一种复合材料气瓶及其制备方法

文档序号:390166 发布日期:2021-12-14 浏览:20次 >En<

阅读说明:本技术 一种复合材料气瓶及其制备方法 (Composite material gas cylinder and preparation method thereof ) 是由 王金娜 刘魏魏 杨克伦 宗磊 江亚彬 赵龑浩 于 2021-11-16 设计创作,主要内容包括:本发明提供一种复合材料气瓶及其制备方法,复合材料气瓶包括由内至外依次设置的:内胆;粘接过渡层,粘接过渡层的制备原料包括玻璃纤维布和粘接剂,粘接剂的制备原料包括:环氧树脂、固化剂、促进剂;玄武岩纤维复合材料层,玄武岩纤维复合材料层的制备原料包括双马来酰亚胺树脂基体和玄武岩纤维增强材料。该复合材料气瓶以双马来酰亚胺为基体材料,玄武岩纤维为主要增强材料,其耐高温性能好、成本低。(The invention provides a composite material gas cylinder and a preparation method thereof, wherein the composite material gas cylinder comprises the following components in sequence from inside to outside: an inner container; the preparation raw materials of bonding transition layer include glass fiber cloth and adhesive, and the preparation raw materials of adhesive include: epoxy resin, curing agent and accelerator; the basalt fiber composite material layer is prepared from raw materials including a bismaleimide resin matrix and a basalt fiber reinforced material. The composite material gas cylinder takes bismaleimide as a base material and basalt fiber as a main reinforcing material, and has good high-temperature resistance and low cost.)

一种复合材料气瓶及其制备方法

技术领域

本发明属于复合材料耐压容器技术领域,具体涉及一种复合材料气瓶及其制备方法。

背景技术

复合材料高压气瓶始于上世纪50年代,具有质量轻、高强度、高模量和可设计性强等特点,被广泛应用于航空、航天等重要领域。随着航天技术的不断发展、载人登月技术的需求以及运载火箭、导弹、航空领域对高性能气瓶的需求,需要一种抗高低温环境能力强的高性能气瓶定型产品。

目前,航空航天所用复合材料气瓶基体材料多为环氧树脂基体,如中国专利文献CN112963722A,公开了一种金属内衬碳纤维缠绕复合材料气瓶及其制造方法,采用环氧树脂作为基体材料,当前该种气瓶的使用温度范围仅为-40℃~60℃,而高温级航空航天领域先进复合材料需耐180℃~250℃的高温,环氧树脂基体复合材料气瓶的工作温度范围受限。对于复合材料气瓶的增强纤维,多选用玻璃纤维和碳纤维。玻璃纤维强度高、弹性模量高,但是耐候性差,吸水性高,对酸、碱和其他腐蚀性介质的化学稳定性比较差。碳纤维强度、模量、耐候性、耐腐蚀性均较玻璃纤维显著,但成本过高,依赖进口,采购容易受到国际形势限制。

因此,需要一种适于航空航天领域的耐温特性优良、成本低廉的复合材料气瓶。

发明内容

本发明解决的技术问题是提供一种复合材料气瓶及其制备方法,该复合材料气瓶以双马来酰亚胺为基体材料,玄武岩纤维为主要增强材料,其耐高温性能好、成本低。

为了解决上述问题,本发明提供的一个方面提供一种复合材料气瓶,包括由内至外依次设置的:

内胆;

粘接过渡层,所述粘接过渡层的制备原料包括玻璃纤维布和粘接剂,所述粘接剂的制备原料包括:环氧树脂、固化剂、促进剂;

玄武岩纤维复合材料层,所述玄武岩纤维复合材料层的制备原料包括双马来酰亚胺树脂基体和玄武岩纤维增强材料。

本发明的复合材料气瓶,采用玻璃化转变温度大于250℃,具备良好的工艺性能和耐高温性能的双马来酰亚胺树脂作为基体材料,兼具环氧树脂的工艺性能和聚酰亚胺的耐高温性能,可耐180℃~250℃高温。采用玄武岩纤维作为增强材料,首先玄武岩纤维是一种新型无机环保绿色高性能纤维材料,其以SiO2为主要成分,还含有大量金属氧化物,形成了辉石、斜长石和橄榄石等硅酸盐矿物结构,从而具备良好的机械性能,更高的化学稳定性,更优异的耐候性、耐酸碱性和更广泛的使用温度范围;其次,更重要的是,玄武岩纤维来源广泛,生产工艺简单,采用玄武岩纤维代替常规的碳纤维可大大降低生产成本,使复合材料气瓶生产成本更低。

优选地,还包括:

碳纤维复合材料层,设于所述粘接过渡层与所述玄武岩纤维复合材料层之间,所述碳纤维复合材料层的制备原料包括双马来酰亚胺树脂基体和碳纤维增强材料;

耐温保护层,设于所述玄武岩纤维复合材料层外,所述耐温保护层为聚氨酯型三防漆。

优选地,所述玄武岩纤维增强材料为经过硅烷偶联剂处理的玄武岩纤维增强材料。

具体地,所述硅烷偶联剂处理指的是将硅烷偶联剂配置成浓度为2wt%的乙醇溶液,将玄武岩纤维增强材料于硅烷偶联剂乙醇溶液中浸渍,然后干燥冷却,得到硅烷偶联剂处理的玄武岩纤维增强材料。

具体地,所述内胆为金属内胆;更进一步地,所述金属内胆为不锈钢内胆。

具体地,所述内胆的形状为圆柱形或球形。

优选地,所述粘接过渡层的厚度为0.3-0.8mm;

所述碳纤维复合材料层的厚度为2.0-4.6mm;

所述玄武岩纤维复合材料层的厚度为11.5-16.8mm。

本发明的复合材料气瓶,以玄武岩纤维复合材料层为主,碳纤维复合材料层为辅,使气瓶具有很好的机械性能,其工作压力可达到35MPa,爆破强度安全系数不低于2.0,且具有成本低,耐高温的特点。

更优选地,所述碳纤维复合材料层与所述玄武岩纤维复合材料层的厚度比为(0-0.3):1。

优选地,所述碳纤维复合材料层中,双马来酰亚胺树脂基体质量百分比为30%-40%。

优选地,所述玄武岩纤维复合材料层中,双马来酰亚胺树脂基体质量百分比为30%-40%。

优选地,所述双马来酰亚胺树脂基体的玻璃化转变温度>250℃;

所述碳纤维增强材料为T700碳纤维,所述碳纤维增强材料的抗拉强度≥4900MPa,弹性模量≥230GPa,伸长率≥2.1%,线密度≥800tex,密度≥1.9g/cm3

所述玄武岩纤维增强材料为硅烷偶联剂改性玄武岩纤维,所述玄武岩纤维增强材料抗拉强度≥3600MPa,弹性模量≥95GPa,伸长率≥2.4%,线密度≥1200tex,密度≥2.65g/cm3

优选地,所述粘接剂的制备原料中,环氧树脂、固化剂、促进剂的质量比为100:(90-130):(0.5-3);

所述粘接剂的制备原料中,所述环氧树脂为双酚A类环氧树脂;所述固化剂为苯酐类固化剂;所述促进剂为N、N-二甲基苄胺。

本发明的另一方面提供一种制备上述的复合材料气瓶的方法,包括以下步骤:

S1. 将所述玻璃纤维布包覆于所述内胆的外表面,将所述粘接剂涂至所述玻璃纤维布上,然后固化,打磨,得到所述粘接过渡层;

S2. 采用湿法缠绕工艺,将浸渍双马来酰亚胺树脂基体的碳纤维增强材料缠绕至所述粘接过渡层的外表面,形成所述碳纤维复合材料层;或不设置所述碳纤维复合材料层;

S3. 采用湿法缠绕工艺,将浸渍双马来酰亚胺树脂基体玄武岩纤维增强材料缠绕至所述碳纤维复合材料层或所述粘接过渡层的外表面,形成所述玄武岩纤维复合材料层;

S4. 将步骤S3得到的多层结构固化,得到所述复合材料气瓶。

优选地,步骤S1中,固化程序为:升温至85-115℃,保温2h;然后升温至145-165℃,保温4h。

优选地,步骤S2中,缠绕所述浸渍双马来酰亚胺树脂基体的碳纤维增强材料时采用多向螺旋缠绕与环向缠绕交替的缠绕方法,螺旋缠绕角度为8°-18°;缠绕张力为30-40N,且由内向外每层纤维的缠绕张力递减。

优选地,步骤S3中,缠绕所述浸渍双马来酰亚胺树脂基体玄武岩纤维增强材料时采用多向螺旋缠绕与环向缠绕交替的缠绕方法,螺旋缠绕角度为10°-70°;缠绕张力为15-20N,且由内向外每层纤维的缠绕张力递减。

优选地,步骤S4中,固化制度为:

以0.5-2℃/min的升温速度升温至140℃-160℃,保温2-4h;然后以0.5-2℃/min的升温速度升温至175℃-195℃,保温4-6h;再以0.5-2℃/min的升温速度升温至210℃-230℃,保温6-8h;最后以不超过3℃/min的速度冷却至20-30℃,完成固化。

