一种免疫调节剂

文档序号:574177 发布日期:2021-05-21 浏览:11次 >En<

阅读说明:本技术 一种免疫调节剂 (Immunomodulator ) 是由 李进 张登友 白晓光 尚巳耘 杨丹梅 黄昊岚 洪新福 周贤思 刘利 李清然 陈欣 于 2020-11-20 设计创作,主要内容包括:本发明公开了一种免疫调节剂,具体涉及一类抑制IL-17A的化合物及其作为免疫调节剂在制备药物中的用途。本发明公开了式I所示的化合物、或其立体异构体在制备抑制IL-17A类药物中的用途,为临床上筛选和/或制备与IL-17A活性相关的疾病的药物提供了一种新的选择。(The invention discloses an immunomodulator, and particularly relates to a compound for inhibiting IL-17A and application thereof as an immunomodulator in preparation of a medicament. The invention discloses application of a compound shown as a formula I or a stereoisomer thereof in preparing IL-17A inhibiting medicines, and provides a new choice for clinically screening and/or preparing medicines for diseases related to IL-17A activity.)

一种免疫调节剂

技术领域

本发明涉及一种免疫调节剂及其在制备药物中的用途。

背景技术

IL-17(白细胞介素-17)是促炎性细胞因子,在诱导其他炎性细胞因子、趋化因子和粘附因子中发挥作用。IL-17家族由参与急性和慢性炎症反应的细胞因子组成,包括IL-17A (CTLA-8)、IL-17B、IL-17C、IL-17D、IL-17E(IL-25)和IL-17F。IL-17A由TH17细胞表达,其参与炎症和自身免疫性疾病的病理发生。人类IL-17A是分子量约为17000道尔顿的糖蛋白。IL-17A通过IL-17受体复合物(IL-17RA和IL-17RC)将信号传送至细胞内(Wright,etal.Journal of immunology,2008,181:2799-2805)。IL-17A的主要功能是通过促炎和嗜中性粒细胞迁移细胞因子和趋化因子(包括IL-6,G-CSF,TNF-α,IL-1,CXCL1,CCL2,CXCL2) 的上调来协调局部组织炎症,以及基质金属蛋白酶来允许活化的T细胞穿透细胞外基质。有研究表明IL-17A在严重哮喘和慢性阻塞性肺疾病(COPD)中发挥重要作用,那些患者通常对目前可用的药物无响应或响应不良(Al-Ramli et al.J Allergy Clin Immunol,2009,123:1185-1187)。IL-17A水平上调涉及许多疾病,包括类风湿性关节炎(RA)、骨侵蚀、腹膜内脓肿、炎性肠病、同种异体移植物排斥反应、牛皮癣、动脉粥样硬化、哮喘和多发性硬化症(Gaffen,SL et al.Arthritis Research&Therapy,2004,6:240-247)。

靶向IL-17A与IL-17RA的结合是治疗IL-17A介导的自身免疫性炎性疾病的有效策略。通过IL-17A中和抗体治疗动物在自身免疫性脑脊髓炎中降低疾病发病率和严重性(Komiyama Y et al.J.Immunol.,2006,177:566-573)。已有IL-17A抗体的临床试验在IL-7A 介导的炎性疾病(包括哮喘、牛皮癣、类风湿性关节炎、强直性脊柱炎和多发性硬化症)上显示出良好的结果。IL-17A抗体(Novartis的Cosentyx/secukinumab)在2015年1月已被FDA批准用于牛皮癣的治疗。

尽管存在多种IL-17A抗体,但很少有对具有口服生物利用度的IL-17的小分子特异性抑制剂进行研究。鉴于产生抗体的成本考虑和给药途径的限制,开发IL-17A小分子抑制剂药物具有良好的研发前景。

发明内容

本发明提供了一种式I所示的化合物、或其立体异构体、或其氮氧化物、或其药学上可接受的盐:

其中,

R1选自氢、-C1~10烷基、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10元杂环烷基)、 -C0~4亚烷基-(5~10元芳环)、-C0~4亚烷基-(5~10元芳杂环)、-NR11R12、-OR11;其中烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的R13取代;

R11、R12分别独立选自氢、-C1~10烷基、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10 元杂环烷基)、-C0~4亚烷基-(5~10元芳环)、-C0~4亚烷基-(5~10元芳杂环);其中环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的R13取代;

每个R13独立选自卤素、氰基、羰基、硝基、-C1~10烷基、卤素取代的-C1~10烷基、-OH、-O(C1~10烷基)、-NH2、-NH(C1~10烷基)、-N(C1~10烷基)(C1~10烷基);

R2选自氢、-C1~10烷基、-C0~4亚烷基-(3~10元环烷基);

