,分别在180℃、240℃及260℃保温2h,得到约350g脱去大部分结晶水的粗无水氯化钐。按1:1的化学计量比将粗无水氯化钐和金属镧混合,转移至真空蒸馏装置中,抽真空后(此时真空度≤10Pa)开始升温至550℃保温3h,此时金属镧将粗无水氯化钐中钐还原,得到金属钐和氯化镧。金属钐和氯化镧在760℃时无法升华出来,在真空蒸馏过程无法收集到产品,待冷却后金属钐和氯化镧以固态化合物残留在料罐中。

对比例2

称取500g水合氯化钐,置于真空设备中,体系抽真空至0.01MPa以下,开始梯度程序升温脱水,分别在180℃、240℃及260℃保温2h,得到约350g脱去大部分结晶水的粗无水氯化钐。按2:3的化学计量比将粗无水氯化钐和金属钙混合,转移至真空蒸馏装置中,抽真空后(此时真空度≤10Pa)开始升温至550℃保温3h,此时金属钙将粗无水氯化钐中钐还原,得到金属钐和氯化钙。金属钐和氯化钙在760℃时无法升华出来,在真空蒸馏过程无法收集到产品,待冷却后以固态化合物残留在料罐中。

上述实施例中,金属M的加入量需严格按照化学计量比控制,并控制粗无水氯化钐稍过量,以保证合成反应按要求方向进行。

以上所述仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明创造的保护范围之内。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种快速原位制备稀土氟化物-稀土氧化物异质结微纳材料的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!