心血管植入器械耐磨损涂层及其制备方法

文档序号:520235 发布日期:2021-06-01 浏览:27次 >En<

阅读说明:本技术 心血管植入器械耐磨损涂层及其制备方法 (Cardiovascular implantation instrument wear-resistant coating and preparation method thereof ) 是由 张晏齐 王松 卢俊哲 祝佳 陈昌盛 李小丽 刘伟强 于 2021-01-13 设计创作,主要内容包括:本发明涉及心血管植入器械耐磨损涂层及其制备方法。耐磨损涂层从基体材料开始,依次制备钛过渡层、Ti:C含量比递减的含钛梯度层和Cu-DLC含铜非晶碳层,即Ti/Ti:C/Cu-DLC复合涂层;含钛梯度层为钛、碳含量梯度变化的非晶碳层,钛过渡层为钛单质。制备方法,包括:⑴对植入器械金属基体材料表面抛光、清洗;⑵将基体材料放入真空室预处理;⑶在真空室内产生Ti离子,使其移动到基体材料表面沉积成型钛过渡层;⑷同时产生Ti离子和C离子,使其移动到基体材料表面沉积,逐渐调整二者产生比例,成型含钛梯度层;⑸同时产生C离子和Cu离子,使其移动到基体材料表面并沉积,成型含铜非晶碳层。(The invention relates to an abrasion-resistant coating of a cardiovascular implantation instrument and a preparation method thereof. The wear-resistant coating is prepared by sequentially preparing a titanium transition layer, a titanium-containing gradient layer with the content ratio of Ti to C decreasing and a Cu-DLC copper-containing amorphous carbon layer from a base material, namely a Ti/Ti: C/Cu-DLC composite coating; the titanium-containing gradient layer is an amorphous carbon layer with gradient change of titanium and carbon content, and the titanium transition layer is a titanium simple substance. The preparation method comprises the following steps: the method comprises the steps of polishing and cleaning the surface of an implanted mechanical metal matrix material; placing a matrix material into a vacuum chamber for pretreatment; thirdly, Ti ions are generated in the vacuum chamber and are moved to the surface of the base material to deposit a formed titanium transition layer; fourthly, Ti ions and C ions are generated simultaneously, the Ti ions and the C ions are moved to the surface of the base material to be deposited, the generation proportion of the Ti ions and the C ions is gradually adjusted, and a titanium-containing gradient layer is formed; and fifthly, simultaneously generating C ions and Cu ions, moving the C ions and the Cu ions to the surface of the base material, depositing, and forming the copper-containing amorphous carbon layer.)

心血管植入器械耐磨损涂层及其制备方法

技术领域

本发明属于医疗器械技术领域,特别涉及一种心血管植入器械耐磨损涂层及其制备方法。心血管植入器械耐磨损涂层应用于器械中受到磨损的丝状部件。

背景技术

心血管疾病是造成人类疾病死亡的主要原因之一,植介入医疗器械是该类疾病有效的治疗手段。临床常见的心血管植入器械如血管支架、封堵器、静脉血栓过滤器等,均可采用丝状材料编织制备而成。然而,编织而成的植入器械由于丝状材料之间直接接触,在植入部位生理运动载荷和体液环境作用下,丝线之间将产生严重的微动腐蚀磨损。磨损释放的金属离子或磨屑微粒将促进炎症反应,甚至堵塞血管,进而导致支架内再狭窄等严重病症。

类金刚石(DLC)膜是一种非晶碳膜,其主要由碳元素构成。DLC膜具有高硬度、低摩擦系数、低磨损率、生物惰性等优点,但同时也具有高脆性、高内应力和较差的膜基结合强度。目前研究表明,通过适当的异质元素掺杂,可有效地改善脆性和内应力;通过合理的过渡结构设计可以有效地提高膜基结合强度。