A环选自5~10元环烷基、5~10元杂环烷基、5~10元螺环、5~10元杂螺环;其中环烷基、杂环烷基、螺环、杂螺环可进一步被一个、两个或三个独立的RA1取代;

每个RA1独立选自卤素、氰基、羰基、硝基、-C1~10烷基、卤素取代的-C1~10烷基、-C0~4亚烷基-ORA2、-C0~4亚烷基-OC(O)RA2、-C0~4亚烷基-C(O)RA2、-C0~4亚烷基-C(O)ORA2、-C0~4亚烷基-C(O)NRA2RA3、-C0~4亚烷基-NRA2RA3、-C0~4亚烷基-NRA2C(O)RA3、-C0~4亚烷基-(3~10 元环烷基)、-C0~4亚烷基-(3~10元杂环烷基)、-C0~4亚烷基-(5~10元芳环)、-C0~4亚烷基-(5~10 元芳杂环);

RA2、RA3分别独立选自氢、-C1~10烷基、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10 元杂环烷基);

Y1、Y2、Y3分别独立选自N或CRY1

每个RY1独立选自氢、卤素、氰基、硝基、-C1~10烷基、卤素取代的-C1~10烷基、-OH、-O(C1~10烷基)、-NH2、-NH(C1~10烷基)、-N(C1~10烷基)(C1~10烷基);

R3选自氢、-C1~10烷基、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10元杂环烷基);其中烷基、亚烷基、环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

R3’选自-C1~10烷基、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10元杂环烷基)、-(C0~4亚烷基)O(C1~10烷基)、-(C0~4亚烷基)O(C0~4亚烷基)(3~10元环烷基)、-(C0~4亚烷基)O(C0~4亚烷基)(3~10元杂环烷基)、-C0~4亚烷基-(5~10元芳环)、-C0~4亚烷基-(5~10元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的R31取代;

或者,R3、R3’相连形成3~10元环烷基、3~10元杂环烷基;其中环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

每个R31独立选自卤素、-C1~10烷基、卤素取代的-C1~10烷基、氰基、羰基、硝基、-C0~4亚烷基-OR32、-C0~4亚烷基-OC(O)R32、-C0~4亚烷基-C(O)R32、-C0~4亚烷基-C(O)OR32、-C0~4亚烷基-C(O)NR32R33、-C0~4亚烷基-NR32R33、-C0~4亚烷基-NR32C(O)R33、-C0~4亚烷基-(3~10 元环烷基)、-C0~4亚烷基-(3~10元杂环烷基)或-C0~4亚烷基-R34

R32、R33分别独自选自氢、-C1~10烷基、卤素取代的-C1~10烷基、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10元杂环烷基);

R34选自

R35、R36分别独自选自氢、-C1~10烷基、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10 元杂环烷基);

R4选自5~10元芳环、5~10元芳杂环或-C(O)NR5R6;其中芳环、芳杂环可进一步被一个、两个或三个独立的R41取代;

每个R41独立选自卤素、氰基、羰基、硝基、-C1~10烷基、卤素取代的-C1~10烷基、-C0~4亚烷基-OR42、-C0~4亚烷基-OC(O)R42、-C0~4亚烷基-C(O)R42、-C0~4亚烷基-C(O)OR42、-C0~4亚烷基-C(O)NR42R43、-C0~4亚烷基-NR42R43、-C0~4亚烷基-NR42C(O)R43、-C0~4亚烷基-(3~10 元环烷基)、-C0~4亚烷基-(3~10元杂环烷基)、-C0~4亚烷基-(5~10元芳环)、-C0~4亚烷基-(5~10 元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R44取代;

R42、R43分别独自选自氢、-C1~10烷基、-C1~4亚烷基-OC(O)R46、-C1~4亚烷基-C(O)R46、-C1~4亚烷基-C(O)OR46、-C1~4亚烷基-C(O)NR46R47、-C1~4亚烷基-NR46R47、-C1~4亚烷基-NR46C(O)R47、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10元杂环烷基)、-C0~4亚烷基 -(5~10元芳环)、-C0~4亚烷基-(5~10元芳杂环);或者,R42、R43相连形成3~10元环烷基、3~10元杂环烷基;其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R45取代;

每个R44分别独自选自卤素、氰基、羰基、硝基、-C1~10烷基、卤素取代的-C1~10烷基、-C0~4亚烷基-OR46、-C0~4亚烷基-OC(O)R46、-C0~4亚烷基-C(O)R46、-C0~4亚烷基-C(O)OR46、-C0~4亚烷基-C(O)NR46R47、-C0~4亚烷基-NR46R47、-C0~4亚烷基-NR46C(O)R47、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10元杂环烷基)、-C0~4亚烷基-(5~10元芳环)、-C0~4亚烷基-(5~10 元芳杂环);

