一种超薄银基omo复合透明导电薄膜的制备方法及应用

文档序号:535282 发布日期:2021-06-01 浏览:19次 >En<

阅读说明:本技术 一种超薄银基omo复合透明导电薄膜的制备方法及应用 (Preparation method and application of ultrathin silver-based OMO (organic molybdenum oxide) composite transparent conductive film ) 是由 陈新亮 刘璋 侯国付 张晓丹 赵颖 于 2021-01-12 设计创作,主要内容包括:一种超薄银基OMO复合透明导电薄膜的制备方法及应用,属于光电子器件领域。本发明采用磁控溅射技术等生长超薄Ag-Zn薄膜,其中Ag金属靶材(掺杂剂为Zn)作为原材料,Ar气体作为溅射气体,选择性地在镀膜过程中引入微量O-2;利用反应等离子沉积技术等生长氧化物Oxide薄膜,从而形成并获得Oxide/Ag-Zn/Oxide或Oxide/Ag-Zn(O)/Oxide复合薄膜。本发明中超薄Ag-Zn薄膜的阈值厚度(~5nm)显著低于常规方法制备Ag薄膜的阈值厚度,能在保持良好导电性的前提下,大幅提升近红外NIR透过率以及宽光谱范围透过率,且制造温度和镀膜成本低、环境友好,其OMO复合薄膜可应用于光电器件。(A preparation method and application of an ultrathin silver-based OMO composite transparent conductive film belong to the field of optoelectronic devices. The invention adopts magnetron sputtering technology and the like to grow an ultrathin Ag-Zn film, wherein an Ag metal target (a doping agent is Zn) is used as a raw material, Ar gas is used as sputtering gas, and trace O is selectively introduced in the film coating process 2 (ii) a Oxide thin films are grown by utilizing a reactive plasma deposition technology and the like, so that Oxide/Ag-Zn/Oxide or Oxide/Ag-Zn (O)/Oxide composite thin films are formed and obtained. The threshold thickness (5 nm) of the ultrathin Ag-Zn film is obviously lower than that of an Ag film prepared by a conventional method, the near infrared NIR transmittance and the transmittance in a wide spectral range can be greatly improved on the premise of keeping good conductivity, the manufacturing temperature and the coating cost are low, the environment is friendly, and the OMO composite film can be applied to photoelectric devices.)

一种超薄银基OMO复合透明导电薄膜的制备方法及应用

技术领域

本发明涉及一种透明导电电极的制备方法,具体地说是涉及一种基于超薄银薄膜的OMO复合薄膜透明导电电极的制备方法及其应用。

背景技术

透明导电电极(transparent conductive electrode-TCE)在光电器件领域(如太阳电池)展现出广泛的应用前景,参考文献:K Ellmer.Nature Photonics 6(2012)809-817。透明导电氧化物(transparent conductive oxide,TCO)中,Sn掺杂In2O3(ITO)和F掺杂SnO2(FTO)薄膜同时具有良好的光电特性以及化学稳定性,成为光电器件领域应用最广泛的底电极材料。但需要将TCE制备于器件顶部时(如半透明太阳电池),需要考虑制备工艺对衬底的影响。高性能ITO仅限于真空沉积且需要高温退火(>200℃),室温下磁控溅射制备的ITO光电性能相对较差,且具有较大动能的溅射粒子会对底层造成损伤,虽然一个缓冲层能够避免这种损伤,但会引入额外的寄生吸收。以及In元素的毒性和稀有性限制了ITO的发展,因此科研人员致力于开发无铟TCE。理想TCE应具备以下特点:(1)具有良好的导电特性与光学透过率;(2)具有化学稳定性以及与相邻层兼容性;(3)制备工艺简单且适合大规模生产;(4)成本低、安全无污染。新型TCE中,PEDOT:PSS电极显酸性和吸水性,不利于ST-PSCs长期稳定;银纳米线、多层石墨烯具有良好光电性能,但制备方法复杂、耗时,导致重复性差;碳纳米管成本低、稳定性好,但过高的方块电阻(2~25kΩ/sq)限制了它的应用。以及它们均缺乏高产量的制备方法,难以大规模制造,短期内难以商业化生产。