优选地,在步骤S4之后还包括:

S5. 将固化完成后的产品按照自紧压力进行自紧处理;

S6. 在所述玄武岩纤维复合材料层外喷涂耐温保护材料,得到所述复合材料气瓶。

本发明与现有技术相比,具有以下有益效果:

1. 本发明的复合材料气瓶,采用玻璃化转变温度大于250℃,具备良好的工艺性能和耐高温性能的双马来酰亚胺树脂作为基体材料,兼具环氧树脂的工艺性能和聚酰亚胺的耐高温性能,可耐180℃~250℃高温;

2. 本发明的复合材料气瓶,采用玄武岩纤维替代常规的碳纤维作为增强材料,且以玄武岩纤维复合材料层为主体,玄武岩纤维是一种新型无机环保绿色高性能纤维材料,其以SiO2为主要成分,还含有大量金属氧化物,形成了辉石、斜长石和橄榄石等硅酸盐矿物结构,从而具备良好的机械性能,更高的化学稳定性,更优异的耐候性、耐酸碱性和更广泛的使用温度范围,更重要的是,玄武岩纤维来源广泛,生产工艺简单,采用玄武岩纤维代替常规的碳纤维可大大降低生产成本,使复合材料气瓶生产成本更低;

3. 本发明的复合材料气瓶的制备方法,通过进一步调控工艺中纤维的缠绕角度、梯度升温固化制度,使获得的复合材料气瓶具有更好的机械性能。

附图说明

图1是本发明实施例1所述的复合材料气瓶的结构示意图。

其中:1-不锈钢内胆;2-粘接过渡层;3-碳纤维复合材料层;4-玄武岩纤维复合材料层;5-耐温保护层。

具体实施方式

下面将结合本发明的实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

如图1所示,本实施例所述的复合材料气瓶,工作压力为35MPa,体积为50L,内胆的形状为圆柱形。包括由内至外依次设置的:

不锈钢内胆1;

粘接过渡层2,厚度为0.5mm,所述粘接过渡层的制备原料包括玻璃纤维布和粘接剂,所述粘接剂的制备原料包括质量比为100:90:0.8的环氧树脂、甲基四氢苯酐、N、N-二甲基苄胺;

碳纤维复合材料层3,厚度为2.5mm,所述碳纤维复合材料层的制备原料包括双马来酰亚胺树脂基体(实测玻璃化转变温度大于250℃)和东丽T700SC-1200K碳纤维增强材料(线密度800tex,复测拉伸强度5120MPa),其中,双马来酰亚胺树脂基体质量百分比为35%;

玄武岩纤维复合材料层4,厚度为12.76mm,所述玄武岩纤维复合材料层的制备原料包括双马来酰亚胺树脂基体(实测玻璃化转变温度大于250℃)和硅烷偶联剂KH-550处理过的玄武岩纤维增强材料(线密度1200tex,复测拉伸强度3800MPa),其中,双马来酰亚胺树脂基体质量百分比为35%;

耐温保护层5,所述耐温保护层为聚氨酯型三防漆。

本实施例的复合材料气瓶的制备方法,包括以下步骤:

S1. 配置粘接剂,利用缠绕工装将不锈钢内胆固定于缠绕机上,以2~8r/min的转动速度360°旋转,将玻璃纤维表面毡包覆于不锈钢内胆的外表面,用毛刷将粘接剂涂至表面毡上,保证表面粘无褶皱,然后放入固化炉,固化制度为升温至90℃,保温2h,进一步升温至150℃,保温4h,固化过程中,气瓶绕轴线以2~8r/min的转速转动,固化完成后,用砂纸打磨掉表面胶瘤,使表面平整,用千分尺测定层间粘接过渡层为0.5mm;

S2. 将内胆用缠绕工装安装于缠绕机缠绕部位后,打开加热工装至缠绕部位,预热半小时,胶槽提前2-5h加热,使得胶槽内温度为120-130℃;取1kg双马来酰亚胺树脂切割成小块置于烧杯中室温放置2-5h,而后通过电炉加热升温至120-140℃,在不断搅拌下将小块双马来酰亚胺树脂变成棕红色透明液体,静置排泡后倒入胶槽内;经碳纤维增强材料于胶槽内浸渍双马来酰亚胺树脂;采用湿法缠绕工艺,将浸渍双马来酰亚胺树脂基体的碳纤维增强材料依次进行89°环向缠绕/10°螺旋缠绕/89°环向缠绕/13°螺旋缠绕,缠绕至所述粘接过渡层的外表面,每根碳纤维依次对应缠绕张力为40N/40N/38N/38N,形成所述碳纤维复合材料层,厚度为2.5mm;