每个R45分别独自选自卤素、氰基、羰基、硝基、-C1~10烷基、卤素取代的-C1~10烷基、-C0~4亚烷基-OR46、-C0~4亚烷基-OC(O)R46、-C0~4亚烷基-C(O)R46、-C0~4亚烷基-C(O)OR46、-C0~4亚烷基-C(O)NR46R47、-C0~4亚烷基-NR46R47、-C0~4亚烷基-NR46C(O)R47、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10元杂环烷基)、-C0~4亚烷基-(5~10元芳环)、-C0~4亚烷基-(5~10 元芳杂环);

R46、R47分别独自选自氢、-C1~10烷基、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10 元杂环烷基)、;或者,R46、R47相连形成3~10元环烷基、3~10元杂环烷基;

R5、R6分别独立选自氢、-C1~10烷基、卤素取代的-C1~10烷基、-C(O)NR52R53、-C(O)OR52、 -S(O)R52、-S(O)2R52、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10元杂环烷基)、-C0~4亚烷基-(5~12元桥环)、-C0~4亚烷基-(5~12元桥杂环)、-C0~4亚烷基-(5~10元芳环)、-C0~4亚烷基-(5~10元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、桥环、桥杂环、芳环、芳杂环可进一步被一个、两个或三个R51取代;

或者,R5、R6相连形成3~10元杂环烷基;其中杂环烷基可进一步被一个、两个或三个 R51取代;

每个R51分别独立选自卤素、氰基、羰基、硝基、-C1~10烷基、卤素取代的-C1~10烷基、-C0~4亚烷基-OR52、-C0~4亚烷基-OC(O)R52、-C0~4亚烷基-C(O)R52、-C0~4亚烷基-C(O)OR52、-C0~4亚烷基-NR52R53、-C0~4亚烷基-NR52C(O)R53、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10 元杂环烷基)、-C0~4亚烷基-(5~10元芳环)、-C0~4亚烷基-(5~10元芳杂环)或-C0~4亚烷基-OR55、 -C0~4亚烷基-NR55R56;其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R54取代;

每个R54分别独立选自卤素、氰基、羰基、硝基、-C1~10烷基、卤素取代的-C1~10烷基、-C0~4亚烷基-OR52、-C0~4亚烷基-OC(O)R52、-C0~4亚烷基-C(O)R52、-C0~4亚烷基-C(O)OR52、-C0~4亚烷基-NR52R53、-C0~4亚烷基-NR52C(O)R53、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10 元杂环烷基)、-C0~4亚烷基-(5~10元芳环)、-C0~4亚烷基-(5~10元芳杂环);

R52、R53分别独自选自氢、-C1~10烷基、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10 元杂环烷基);或者,R52、R53相连形成3~10元环烷基、3~10元杂环烷基;

R55、R56分别独自选自氢、-C1~10烷基、

R57、R58分别独自选自氢、-C1~10烷基、-C0~4亚烷基-(3~10元环烷基)、-C0~4亚烷基-(3~10 元杂环烷基)。

进一步地,

R1选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环)、-NR11R12、-OR11;其中烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的R13取代;

R11、R12分别独立选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的R13取代;

每个R13独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-OH、 -O(C1~6烷基)、-NH2、-NH(C1~6烷基)、-N(C1~6烷基)(C1~6烷基);

R2选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基);

A环选自5~7元环烷基、5~7元杂环烷基、6~9元螺环、6~9元杂螺环;其中环烷基、杂环烷基、螺环、杂螺环可进一步被一个、两个或三个独立的RA1取代;

每个RA1独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-ORA2、-C0~2亚烷基-OC(O)RA2、-C0~2亚烷基-C(O)RA2、-C0~2亚烷基-C(O)ORA2、-C0~2亚烷基-C(O)NRA2RA3、-C0~2亚烷基-NRA2RA3、-C0~2亚烷基-NRA2C(O)RA3、-C0~2亚烷基-(3~6 元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

RA2、RA3分别独立选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基);

Y1、Y2、Y3分别独立选自N或CRY1

每个RY1独立选自氢、卤素、氰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-OH、-O(C1~6烷基)、-NH2、-NH(C1~6烷基)、-N(C1~6烷基)(C1~6烷基);

R3选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基);其中烷基、亚烷基、环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

R3’选自-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-(C0~2亚烷基)O(C1~6烷基)、-(C0~2亚烷基)O(C0~2亚烷基)(3~6元环烷基)、-(C0~2亚烷基)O(C0~2亚烷基)(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的R31取代;

或者,R3、R3‘相连形成3~6元环烷基、3~6元杂环烷基;其中环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