基于超薄金属薄膜的介质/金属/介质(DMD)复合薄膜能够在保持金属薄膜良好导电性的前提下,根据光学干涉效应大幅提升整体的透过率,以及各部分成熟的大规模制造工艺,成为极具竞争力的新一代TCE,参考文献:YG Bi,YF Liu et al.Adv.Optical Mater7(2019)1-23。基于介质为氧化物的复合层称为OMO。介质层的常用候选材料为氧化物(oxides):底层氧化物起种子层(促进金属层的二维生长)、保护层(避免金属直接与底层接触)和光学耦合层的作用;顶层氧化物主要起光学耦合层和保护层(使金属层隔绝湿气、氧气)的作用。此外,还能够根据光电器件的需求,选择合适功函数的氧化物材料。金属层是DMD结构的核心,通过金属夹层提升整体的导电性,但由于较厚金属层强烈的反射,导致DMD复合薄膜在近红外光区(NIR)的透过率出现急速下降。因此,我们希望能够在保证金属层良好导电性的前提下,降低金属层厚度,减小NIR反射。此时存在一个最小厚度,金属层能恰好连接形成导电路径,称为渗透阈值厚度。常见金属材料(如Au、Ag、Cu)的生长模式为岛状生长(Volmer-Weber生长模式,即在Ag薄膜沉积初期,相比与衬底结合,Ag原子更倾向于彼此结合,形成岛状结构),这使得金属薄膜存在着较高的阈值厚度(~10-20nm)。在低于此阈值厚度的情况下,金属薄膜不仅导电性差,而且由于局部表面等离子激元效应,对光产生寄生吸收,限制了整体的透过率。

近年来,为获得阈值厚度更低、光电性能更佳的超薄金属薄膜,科研人员进行了大量研究。2014年,密西根大学Zhang等在SiO2衬底上,沉积光滑、热稳定的超薄Ag薄膜,首次通过向Ag中掺杂10.at%的Al,可以将Ag薄膜的厚度降低至6nm,其复合薄膜Ag-Al/ZnO(7nm/45nm)在400-800nm内实现80%以上透过率,方块电阻为23.4Ω,参考文献:C Zhang,DZhao et al.Advanced Materials 26(2014)5696-5701。同年,韩国材料研究所Wang等通过在溅射Ag的过程中通入微量氧气,打乱Ag原子的晶格结构,使其内聚力减弱,早期成核阶段,Ag在氧的诱导下,增加了成核位点,有利于后续的二维生长。同样实现了阈值厚度为6nm的超薄Ag薄膜,其ZnO/AgOx(8nm)/ZnO复合薄膜实现400-1000nm平均透过率91%(相对透过率),最高透过了95%,方块电阻为20Ω,参考文献:W Wang,M Song et al.AdvancedFunction Materials 24(2014)1551-1561。2019年,Wang等中国科学院大连物理化学研究所Wang等提出MoO3/Au/MoO3(30nm/7nm/80nm)结构,由于MoO3较大的表面张力,有利于Au原子的生长模式转变为Frank-VanderMerwe生长模式,Au在厚度为7nm时,呈现出纳米网格结构,在保持良好导电性的情况下(19.6Ω/sq),使近红外光区800-1100nm的平均透过率达到74%,参考文献:Z Wang,X Zhu et al.Advanced Function Materials 30(2019)1-8。同年,中国科学院宁波材料所Xu等通过向Ag中掺杂CdO,进一步将超薄Ag薄膜的厚度降低至5nm,其Ag-CdO薄膜在550nm处实现89%的透过率和32.9Ω/sq的方块电阻,且表面十分光滑,粗糙度仅为0.2nm,参考文献:J Xu,J Li et al.Advanced Materials Interfaces1900608(2019)1-8。