铜是人体必需的微量元素之一,正常人血浆内的铜浓度约为100μg/dL。缺乏铜将会引起包括贫血、关节炎等疾病以及多种心血管疾病。Sen Chandan K等人的研究表明,铜可以促进内皮生长因子VEGF的表达,从而促进血管内皮细胞的增殖;McCarthy等人的研究证明了在血管支架腐蚀的过程中,Fe2+和Cu2+具有最高的催化NO释放性能,而后者可抑制血小板的黏附与激活。因此,含有适量铜的心血管植入物可以有效地促进内皮化、抑制平滑肌增殖和血栓形成,避免支架内再狭窄。然而随着涂层内铜含量增加,溶血率也会迅速增加;另外过量的铜也会抑制内皮细胞增殖。

中国专利文献CN 105250058 A公开了一种管腔编织支架,该支架通过第一部分、第二部分的区别设计和网状管体上构建的勾绕结结构解决了编织支架径向支撑力和柔顺性的矛盾。然而该支架属于未覆涂层的金属裸支架,仍然存在丝状部件磨损与腐蚀和重金属离子释放导致再狭窄的风险。

中国专利文献CN 211460696 U公开了一种使用类金刚石碳涂层的新型血管支架,它的目的是提供一种表面光滑、摩擦系数低、表面粗糙度低的新型血管支架,减轻支架植入过程对血管造成的损伤。该技术方案于血管支架上均匀制备了一层2~4μm的类金刚石涂层,降低了摩擦系数和表面粗糙度。其不足之处是类金刚石涂层与支架基体材料之间的结合强度低,同时没有异质元素掺杂的类金刚石涂层内应力过大,因此极易发生破裂和剥离,进而导致涂层的失效。综上所述,在心血管植入器械表面构建适量铜掺杂类金刚石(Cu-DLC)涂层有望大幅减轻微动腐蚀磨损程度,并满足抑制再狭窄的功能性需求,但还存在以下问题需要解决:

⑴大多数金属基体材料和DLC的晶格常数与热胀系数差异较大,导致膜基结合强度不足,而这可能导致血管支架植入过程中,薄膜在球囊膨胀或基体自膨胀作用下产生裂纹甚至发生剥落;

⑵在植入物表面制备铜含量较高的涂层将导致溶血和抑制细胞生长,同时过量的铜离子溶解到血液中可能在局部引起毒性;

⑶DLC薄膜中掺杂铜,在降低脆性的同时也会降低强度,另外,掺杂也会对DLC原有的疏水性和粗糙度造成影响。

发明内容

本发明所要解决的技术问题是提供一种心血管植入器械含铜耐磨损复合涂层,该涂层具有良好耐微动腐蚀磨损性能,并具有良好的血液相容性,降低血管再狭窄风险;同时通过掺杂和结构设计改善涂层韧性、内应力以及膜基结合强度,使其更适用于包括编织血管支架在内的各类植入器械表界面。本发明所要解决的另一技术问题是提供一种在心血管植入器械易受磨损的丝状部件先、后依次制备钛过渡层、钛梯度层和含铜非晶碳层;制备含铜耐磨损复合涂层的部件具有良好的血液相容性,同时能够极大地降低部件受到的磨损,避免因磨损和磨损腐蚀导致的重金属离子释放和磨屑释放引起血管内再狭窄,有效地提高心血管植入器械综合性能的心血管植入器械耐磨损涂层的制备方法。本发明所要解决的再一技术问题是提供一种有效解决具有编织结构的心血管植入物丝状部件微动磨损的问题,同时较好地保证了植入物的耐腐蚀性能、力学性能以及生物相容性能不发生明显下降甚至能够有所提升,具有实际应用价值的心血管植入器械耐磨损涂层的制备方法。

本发明的技术解决方案是所述心血管植入器械耐磨损涂层,其特殊之处在于,所述耐磨损涂层从基体材料开始,依次制备钛过渡层、Ti:C含量比递减的含钛梯度层和Cu-DLC含铜非晶碳层,即制备Ti/Ti:C/Cu-DLC复合涂层;所述含钛梯度层为钛、碳含量梯度变化的非晶碳层,所述钛过渡层为钛单质;所述耐磨损涂层的厚度为1.6~2.4μm。