每个R31独立选自卤素、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-C(O)R32、-C0~2亚烷基-C(O)OR32

R32、R33分别独自选自氢、-C1~6烷基;

R4选自5~6元芳环、5~6元芳杂环或-C(O)NR5R6;其中芳环、芳杂环可进一步被一个、两个或三个独立的R41取代;

每个R41独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR42、-C0~2亚烷基-OC(O)R42、-C0~2亚烷基-C(O)R42、-C0~2亚烷基-C(O)OR42、-C0~2亚烷基-C(O)NR42R43、-C0~2亚烷基-NR42R43、-C0~2亚烷基-NR42C(O)R43、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个 R44取代;

R42、R43分别独自选自氢、-C1~6烷基、-C1~2亚烷基-OC(O)R46、-C1~2亚烷基-C(O)R46、-C1~2亚烷基-C(O)OR46、-C1~2亚烷基-C(O)NR46R47、-C1~2亚烷基-NR46R47、-C1~2亚烷基-NR46C(O)R47、 -C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);或者,R42、R43相连形成3~6元环烷基、3~6元杂环烷基;其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R45取代;

每个R44分别独自选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR46、-C0~2亚烷基-OC(O)R46、-C0~2亚烷基-C(O)R46、-C0~2亚烷基-C(O)OR46、-C0~2亚烷基-C(O)NR46R47、-C0~2亚烷基-NR46R47、-C0~2亚烷基-NR46C(O)R47、-C0~2亚烷基-(3~6 元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

每个R45分别独自选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR46、-C0~2亚烷基-OC(O)R46、-C0~2亚烷基-C(O)R46、-C0~2亚烷基-C(O)OR46、-C0~2亚烷基-C(O)NR46R47、-C0~2亚烷基-NR46R47、-C0~2亚烷基-NR46C(O)R47、-C0~2亚烷基-(3~6 元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

R46、R47分别独自选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基);或者,R46、R47相连形成3~6元环烷基、3~6元杂环烷基;

R5、R6分别独立选自氢、-C1~6烷基、卤素取代的-C1~6烷基、-C(O)NR52R53、-C(O)OR52、-S(O)R52、-S(O)2R52、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~10元桥环)、-C0~2亚烷基-(5~10元桥杂环)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基 -(5~6元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、桥环、桥杂环、芳环、芳杂环可进一步被一个、两个或三个R51取代;

或者,R5、R6相连形成3~6元杂环烷基;其中杂环烷基可进一步被一个、两个或三个R51取代;

每个R51分别独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR52、-C0~2亚烷基-OC(O)R52、-C0~2亚烷基-C(O)R52、-C0~2亚烷基-C(O)OR52、-C0~2亚烷基-NR52R53、-C0~2亚烷基-NR52C(O)R53、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环)或-C0~2亚烷基-OR55、 -C0~2亚烷基-NR55R56;其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R54取代;

每个R54分别独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR52、-C0~2亚烷基-OC(O)R52、-C0~2亚烷基-C(O)R52、-C0~2亚烷基-C(O)OR52、-C0~2亚烷基-NR52R53、-C0~2亚烷基-NR52C(O)R53、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

R52、R53分别独自选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、;或者,R52、R53相连形成3~6元环烷基、3~6元杂环烷基;

R55、R56分别独自选自氢、-C1~6烷基、

R57、R58分别独自选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)。

在本发明的一些实施方案中,

R1选自-OCH3-CF3甲基、异丙基、环丙基、环丁基、

A环选自

R3选自氢或甲基;

R3’选自甲基、-(亚甲基)O(甲基)、

或者R3、R3’相连形成

进一步地,所述式I的化合物如式II所示:

其中,

R1选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环)、-NR11R12、-OR11;其中烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的R13取代;

R11、R12分别独立选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的R13取代;

每个R13独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-OH、 -O(C1~6烷基)、-NH2、-NH(C1~6烷基)、-N(C1~6烷基)(C1~6烷基);

R2选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基);

A环选自5~7元环烷基、5~7元杂环烷基;其中环烷基、杂环烷基可进一步被一个、两个或三个独立的RA1取代;

每个RA1独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-ORA2、-C0~2亚烷基-OC(O)RA2、-C0~2亚烷基-C(O)RA2、-C0~2亚烷基-C(O)ORA2、-C0~2亚烷基-C(O)NRA2RA3、-C0~2亚烷基-NRA2RA3、-C0~2亚烷基-NRA2C(O)RA3、-C0~2亚烷基-(3~6 元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

RA2、RA3分别独立选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基);

RY1选自氢、卤素;

R3选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基);其中烷基、亚烷基、环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