S3. 将经硅烷偶联剂处理后的玄武岩纤维增强材料于胶槽内浸渍双马来酰亚胺树脂;采用湿法缠绕工艺,将浸渍双马来酰亚胺树脂基体玄武岩纤维增强材料依次以89°/17°/89°/60°/10°/89°/13°/89°/17°/89°/60°/10°/89°/13°/89°/17°/89°/60°/10°/89°/13°/89°/10°/89°的环向缠绕、螺旋缠绕交替缠绕至所述碳纤维复合材料层的外表面,每根玄武岩纤维增强材料的缠绕张力依次为

20N/20N/20N/20N/19N/19N/19N/19N/18N/18N/18N/18N/17N/17N/17N/17N/16N/16N/16N/16N/15N/15N/15N/15N,形成所述玄武岩纤维复合材料层,厚度为12.76mm;

S4. 将步骤S3得到的多层结构放入固化炉内固化,固化过程中,气瓶绕轴线以2~8r/min的转速转动,固化制度为:以0.5-2℃/min的升温速度升温至140℃,保温2h;然后以0.5-2℃/min的升温速度升温至180℃,保温4h;再以0.5-2℃/min的升温速度升温至220℃,保温6h;最后以不超过3℃/min的速度冷却至25℃,完成固化;

S5. 将固化完成后的产品按照建模仿真所确定的自紧压力,进行“自紧”处理;

S6. 在所述玄武岩纤维复合材料层外喷涂聚氨酯型三防漆,得到所述复合材料气瓶。

该复合材料气瓶通过了35MPa的气密性检验和52.5MPa的水压检验。并进行-60℃低温试验和180℃高温试验后,气密性检验合格,通过了低温试验和高温试验。

实施例2

本实施例的复合材料气瓶,其余制备步骤与实施例1均相同,区别为,粘接过渡层2中粘接剂的制备原料为质量比为100:120:1的环氧树脂、甲基四氢苯酐、N、N-二甲基苄胺。

该复合材料气瓶通过了35MPa的气密性检验和52.5MPa的水压检验。并进行-60℃低温试验和180℃高温试验后,气密性检验合格,通过了低温试验和高温试验。

实施例3

本实施例的复合材料气瓶,其余制备步骤与实施例1均相同,区别为,步骤S3中,将浸渍双马来酰亚胺树脂基体玄武岩纤维增强材料依次以89°/20°/89°/65°/10°/89°/15°/89°/20°/89°/65°/10°/89°/15°/89°/20°/89°/60°/10°/89°/15°/89°/10°/89°的环向缠绕、螺旋缠绕交替缠绕至所述碳纤维复合材料层的外表面。

该复合材料气瓶通过了35MPa的气密性检验和52.5MPa的水压检验。并进行-60℃低温试验和180℃高温试验后,气密性检验合格,通过了低温试验和高温试验。

实施例4

本实施例的复合材料气瓶,其余结构及制备方法与实施例1均相同,区别在于不设有碳纤维复合材料层,玄武岩纤维复合材料层的厚度为16.8mm。

该实施例制备的复合材料气瓶通过了35MPa的气密性检验和52.5MPa的水压检验。并进行-60℃低温试验和180℃高温试验后,气密性检验合格,通过了低温试验和高温试验。

实施例5

本实施例的复合材料气瓶,结构与实施例1相同,区别在于,步骤S4中,固化制度为:直接以0.5-2℃/min的升温速度升温至210℃,保温12h;最后以不超过3℃/min的速度冷却至20-30℃,完成固化。

本实例制备的复合材料气瓶通过了35MPa的气密性检验和52.5MPa的水压检验,但未通过-60℃低温试验和180℃高温试验检验。

实施例6

本实施例的复合材料气瓶,结构与实施例1相同,区别在于,制备方法中,缠绕角度不同,具体为:

S2中,将浸渍双马来酰亚胺树脂基体的碳纤维增强材料依次以89°/60°/89°/60°的环向缠绕、螺旋缠绕交替缠绕至所述粘接过渡层的外表面;

S3中,将浸渍双马来酰亚胺树脂基体玄武岩纤维增强材料依次以89°/45°/89°/60°/45°/89°/60°/89°/45°/89°/60°/60°/89°/45°/89°/60°/89°/60°/10°/89°/13°/89°/10°/89°的环向缠绕、螺旋缠绕交替缠绕至所述碳纤维复合材料层的外表面。

本实例制备的复合材料气瓶未通过52.5MPa的水压检验。强度未达到设计要求,不予进行后续检验。

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于冷冻液化气体储存的金属低温薄膜陆用储罐绝缘保冷箱

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!