以上研究方法主要超薄金属Au或采取Ag薄膜中掺杂Al金属和CdO等方式,促进Ag薄膜的横向生长,降低阈值厚度。然而Au材料较贵,而Ag薄膜及相应掺杂技术制造的薄膜较厚且工艺复杂,光学和电学性能仍有较大提升空间。根据国内外研究现状和关键科学技术问题,以及基于Ag是面心立方晶格结构和Zn是密排六方晶格结构,本申请人提出通过在Ag晶格中掺入Zn,掺杂异构金属元素容易形成替位或间隙缺陷,基于两者晶体结构和原子半径差异,容易促使晶格畸变,从而诱导出更多的薄膜成核点;此外,同时掺杂引入O元素,进一步降低纯金属Ag薄膜阈值厚度,进而提升OMO整体结构在可见光和近红外区域NIR的光学透过率。此方面研究国际上尚未见相关报道。

本发明采用磁控溅射(Sputtering)技术等生长超薄Ag-Zn薄膜,其中Ag金属靶材(掺杂剂为Zn)作为原材料,Ar气体作为溅射气体,选择性地在镀膜过程中引入微量O2;利用反应等离子沉积(RPD)技术等低温生长氧化物Oxide薄膜(如MGZO,NiOx,SnOx或Ga2O3薄膜),从而形成并获得Oxide/Ag-Zn/Oxide或Oxide/Ag-Zn(O)/Oxide复合薄膜,并将其应用于光电子器件,如钙钛矿太阳电池、钙钛矿/晶硅叠层太阳电池、有机太阳电池、柔性发光二极管和柔性显示器件等。上述提出制备高质量超薄Ag-Zn薄膜的方法及应用区别于当前国际上报道的其他方法。

发明内容

本发明的目的是针对上述技术分析,提供一种磁控溅射技术生长超薄Ag-Zn薄膜的方法,其中Ag金属靶材(掺杂剂为Zn)作为原材料,Ar气体作为溅射气体,选择性地在镀膜过程中引入微量O2,从而形成超薄Ag-Zn或Ag-Zn(O);利用反应等离子沉积(RPD)技术等低温生长氧化物Oxide薄膜(如MGZO,NiOx,SnOx或Ga2O3薄膜),构建实现Oxide/Ag-Zn/Oxide或Oxide/Ag-Zn(O)/Oxide复合薄膜,可应用于光电子和柔性电子器件,如钙钛矿太阳电池、钙钛矿/晶硅叠层太阳电池、有机太阳电池、柔性发光二极管和柔性显示器件等。本方法解决常规生长Ag薄膜时渗透阈值厚度过大导致近红外区域NIR反射过大的缺点,并提高整体可见光及近红外区域光学透过率,同时保持良好导电性。该发明基于超薄Ag-Zn实现的OMO结构TCE,可应用于光电子和柔性电子器件,有效提升器件性能。

本发明的技术方案:

一种基于超薄Ag-Zn薄膜的OMO结构透明导电薄膜的制备方法,采用磁控溅射设备,以组分纯度为99.99%的Zn掺杂的Ag靶材作为原料,溅射气体为Ar气,镀膜过程中引入少量O2;在MGZO,NiOx,SnOx或Ga2O3薄膜衬底上低温(如室温)生长Ag-Zn薄膜,得到Oxide/Ag-Zn或Oxide/Ag-Zn(O)薄膜。进一步在顶层低温(如室温)生长MGZO,NiOx,SnOx或Ga2O3薄膜,得到Oxide/Ag-Zn/Oxide或Oxide/Ag-Zn(O)/Oxide复合薄膜。

所述复合薄膜结构为Oxide/Ag-Zn/Oxide或Oxide/Ag-Zn(O)/Oxide,衬底为玻璃衬底或柔性衬底材料,如PET,PI,但不限于PET或PI。

所述Ag靶中靶材组分中Zn掺杂剂原子百分比为2%-20%;

所述Ag-Zn薄膜的制备方法包括且不限于磁控溅射技术和热蒸发技术等;

所述Oxide薄膜厚度为20-100nm;Ag-Zn或Ag-Zn(O)薄膜厚度为3-12nm;

所述沉积气体Ar气压为0.1-3.0Torr;镀膜过程中引入氧气的流量为0sccm至20sccm;衬底温度为液氮温度至150℃。

所述生长氧化物Oxide为包括且不限于MGZO,NiOx,SnOx或Ga2O3薄膜等;