R3’选自-(C0~2亚烷基)O(C1~6烷基)、-(C0~2亚烷基)O(C0~2亚烷基)(3~6元环烷基)、-(C0~2亚烷基)O(C0~2亚烷基)(3~6元杂环烷基);其中烷基、亚烷基、环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

或者,R3、R3‘相连形成3~6元环烷基、3~6元杂环烷基;其中环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

每个R31独立选自卤素、-C1~6烷基、卤素取代的-C1~6烷基;

B环选自5~6元芳环、5~6元芳杂环;其中芳环、芳杂环可进一步被一个、两个或三个独立的R41取代;

每个R41独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR42、-C0~2亚烷基-OC(O)R42、-C0~2亚烷基-C(O)R42、-C0~2亚烷基-C(O)OR42、-C0~2亚烷基-C(O)NR42R43、-C0~2亚烷基-NR42R43、-C0~2亚烷基-NR42C(O)R43、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个 R44取代;

R42、R43分别独自选自氢、-C1~6烷基、-C1~2亚烷基-OC(O)R46、-C1~2亚烷基-C(O)R46、-C1~2亚烷基-C(O)OR46、-C1~2亚烷基-C(O)NR46R47、-C1~2亚烷基-NR46R47、-C1~2亚烷基-NR46C(O)R47、 -C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);或者,R42、R43相连形成3~6元环烷基、3~6元杂环烷基;其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R45取代;

每个R44分别独自选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR46、-C0~2亚烷基-OC(O)R46、-C0~2亚烷基-C(O)R46、-C0~2亚烷基-C(O)OR46、-C0~2亚烷基-C(O)NR46R47、-C0~2亚烷基-NR46R47、-C0~2亚烷基-NR46C(O)R47、-C0~2亚烷基-(3~6 元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

每个R45分别独自选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR46、-C0~2亚烷基-OC(O)R46、-C0~2亚烷基-C(O)R46、-C0~2亚烷基-C(O)OR46、-C0~2亚烷基-C(O)NR46R47、-C0~2亚烷基-NR46R47、-C0~2亚烷基-NR46C(O)R47、-C0~2亚烷基-(3~6 元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

R46、R47分别独自选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基);或者,R46、R47相连形成3~6元环烷基、3~6元杂环烷基。

更进一步地,

R1选自-C1~6烷基、3~6元环烷基、3~6元杂环烷基、5~6元芳环、5~6元芳杂环、-NR11R12、 -OR11;其中烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的 R13取代;

R11、R12分别独立选自氢、-C1~6烷基、3~6元环烷基、3~6元杂环烷基;

每个R13独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-OH、-O(C1~6烷基)、-NH2、-NH(C1~6烷基)、-N(C1~6烷基)(C1~6烷基)。

更进一步具体地,R1选自卤素取代的烷基、-O(C1~6烷基)、

更进一步地,

A环选自5~7元环烷基、5~7元杂环烷基、6~9元螺环、6~9元杂螺环;其中环烷基、杂环烷基、螺环、杂螺环可进一步被一个、两个或三个独立的RA1取代;

每个RA1独立选自-C1~6烷基。

更进一步具体地,A环选自

更进一步地,R3选自氢、-C1~6烷基;R3’选自-(C0~2亚烷基)O(C1~6烷基)。

更进一步地,R3、R3‘相连形成3~6元杂环烷基。

更进一步具体地,R3、R3‘相连形成3~6元含氧杂环烷基、3~6元含氮杂环烷基。

更进一步地,

B环选自

R411、R412独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR42、-C0~2亚烷基-OC(O)R42、-C0~2亚烷基-C(O)R42、-C0~2亚烷基-C(O)OR42、-C0~2亚烷基-C(O)NR42R43、-C0~2亚烷基-NR42R43、-C0~2亚烷基-NR42C(O)R43、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R44取代;

R42、R43分别独自选自氢、-C1~6烷基;

每个R44分别独自选自卤素、氰基、羰基、硝基、-C1~6烷基。

更进一步地,

B环选自

R411选自-C0~2亚烷基-OR42、-C0~2亚烷基-OC(O)R42、-C0~2亚烷基-C(O)R42、-C0~2亚烷基 -C(O)OR42、-C0~2亚烷基-C(O)NR42R43、-C0~2亚烷基-NR42R43、-C0~2亚烷基-NR42C(O)R43

R42、R43分别独自选自氢、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、 -C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R45取代;

每个R45分别独自选自-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR46、-C0~2亚烷基-OC(O)R46、-C0~2亚烷基-C(O)R46、-C0~2亚烷基-C(O)OR46、-C0~2亚烷基-C(O)NR46R47、-C0~2亚烷基-NR46R47、-C0~2亚烷基-NR46C(O)R47、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

R46、R47分别独自选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基);

R412选自氢、-C1~6烷基。

更进一步具体地,R42、R43至少有一个选自氢。

进一步地,所述式I的化合物如式III所示:

R1选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环)、-NR11R12、-OR11;其中烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的R13取代;

R11、R12分别独立选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的R13取代;

每个R13独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-OH、 -O(C1~6烷基)、-NH2、-NH(C1~6烷基)、-N(C1~6烷基)(C1~6烷基);

R2选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基);

A环选自5~7元环烷基、5~7元杂环烷基、6~9元螺环、6~9元杂螺环;其中环烷基、杂环烷基、螺环、杂螺环可进一步被一个、两个或三个独立的RA1取代;

每个RA1独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-ORA2、-C0~2亚烷基-OC(O)RA2、-C0~2亚烷基-C(O)RA2、-C0~2亚烷基-C(O)ORA2、-C0~2亚烷基-C(O)NRA2RA3、-C0~2亚烷基-NRA2RA3、-C0~2亚烷基-NRA2C(O)RA3、-C0~2亚烷基-(3~6 元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

RA2、RA3分别独立选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基);

R3选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基);其中烷基、亚烷基、环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

R3’选自-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-(C0~2亚烷基)O(C1~6烷基)、-(C0~2亚烷基)O(C0~2亚烷基)(3~6元环烷基)、-(C0~2亚烷基)O(C0~2亚烷基)(3~6元杂环烷基);其中烷基、亚烷基、环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

或者,R3、R3‘相连形成3~6元环烷基、3~6元杂环烷基;其中环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

每个R31独立选自卤素、-C1~6烷基、卤素取代的-C1~6烷基、-C0~4亚烷基-C(O)R32、-C0~4亚烷基-C(O)OR32

R32、R33分别独自选自氢、-C1~10烷基;

R5、R6分别独立选自氢、-C1~6烷基、-C(O)NR52R53、-C(O)OR52、-S(O)R52、-S(O)2R52、 -C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R51取代;

或者,R5、R6相连形成3~6元杂环烷基;其中杂环烷基可进一步被一个、两个或三个R51取代;

每个R51分别独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR52、-C0~2亚烷基-OC(O)R52、-C0~2亚烷基-C(O)R52、-C0~2亚烷基-C(O)OR52、-C0~2亚烷基-NR52R53、-C0~2亚烷基-NR52C(O)R53、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R54取代;

每个R54分别独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR52、-C0~2亚烷基-OC(O)R52、-C0~2亚烷基-C(O)R52、-C0~2亚烷基-C(O)OR52、-C0~2亚烷基-NR52R53、-C0~2亚烷基-NR52C(O)R53、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

R52、R53分别独自选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基);或者,R52、R53相连形成3~6元环烷基、3~6元杂环烷基。

在一些实施方案中,R5、R6分别独立选自氢、甲基、乙基、-NH(乙基)、-O(叔丁基)、

或R5、R6相连形成

更进一步地,

R1选自-C1~6烷基、3~6元环烷基、3~6元杂环烷基、5~6元芳环、5~6元芳杂环、-NR11R12、 -OR11;其中烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个独立的 R13取代;

R11、R12分别独立选自氢、-C1~6烷基、3~6元环烷基、3~6元杂环烷基;

每个R13独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-OH、-O(C1~6烷基)、-NH2、-NH(C1~6烷基)、-N(C1~6烷基)(C1~6烷基)。

更进一步具体地,R1选自-C1~6烷基、三氟甲基、-O(C1~6烷基)、-NH(C1~6烷基)、-N(C1~6烷基)(C1~6烷基)、-N(C1~6烷基)(环丙基)、

更进一步地,

A环选自5~7元环烷基、5~7元杂环烷基、6~9元螺环、6~9元杂螺环;其中环烷基、杂环烷基、螺环、杂螺环可进一步被一个、两个或三个独立的RA1取代;

每个RA1独立选自-C1~6烷基。

更进一步具体地,A环选自

更进一步地,R3选自氢、-C1~6烷基;R3’选自-C1~6烷基、3~6元环烷基、3~6元杂环烷基、 -(C0~2亚烷基)O(C1~6烷基)。

更进一步地,R3、R3‘相连形成3~6元环烷基、3~6元杂环烷基。

更进一步具体地,R3、R3‘相连形成3~6元含氧杂环烷基。

更进一步地,

R5、R6分别独立选自氢、-C1~6烷基、-C(O)NR52R53、-C(O)OR52、-S(O)R52、-S(O)2R52、 -C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);其中烷基、亚烷基、环烷基、杂环烷基、芳环、芳杂环可进一步被一个、两个或三个R51取代;

或者,R5、R6相连形成3~6元杂环烷基;其中杂环烷基可进一步被一个、两个或三个R51取代;

