一种永磁同步电机非光滑自适应直接转矩控制方法和系统

文档序号:571619 发布日期:2021-05-18 浏览:26次 >En<

阅读说明:本技术 一种永磁同步电机非光滑自适应直接转矩控制方法和系统 (Unsmooth self-adaptive direct torque control method and system for permanent magnet synchronous motor ) 是由 孙振兴 张一诺 张兴华 于 2021-03-29 设计创作,主要内容包括:本发明公开了一种永磁同步电机非光滑自适应直接转矩控制方法和系统,属于电机控制领域。为了提高永磁同步电机控制系统的动态速度跟踪性能以及抗干扰能力,本发明提供了一种永磁同步电机非光滑自适应直接转矩控制方法和系统。该方案在直接转矩控制框架下,通过将非光滑自适应控制器与二阶扩张状态观测器的结合,提高了永磁同步电机的转速收敛速度和抗扰动性能,有效地避免了电机运行过程中由参数摄动带来的影响,保证了较好的动态稳定性。该复合控制系统具有结构简洁、计算复杂度低,且易于实现等优点。(The invention discloses a method and a system for controlling unsmooth self-adaptive direct torque of a permanent magnet synchronous motor, and belongs to the field of motor control. In order to improve the dynamic speed tracking performance and the anti-interference capability of a permanent magnet synchronous motor control system, the invention provides a non-smooth self-adaptive direct torque control method and a system of a permanent magnet synchronous motor. According to the scheme, under the direct torque control framework, the non-smooth self-adaptive controller and the second-order extended state observer are combined, so that the rotating speed convergence speed and the anti-disturbance performance of the permanent magnet synchronous motor are improved, the influence caused by parameter perturbation in the running process of the motor is effectively avoided, and the better dynamic stability is ensured. The composite control system has the advantages of simple structure, low calculation complexity, easiness in implementation and the like.)

一种永磁同步电机非光滑自适应直接转矩控制方法和系统

技术领域

本发明涉及永磁同步电机控制系统领域,提出了一种永磁同步电机非光滑自适应直接转矩控制方法和系统。

背景技术

永磁同步电动机(PMSM)因其具有体积小、重量轻、功率密度高等优点,被广泛应用于航空航天,电动汽车,数控机床等具有高控制精度要求的领域。永磁同步电机的控制策略主要包括:矢量(磁场定向)控制(Field Oriented Control/Vector Control),直接转矩控制(Direct Torque Control)和变压变频控制(Variable Voltage Variable Frequency)。其中,直接转矩控制技术直接以转矩作为控制目标,无需复杂的坐标变换,设计电机参数少,鲁棒性强,算法简单,转矩动态响应快,应用较为广泛。

为了在永磁同步电机直接转矩控制系统运行过程中实现对速度的高精度控制,高性能的PMSM驱动系统必须具有良好的动态速度跟踪性能和抗扰动能力。在传统的永磁同步电机直接转矩控制系统中通常采用PI(比例积分)控制器来对电机的速度环进行控制,但这种传统的线性控制器难以克服如参数不确定性和外界负载扰动等干扰对电机运行的影响,不能很好地兼顾系统对动态响应和抗干扰能力的要求。针对上述问题,有限时间控制技术已日益成为电机驱动控制领域的研究热点,该控制技术即使在系统受到外界干扰的的情况下依然具有良好的抗扰动特性和较好的转速收敛特性同时可以抑制电机运行过程中由参数摄动带来的问题。另一方面,在永磁同步电机的运行过程中的外界扰动不可避免的会影响控制系统的快速性和稳定性,若控制器不考虑相应的前馈控制设计对闭环系统进行补偿,则会造成闭环系统的性能下降。

中国专利申请,申请号CN201910680209.X,公开日2019年10月25日,公开了一种内置式永磁同步电机抗干扰控制器及其控制方法,该发明为了提高内置式永磁同步电机的动态响应和抗干扰性能,将内置式永磁同步电机的外部负载和内部不确定部分作为系统的总扰动,通过调节两个控制参数β和δ进行幂运算和比例运算使针对电机系统设计的非线性观测器能观测出电机控制系统中的转速、位置和集总扰动等状态量,并将观测器输出作为速度控制器的输入以对扰动进行补偿。本发明不足之处在于,虽然减少了可调参数的数量,但是电机在运行过程中转速收敛到参考值的时间较长。