所述氧化物Oxide薄膜的生长方法为包括且不限于磁控溅射技术或反应等离子体沉积技术等;

所述氧化物Oxide(如MGZO,NiOx,SnOx或Ga2O3等)薄膜厚度为20-100nm。

所述复合薄膜结构为Oxide/Ag-Zn/Oxide或Oxide/Ag-Zn(O)/Oxide应用于光电子和柔性电子器件,如有机太阳电池、钙钛矿太阳电池、钙钛矿/晶硅叠层太阳电池、发光二极管,柔性显示器件等。

所述的基于超薄Ag-Zn或Ag-Zn(O)薄膜的复合结构Oxide/Ag-Zn/Oxide或Oxide/Ag-Zn(O)/Oxide复合薄膜的应用,其中钙钛矿太阳电池的结构特征是:glass/ITO/HTL(PEDOT:PSS或NiOx等)/PVK/ETL(PCBM或SnO2等)/Oxide/Ag-Zn或Ag-Zn(O)/Oxide/Ag;钙钛矿/晶硅叠层太阳电池的结构特征是Ag/ITO/a-Si:H(p+)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(n+)/ITO/HTL(NiOx等)/PVK/ETL(PCBM或SnOx等)/Oxide/Ag-Zn或Ag-Zn(O)/Oxide/Ag/MgF2

本发明的优点及效果:相比常规溅射和蒸发技术获得的Ag薄膜,本发明通过磁控溅射和掺杂技术生长的超薄Ag-Zn薄膜具有更低的渗透阈值厚度,能够在维持优良电学性能的情况下,大幅提升NIR光学透过率。此外,通过室温生长介质层,制造OMO结构Oxide/Ag-Zn/Oxide或Oxide/Ag-Zn(O)/Oxide薄膜应用于光电子(太阳电池、发光二极管等)和柔性电子器件。

附图说明

图1为glass/MGZO/Ag-Zn(O)/MGZO薄膜结构示意图。

图2为MGZO/Ag-Zn(O)薄膜的SEM图和glass/MGZO/Ag-Zn(O)/MGZO薄膜的光学透过率图。

图3为SnOx/Ag-Zn/SnOx薄膜应用于pin型半透明钙钛矿太阳电池的结构示意图。

图4为PET/MGZO/Ag-Zn(O)/MGZO薄膜结构示意图以及柔性钙钛矿太阳电池的结构示意图。

图5为SnOx/Ag-Zn(O)/SnOx薄膜应用于两端钙钛矿/晶硅叠层太阳电池的结构示意图。

具体实施方式

实施例1:

1、利用磁控溅射技术,以纯度为99.99%的Ag靶作为靶材原料,靶材中掺杂剂组分Zn掺杂原子百分比为8%;溅射气体Ar气的流量为20sccm,掺杂气体O2的流量为1sccm,溅射功率为140W,腔室薄膜规为0.3Pa;在glass/MGZO(~50nm)衬底上,生长Ag-Zn(O)薄膜,衬底温度为室温,薄膜厚度为~4.5nm。再采用RPD技术在顶层室温生长一层MGZO,薄膜厚度为~50nm。该复合薄膜结构为glass/MGZO/Ag-Zn(O)/MGZO,如图1所示。

图2(a)为glass/(~50nm)MGZO/(~4.5nm)Ag-Zn(O)薄膜的SEM图像,薄膜呈现致密连续的层状结构;图2(b)为glass/MGZO/Ag-Zn(O)/MGZO薄膜的光学透过率,薄膜在全光谱范围内均有较高的透过率,400-760nm范围内均光透为85.9%,400-1200nm范围内平均光透为83.7%,其NIR区透过率相比常规Ag薄膜的DMD结构得到明显提升,方块电阻约30Ω/sq。

实施例2:

1、利用磁控溅射技术,以纯度为99.99%的Ag靶作为靶材原料,靶材中掺杂剂组分Zn掺杂原子百分比为8%;溅射气体Ar气的流量为20sccm,溅射功率为140W,腔室薄膜规为0.3Pa;在glass/SnOx(~50nm)衬底上,生长Ag-Zn薄膜,衬底温度为50℃,薄膜厚度为~5nm。再采用RPD技术在顶层室温生长一层SnOx,薄膜厚度为~50nm。该复合薄膜结构为glass/SnOx/Ag-Zn/SnOx。

2、将该OMO复合薄膜应用于钙钛矿太阳电池,图3为pin型半透明钙钛矿太阳电池结构示意图。首先配置前驱溶液,采用旋涂和退火工艺相结合,在ITO衬底上制备空穴PEDOT:PSS或NiOx,钙钛矿吸收层(MAPbI3或FAMAPbIxBr),和电子传输层SnOx或PCBM;而后利用反应等离子体沉积(RPD)技术和溅射技术在电池顶部制造复合透明电极SnOx/Ag-Zn/SnOx,最后在顶层蒸镀金属Ag或Au电极,上述特征构成太阳电池器件。

实施例3:

1、利用磁控溅射技术,以纯度为99.99%的Ag靶作为靶材原料,靶材中掺杂剂组分Zn掺杂原子百分比为8%;溅射气体Ar气的流量为20sccm,掺杂气体O2的流量为1.0sccm,溅射功率为140W,腔室薄膜规为0.3Pa;在PET/MGZO(~50nm)衬底上,生长Ag-Zn(O)薄膜,衬底温度为室温,薄膜厚度为~4.5nm。再采用反应等离子体沉积(RPD)技术在顶层室温生长一层MGZO,薄膜厚度为~50nm。该复合薄膜结构为PET/MGZO/Ag-Zn(O)/MGZO,如图4(a)所示。

2、将该OMO复合薄膜应用于柔性钙钛矿太阳电池,图4(b)为柔性钙钛矿太阳电池的结构示意图。在柔性PET上制备MGZO/Ag-Zn(O)/MGZO薄膜后,配置前驱体溶液,采用旋涂和退火工艺相结合,在柔性OMO复合薄膜衬底上制备电子传输层SnO2,钙钛矿吸收层(MAPbI3或FAMAPbIxBr),和空穴传输层Spiro-OMeTAD;最后在顶层蒸镀金属Au电极,上述特征构成电池器件。

实施例4:

1、利用磁控溅射技术,以纯度为99.99%的Ag靶作为靶材原料,靶材中掺杂剂组分Zn掺杂原子百分比为8%;溅射气体Ar气的流量为20sccm,溅射功率为140W,腔室薄膜规为0.3Pa;在glass/SnOx(~50nm)衬底上,生长Ag-Zn(O)薄膜,衬底温度为室温,薄膜厚度为~5nm。再采用RPD技术在顶层室温生长一层SnOx,薄膜厚度为~50nm。该复合薄膜结构为glass/SnOx/Ag-Zn(O)/SnOx。

2、将该OMO复合薄膜应用于两端钙钛矿/晶硅叠层太阳电池,图5为两端钙钛矿/晶硅叠层太阳电池结构示意图。首先制备晶体硅异质结(SHJ)底电池:在260mm厚的抛光单晶硅c-Si晶圆上,前表面保持抛光,以便于钙钛矿顶部电池沉积,后表面经过化学处理,获得绒面结构。对其进行清洗后,采用PECVD技术分别在绒面沉积本征和p型a-Si:H薄膜,在抛光面沉积本征和n型a-Si:H薄膜,之后采用磁控溅射技术在绒面先后沉积ITO和Ag,再通过热蒸发技术在抛光面沉积ITO复合层;钙钛矿顶电池制备:配置前驱溶液,采用旋涂、热蒸发和退火工艺相结合,在ITO复合层上顺序制备空穴传输层PTAA、钙钛矿吸收层、电子传输层C60和SnO2。而后利用RPD技术和溅射技术在电池顶部制造复合透明电极SnOx/Ag-Zn(O)/SnOx,最后在顶层蒸镀金属Ag电极和MgF2抗反射层,上述特征构成太阳电池器件。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种具有微纳结构的月尘防护导电薄膜及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!