作为优选:所述含铜非晶碳层铜含量为5at%~20at%,碳sp2杂化比例为50%以上;所述含钛梯度层碳sp2杂化比例变化范围为20%~60%;所述含铜非晶碳层厚度为800~1200nm;所述含钛梯度层的厚度为600~800nm;所述钛过渡层的厚度为200~400nm。

作为优选:所述植入器械由编织的丝状材料构成,包括至少一种丝状部件,且丝状部件受到摩擦。

本发明的另一技术解决方案是所述心血管植入器械耐磨损涂层的制备方法,其特殊之处在于,包括步骤:

⑴对所述植入器械金属基体材料表面进行抛光和清洗;

⑵将清洗后的基体材料放入真空室,并进行预处理;

⑶在真空室内产生Ti离子,并使其移动到基体材料表面沉积形成钛过渡层;

⑷在真空室内同时产生Ti离子和C离子,并使其移动到基体材料表面沉积,逐渐调整二者产生比例,形成含钛梯度层;

⑸在真空室内同时产生C离子和Cu离子,并使其移动到基体材料表面并沉积,形成含铜非晶碳层。

作为优选:步骤⑴所述基体材料需磨抛至表面粗糙度Ra0.05μm以下,在丙酮或无水乙醇中超声清洗15~30分钟,在去离子水中超声清洗15~30分钟,最后置于真空干燥箱中干燥18小时以上备用。

作为优选:步骤⑵所述的预处理进一步包括:将基体材料置入真空室,使真空室气压小于5.0×10-3Pa,调节氩气流量使得真空室气压达到1Pa,调节偏压电源到800V以上,从而使用氩离子束清洗医疗器械的金属部件表面,清洗时间至少为5分钟。

作为优选:步骤⑶所述钛过渡层的获得方法进一步包括:使真空室气压小于5.0×10-3Pa,加热基体材料至200~300℃保温,通入氩气使真空室气压保持在0.5~1.5Pa,调节偏压电源到300~600V,设置钛靶溅射电流为4~6A区间内一恒定值,从而产生Ti离子,并使其在偏压的作用下向基体材料移动,沉积10~20分钟,最终在基体材料表面沉积Ti过渡层。

作为优选:步骤⑷所述含钛梯度层的获得方法进一步包括:维持步骤⑶中的气压与温度,调节偏压电源到200~400V,开启钛靶与石墨靶电源,并控制钛靶溅射电流从3A逐渐降至小于0.2A、石墨靶溅射电流从0逐渐提升至4.5A,同时产生Ti离子与C离子,并使其在偏压的作用下向基体材料移动,沉积40~100分钟,最终在基体材料表面沉积Ti:C梯度缓冲层。

作为优选:步骤⑸所述含铜非晶碳层的获得方法进一步包括:维持步骤⑷中气压与温度,关闭钛靶与石墨靶电源,调节偏压电源到100~300V,开启铜靶与石墨靶电源,并控制铜靶溅射电流为0.1~2A、石墨靶溅射电流为3~6A,同时产生Cu离子与C离子,并使其在偏压的作用下向基体材料移动,沉积1.5~4小时,最终在基体材料表面沉积含铜非晶碳层。

作为优选:步骤⑶至步骤⑸中所述Ti离子、C离子、Cu离子均通过溅射方法产生。与现有技术相比,本发明的有益效果:

⑴本发明提供的这种含铜复合涂层,具有较高的硬度和耐磨损性能,可以极大地降低微动磨损产生的一系列不利影响,同时致密的DLC涂层可以更好地减轻腐蚀作用,尽可能避免磨损产物与腐蚀产物带来血栓再形成、血管再狭窄现象。