中国专利申请,申请号CN201811630315.9,公开日2018年3月8日,公开了一种基于趋近律和扰动观测补偿的永磁同步电机滑模控制方法。该发明设计了一种趋近律算法,并将其应用到滑模变结构中的速度控制器设计中;同时将饱和函数用于扰动观测器控制律中改进扰动观测器,将扰动观测器观测到的值补偿到所述速度控制器中,形成一种基于趋近律和扰动观测补偿的永磁同步电机滑模控制策略。在基于该策略的永磁同步电机矢量控制系统中采用转速-电流双闭环控制结构,针对滑模控制中的抖振以及抗干扰性问题,在常规滑模速度控制器的基础上加入加入积分滑模面和扰动观测器以抑制负载变化带来的扰动提高系统的动态响应。该发明的不足之处在于,所设计的趋近律不能完全解决滑模控制系统中的抖振问题,容易影响电机控制系统的控制精度,且控制系统中的可调参数的数量较多,提高了参数调节的复杂性。

发明内容

1.要解决的技术问题

为了提高永磁同步电机控制系统的动态速度跟踪性能以及抗干扰能力,本发明提供了一种永磁同步电机非光滑自适应直接转矩控制方法和系统,通过非光滑自适应控制器和扩张状态观测器的结合,抑制了参数摄动对电机控制的影响,提高了永磁同步电机的转速收敛速度和抗扰动性能,保证了较好的动态稳定性,结构简洁、计算复杂度低,且易于实现。

2.技术方案

本发明的目的通过以下技术方案实现。

步骤1:建立永磁同步电机的机械运动方程,根据该方程分析系统的扰动成分,确定扰动补偿对象;

步骤2:引入二阶扩张状态观测器技术,实现基于扩张状态观测器的系统集总扰动观测,完成对系统集总扰动的估计;

步骤3:根据给定速度和反馈速度之间的误差状态,建立误差系统的状态方程,利用非光滑自适应控制技术设计系统速度环控制器,获得给定电磁转矩;

步骤4:建立永磁同步电机非光滑自适应复合控制系统,在保证观测器稳定的前提下,合理整定参数。

其中步骤1又包括:

步骤101,建立永磁同步电机的机械运动方程:

其中ωr为电机的机械角速度,J为转动惯量,B为阻尼系数,TL为负载转矩,Te为电磁转矩。

步骤102,更进一步的,根据永磁同步电机机械运动方程可得:

其中为系统的总扰动,为电磁转矩的参考输入。

从上式可以看出,系统的的总扰动包括由阻尼、负载转矩、转动惯量以及转矩误差所造成的扰动。若能估计出系统的总扰动,便可以实现对系统的扰动补偿,提高系统的抗干扰能力。

进一步的,步骤2又包括:

步骤201,二阶扩张状态观测器的设计方法为:

首先生成扩张状态方程:

为了简化系统结构,针对系统(1)列写扩张状态方程,定义x1=ωr、x2=d(t),为状态量x1和x2的微分,为d(t)的微分:

步骤202,更进一步的,针对方程(3)设计二阶扩张状态观测器,用于对系统的外界干扰和不确定性项进行估计和补偿:

其中,z1和z2分别是反馈速度ωr的估计值和集总扰动d(t)的估计值,分别是状态量z1和z2的微分。J为转动惯量,np为电机极对数,为永磁体磁链,β1和β2为观测器增益。

步骤3又包括:

步骤301,非光滑自适应控制器设计方案为:

速度跟踪误差e的状态方程如下:

其中,为状态量e的微分。代表参考转速,的导数。

步骤302,设计的非光滑自适应控制器输出的参考转矩为:

其中,ω*为给定速度,q(q>0)、ε(ε>0)、K(K<0)、k(k>1)和m(0<m<1)为可调参数,是设计的自适应更新律。

步骤303,扩张状态观测器和非光滑自适应控制器结合生成复合控制器:

步骤4具体又包括:

步骤401,首先,选取合适的极点以满足对系统稳定性的需求,采用极点配置的方法求得对应的参数K的值,以使得系统满足Hurwitz不等式。

步骤402,再进行自适应更新率的参数值设定,在满足要求的范围(即ε>0和k>1)内赋值,同时设定L的初值为1。

步骤403,最后进行非光滑自适应控制律的参数值设定,在满足要求的范围内(即q>0和0<m<1)赋值,在电机直接转矩运行框架下通过调整控制律的参数来改善运行效果。

进一步地,所述步骤403具体调整过程是:在电机直接转矩运行框架下先在参数m的范围内给定一个值,参数q先取0,观察电机转速的响应效果,然后增大参数q的取值,直至电机启动后在转速达到给定值得过程中,转速的响应时间小于预期值,则此时的参数q,m确定为合适,若无法达到理想的响应速度,则增大参数m的取值,重复上述的步骤直至响应时间小于预期值。