⑵本发明提供的含铜耐磨损复合涂层的制备方法,采用过渡层、梯度缓冲层与Cu掺杂设计,相比于单层DLC涂层,提高了韧性与膜基结合强度,调整了内应力,尽可能地避免由于DLC材料本身的脆性与高内应力导致的涂层剥落、破损现象,更适用于采用球囊释放或自膨胀释放的心血管植入器械。

⑶本发明提供的这种含铜复合涂层,具有较好的生物相容性。由于金属铜的掺杂,植入人体后能够释放适量铜离子,催化释放NO信号分子,抑制血小板激活。另外在避免过度溶血的同时,也能够促进内皮细胞增殖,促进内皮化,从而更好地处理植入过程中带来的损伤,进一步降低了再狭窄风险。

附图说明

图1是本发明含铜复合涂层结构示意图,其中1代表基体材料,2代表钛过渡层,3代表Ti:C含钛梯度层,4代表含铜非晶碳层;

图2是本发明含铜复合涂层钛、碳、铜三种元素的相对基体距离-相对含量(%)曲线示意图。

具体实施方式

下面将结合实施例作进一步详述:

实施例1:

请参阅图1所示,医用镍钛合金表面制备含铜DLC的耐磨损涂层从基体材料开始,依次制备钛过渡层、Ti:C含量比递减的含钛梯度层和Cu-DLC含铜非晶碳层,即制备Ti/Ti:C/Cu-DLC复合涂层。

请参阅图2所示,医用镍钛合金表面制备含铜DLC的耐磨损涂层从基体材料开始,首先为钛过渡层,其主要由Ti元素构成;其次为Ti含量逐渐降低、C含量逐渐增加的含钛梯度层;最后为含有一定比例Cu的含铜非晶碳层。

在心血管植入器械镍钛合金表面制备含铜DLC耐磨损涂层的制备方法,具体步骤如下:

⑴医用镍钛合金材料经过抛光后,表面粗糙度为0.03μm,在无水乙醇中超声清洗15分钟后,在去离子水中超声清洗15分钟,最后置于真空干燥箱中干燥24小时待用。

⑵将清洗后医用镍钛合金进行预处理,过程如下:将基体材料放入真空室,使得真空室气压低至1.0×10-3Pa,调节氩气流量使得真空室气压达到1Pa,调节偏压电源到800V,使氩离子进行溅射清洗医疗器械的金属部件表面,清洗时间为10分钟。

⑶准备启用真空室内的阴极靶,包括钛靶(99.99%)、石墨靶(99.99%)和铜靶(99.99%)。氩离子清洗后,停止通入氩气并使真空室气压低至5.0×10-3Pa后,开启加热电源使基体材料达到200℃并保温,而后通入氩气使真空室气压保持在0.5Pa,调节偏压电源到300V,开启并控制钛靶电源溅射电流恒为6A,沉积时间为15分钟,即可得到厚度约为300nm的Ti过渡层。

⑷调节偏压电源到300V,开启钛靶与石墨靶电源,控制钛靶溅射电流从3A逐渐降至0.1A、石墨靶溅射电流从0逐渐提升至4.5A,沉积时间为75分钟,即可得到厚度约为700nm的Ti:C含钛梯度层。

⑸关闭钛靶与石墨靶电源,调节偏压电源到200V,开启铜靶与石墨靶电源,并控制铜靶溅射电流为0.2A、石墨靶溅射电流为4.5A,沉积时间为2.5小时,即可得到厚度约为1100nm的Cu-DLC非晶碳层。

经检测,利用上述条件获得的耐磨损涂层,总厚度约为2.1μm,所述含铜非晶碳层厚度约为1100nm;所述含钛梯度层的厚度为约700nm;所述钛过渡层的厚度为约300nm。

经检测,利用上述条件获得的耐磨损涂层,其含铜非晶碳层主要含有铜、碳两种元素,铜含量为17at%,碳sp2杂化比例为78%。表面纳米硬度约为10Gpa,表面粗糙度Ra约为6nm。以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明权利要求的涵盖范围。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种泌尿外科中多功能整合护理装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!