一种永磁同步电机非光滑自适应直接转矩控制系统,所述系统包括:永磁同步电机控制对象、非光滑自适应控制器、二阶扩张状态观测器、光电编码器、滞环比较器、逆变器以及坐标变换模块;所述系统包括:永磁同步电机控制对象、非光滑自适应控制器、二阶扩张状态观测器、光电编码器、滞环比较器、逆变器以及坐标变换模块。永磁同步电机作为被控对象;非光滑自适应控制器用于转速环的控制器,实现电机速度控制;二阶扩张状态观测器用于估计系统中的集总扰动;光电编码器用于计算电机转子的实际位置和实际转速;滞环比较器用来实现系统内环对磁链和转矩的控制;定子磁链观测模块用于对定子磁链值进行估计;逆变器用于用于将直流电转换为交流电;坐标变换模块用于将三相静止坐标系上的信号转换为两相静止坐标系上的信号。首先通过采样得到电机的相电流,经过3/2坐标变换模块和定子磁链观测模块输出估算的电磁转矩和磁链幅值作为反馈信号。电机的实际转速ωr可以通过光电编码器输出得到。将转速给定值与转速实际值ωr输入非光滑自适应控制器后,加上将控制量和实际转速ωr输入二阶扩张状态观测器后输出的集总扰动的估计值z2输出电磁转矩参考值与电磁转矩实际值Te的差值以及定子磁链给定值与实际值的差值输入滞环比较器输出两个输出状态ΔT和Δψ,将二者输入开关逻辑表后输出一个最佳的电压矢量,将该矢量输入给逆变器,输出合适的开关状态作用于电机,实现对电机的控制。

3.有益效果

相比于现有技术,本发明的优点在于:

本发明结合了非光滑自适应控制器和一个二阶扩张状态观测器来处理永磁同步电机驱动控制系统中参数摄动问题,转速跟踪收敛不够快和抗干扰性能较弱的问题。通过二阶扩张状态观测器来估计了系统的集总扰动,将集总扰动项的估计值应用于转速环控制的前馈补偿,提高了系统的抗干扰能力。另一方面,通过将传统的直接转矩控制系统中的线性PID控制器转换为一种新型的非光滑自适应控制器。与传统PID控制器相比,该非光滑自适应控制器具有使闭环系统在平衡点附近时在有限时间内快速收敛的特点,提高了电机驱动系统的速度跟踪性能。本发明通过结构简洁、计算复杂度低的非光滑自适应直接转矩控制方法弥补了传统的PMSM调速系统中动态跟踪性能和抗扰性性能以及以及抑制参数摄动能力的不足。

附图说明

图1为本发明的流程图;

图2为本发明的控制系统框图。

具体实施方式

下面结合说明书附图和具体的实施方式,对本发明作详细描述。

实施例1

如图1所示,一种永磁同步电机非光滑自适应直接转矩控制系统由永磁同步电机控制对象、非光滑自适应控制器、二阶扩张状态观测器、光电编码器、滞环比较器、逆变器以及坐标变换模块构成。永磁同步电机三相定子电流(isa、isb和isc)/电压(usa、usb和usc)信号由永磁同步电机控制对象输出,经过3/2坐标变换模块后得到两相静止坐标系下的定子电流(i和i)/电压(u和u)并用于估算定子磁链和电磁转矩,定子磁链和电磁转矩的估算值得直接作为控制回路中的反馈信号。电机的实际转速ωr可以通过光电编码器检测并经程序计算得到。

将转速的给定值与转速实际值ωr的差值经过非光滑自适应控制器后可以得到电磁转矩参考值再将控制量和实际转速ωr经过二阶扩张状态观测器可以输出集总扰动的估计值用于对控制量前馈补偿,提高系统的抗干扰能力,将电磁转矩的给定值与电磁转矩的实际值Te的差值以及定子磁链给定值与实际值的差值分别送入滞环比较器,获得滞环比较器的两个输出状态,然后根据定子磁链所在扇区号和滞环比较器的输出状态,从开关表中选择一个最佳的电压矢量,输出给逆变器,实现对永磁同步电机的控制。

具体的一种永磁同步电机非光滑自适应直接转矩控制系统的设计方法包括如下步骤:

建立永磁同步电机的机械运动方程:

其中ωr为电机的机械角速度,J为转动惯量,B为阻尼系数,TL为负载转矩,Te为电磁转矩。

更进一步的,根据永磁同步电机机械运动方程可得:

其中为系统的总扰动,为电磁转矩的参考输入。

从上式可以看出,系统的的总扰动包括由阻尼、负载转矩、转动惯量以及转矩误差所造成的扰动。若能估计出系统的总扰动,便可以实现对系统的扰动补偿,提高系统的抗干扰能力。

二阶扩张状态观测器的设计方法为:首先生成扩张状态方程:

为了简化系统结构,针对系统(2)列写扩张状态方程,定义x1=ωr、x2=d(t),为状态量x1和x2的微分,为d(t)的微分:

更进一步的,针对方程(3)设计二阶扩张状态观测器,用于对系统的外界干扰和不确定性项进行估计和补偿:

其中,z1和z2分别是反馈速度ωr的估计值和集总扰动d(t)的估计值,分别是状态量z1和z2的微分。J为转动惯量,np为电机极对数,为永磁体磁链,β1和β2为观测器增益。

非光滑自适应控制器的设计方案为:

首先,得到速度跟踪误差e的状态方程如下:

其中,为状态量e的微分,代表参考转速,的导数。

进一步的,设计的非光滑自适应控制器输出的参考转矩为:

其中,ω*为给定速度,q(q>0)、ε(ε>0)、K(K<0)、k(k>1)和m(0<m<1)为可调参数,是设计的自适应更新律。

更进一步的,扩张状态观测器和非光滑自适应控制器结合生成复合控制器:

综上所述,该技术方案首先利用二阶扩张状态观测器来观测系统集总扰动,完成了对系统集总扰动的估计,然后将此估计值补偿到输入端,实现了扰动观测前馈控制,然后利用有限时间控制技术设计了非光滑自适应控制器来提高系统的动态响应。具体实施过程如下:

1.启动过程

传统的永磁同步电机直接转矩控制的速度环中一般采用线性PI控制器来控制电机反馈的实际转速跟踪给定参考转速。但是基于传统的线性PI控制器的直接转矩控制在启动过程中响应速度较慢,达到稳态需要的时间较长,且比例系数kp给值过大的话容易产生超调。比例系数过小的话容易造成稳态误差,使得转速不能精确跟踪,需要通过积分系数kI来消除误差,速度较慢,效果不理想。

相反,基于有限时间控制技术设计的非光滑自适应控制器在永磁同步电机直接转矩控制系统中会体现更好的转速跟踪效果。首先,基于非光滑自适应控制器的闭环系统具有在平衡点处快速收敛的特性,因此启动响应速度快于线性PI控制器,不易产生稳态误差。且这种非线性的控制器中包含了一个依赖于自适应律在线更新的动态比例增益函数L,可以对增益进行自调整。同时控制器中的比例增益K可以方便地通过Hurwitz稳定判据来确定范围。

2.加载过程

当给平稳运行中的永磁同步电机突加阶跃负载时,速度环中采用线性PI控制器的永磁同步电机直接转矩控制系统会体现较慢的响应速度。突加负载后,实际转速会产生骤降的现象,然后逐渐恢复稳态值,原因是转速回复过程是依靠PI控制器中的与积分系数kI相关的积分项的不断累加使转速回复到给定值的,时间较长。

相反,本技术方案中采用的非光滑自适应直接转矩控制方法中采用了二阶扩张状态观测器来观测永磁同步电机直接转矩控制系统中的集总扰动并对控制器进行实时进行前馈补偿,该方法不仅可以能有效地消除音符在扰动变化引起的转速下降或者速度波动,而且,由于是将观测到的干扰直接补偿到非光滑自适应控制律中,使控制系统具有更快的响应速度和更好的抗扰动性能。

以上示意性地对本发明创造及其实施方式进行了描述,该描述没有限制性,在不背离本发明的精神或者基本特征的情况下,能够以其他的具体形式实现本发明。附图中所示的也只是本发明创造的实施方式之一,实际的结构并不局限于此,权利要求中的任何附图标记不应限制所涉及的权利要求。所以,如果本领域的普通技术人员受其启示,在不脱离本创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本专利的保护范围。此外,“包括”一词不排除其他元件或步骤,在元件前的“一个”一词不排除包括“多个”该元件。产品权利要求中陈述的多个元件也可以由一个元件通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于霍尔计数的农用推杆电机行程控制方法及系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!