每个R51分别独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-C0~2亚烷基-OR52、-C0~2亚烷基-OC(O)R52、-C0~2亚烷基-C(O)R52、-C0~2亚烷基-C(O)OR52、-C0~2亚烷基-NR52R53、-C0~2亚烷基-NR52C(O)R53、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

R52、R53分别独自选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、;或者,R52、R53相连形成3~6元环烷基、3~6元杂环烷基。

更进一步具体地,

R5、R6分别独立选自氢、

R511、R512分别独立选自氢、卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、 -C0~2亚烷基-OR52、-C0~2亚烷基-OC(O)R52、-C0~2亚烷基-C(O)R52、-C0~2亚烷基-C(O)OR52、-C0~2亚烷基-NR52R53、-C0~2亚烷基-NR52C(O)R53、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

R52、R53分别独自选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)。

更进一步具体地,

R5、R6分别独立选自氢、

R511、R512分别独立选自氢、卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、 -C0~2亚烷基-OR52、-C0~2亚烷基-OC(O)R52、-C0~2亚烷基-C(O)R52、-C0~2亚烷基-C(O)OR52、-C0~2亚烷基-NR52R53、-C0~2亚烷基-NR52C(O)R53、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)、-C0~2亚烷基-(5~6元芳环)、-C0~2亚烷基-(5~6元芳杂环);

R52、R53分别独自选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基)、-C0~2亚烷基-(3~6 元杂环烷基)。

更进一步具体地,R5、R6分别独立选自氢、-C1~6烷基、-C(O)NH(C1~6烷基)、-C(O)O(C1~6烷基)、-S(O)2(C1~6烷基)。

更进一步具体地,R5、R6至少有一个选自氢。

更进一步具体地,:R5、R6相连形成环丁胺、吗啉;其中杂环烷基可进一步被一个、两个或三个R51取代;每个R51分别独立选自卤素、羰基、-C1~6烷基、卤素取代的-C1~6烷基、-OH、-O(C1~6烷基)。

进一步地,所述式I的化合物如式IV所示:

其中,

R1选自-C1~6烷基、三氟甲基、-O(C1~6烷基)、-NH(C1~6烷基)、-N(C1~6烷基)(C1~6烷基)、 -N(C1~6烷基)(环丙基)、

R2选自氢、-C1~6烷基、-C0~2亚烷基-(3~6元环烷基);

R13独立选自卤素、氰基、羰基、硝基、-C1~6烷基、卤素取代的-C1~6烷基、-OH、-O(C1~6烷基)、-NH2、-NH(C1~6烷基)、-N(C1~6烷基)(C1~6烷基);

A环选自

每个RA1独立选自氢、-C1~6烷基;

R3选自氢、-C1~6烷基;

R3’选自-C1~6烷基、3~6元环烷基、3~6元杂环烷基、-(C0~2亚烷基)O(C1~6烷基);

或者,R3、R3’相连形成3~6元环烷基、3~6元杂环烷基;其中环烷基、杂环烷基可进一步被一个、两个或三个独立的R31取代;

每个R31独立选自卤素、-C1~6烷基、卤素取代的-C1~6烷基、-C0~4亚烷基-C(O)R32、-C0~4亚烷基-C(O)OR32

R32分别独自选自氢、-C1~10烷基;

R5x选自-C1~6烷基、3~6元环烷基、3~6元杂环烷基;其中环烷基、杂环烷基可进一步被一个、两个或三个独立的R5z取代;

每个R5z独立选自氢、卤素、-C1~6烷基、卤素取代的-C1~6烷基;

R5y选自-OR5t、-NR5tR5t’;

R5t、R5t’分别独自选自氢、-C1~6烷基。

更进一步地,

R1选自

A环选自

R3选自氢、甲基;

R3’选自甲基、5元含氮杂环烷基、-(亚甲基)O(甲基);

或者,R3、R3’相连形成5元含氧杂环烷基、5元含氮杂环烷基;其中杂环烷基可进一步被一个、两个或三个独立的R31取代;

每个R31独立选自-C1~6烷基、-C(O)R32

R32分别独自选自-C1~6烷基;

R5x选自-C1~6烷基、环丙烷、环丁烷;其中环丙烷、环丁烷可进一步被一个、两个或三个独立的R5z取代;

每个R5z独立选自氢、卤素、-C1~6烷基、卤素取代的-C1~6烷基;

R5y选自-OH、-O(C1~6烷基)、-NH2、-NH(C1~6烷基)、-N(C1~6烷基)(C1~6烷基)。

在本发明的一些具体实施方案中,式I所示的化合物具体为:

本发明还提供前述的化合物、或其立体异构体、或其氮氧化物、或其药学上可接受的盐在制备治疗IL-17A介导的疾病的药物中的用途。

进一步地,所述IL-17A介导的疾病是与炎症、自身免疫性疾病、感染性疾病、癌症、癌前期综合征相关的疾病中的一种或几种。

本发明还提供一种药物组合物,它是以前述的化合物、或其立体异构体、或其氮氧化物、或其药学上可接受的盐,加上药学上可接受的辅料制备而成的制剂。

本发明还提供了前述的化合物、或其立体异构体、或其药学上可接受的盐、或其溶剂合物、或其前体药物、或其代谢产物在制备治疗IL-17A介导的疾病的药物中的用途。

本发明所定义的IL-17A介导的疾病是IL-17A在该疾病的病理发生中起重要作用的疾病。 IL-17A的主要功能是协调局部组织炎症,从而在各种疾病中起作用。IL-17A介导的疾病包括炎症、自身免疫性疾病、感染性疾病、癌症、癌前期综合征相关的疾病中的一种或几种。。

“癌症”或“恶性肿瘤”是指以不受控制的细胞异常增殖为特征的多种疾病中的任何一种,受影响的细胞在局部或通过血流和淋巴系统扩散到其他部位的能力的身体(即转移)以及许多特征结构和/或分子特征中的任何一个。“癌细胞”是指经历多步骤肿瘤进展的早期,中期或晚期阶段的细胞。癌症包括肉瘤、乳腺癌、肺癌、脑癌、骨癌、肝癌、肾癌、结肠癌和前列腺癌。在一些实施方案中,式I的化合物用于治疗选自结肠癌、脑癌、乳腺癌、纤维肉瘤和鳞状细胞癌的癌症。在一些实施方案中,癌症选自黑素瘤、乳腺癌、结肠癌、肺癌和卵巢癌。在一些实施方案中,所治疗的癌症是转移性癌症。

自身免疫性疾病是由身体对体内正常存在的物质和组织的免疫反应引起的。自身免疫疾病的例子包括心肌炎、狼疮性肾炎、原发性胆汁性肝硬化、牛皮癣、1型糖尿病、格雷夫氏病、腹腔疾病、克罗恩病、自身免疫性中性白细胞减少症、幼年型关节炎、类风湿性关节炎、纤维肌痛、吉兰巴利综合征、多发性硬化症和自身免疫性视网膜病变。本发明的一些实施方案涉及治疗自身免疫疾病如牛皮癣或多发性硬化症。

炎症疾病包括以组织病理性炎症为特征的多种病症。炎性疾病的例子包括寻常性痤疮、哮喘、腹腔疾病、慢性前列腺炎、肾小球性肾炎、炎症性肠病、盆腔炎、再灌注损伤、类风湿性关节炎、结节病、血管炎、房尘螨引起的气道炎症和间质性膀胱炎。炎性疾病与自身免疫性疾病之间存在显著重叠。本发明的一些实施方案涉及炎性疾病哮喘的治疗。免疫系统通常涉及炎症性疾病,在过敏反应和一些肌病中都有表现,许多免疫系统疾病导致异常炎症。 IL-17A介导的疾病也包括自身免疫性炎症性疾病。

本发明中提供的化合物和衍生物可以根据IUPAC(国际纯粹与应用化学联合会)或CAS(化学文摘服务社,Columbus,OH)命名系统命名。

关于本发明的使用术语的定义:除非另有说明,本文中基团或者术语提供的初始定义适用于整篇说明书的该基团或者术语;对于本文没有具体定义的术语,应该根据公开内容和上下文,给出本领域技术人员能够给予它们的含义。

“取代”是指分子中的氢原子被其它不同的原子或分子所替换。

“可进一步被取代”是指“取代”可以但不必须发生,该说明包括发生或不发生的情形。

碳氢基团中碳原子含量的最小值和最大值通过前缀表示,例如,前缀Ca~b烷基表明任何含“a”至“b”个碳原子的烷基。因此,例如,“C1~4烷基”是指包含1~4个碳原子的烷基。

本发明中所述的“烷基”是指具有指定数目的成员原子的饱和烃链。例如,C16烷基是指具有1至6个成员原子,例如1至4个成员原子的烷基基团。烷基基团可以是直链或支链的。代表性的支链烷基基团具有一个、两个或三个支链。烷基基团可任选地被一个或多个如本文所定义的取代基取代。烷基包括甲基、乙基、丙基(正丙基和异丙基)、丁基(正丁基、异丁基和叔丁基)、戊基(正戊基、异戊基和新戊基)和己基。烷基基团也可以是其他基团的一部分,所述其他基团为例如C1~C6烷氧基。

本发明中所述的“亚烷基”是指具有1至10个碳原子和在一些实施方案中1至6个碳原子的二价饱和脂族烃基。“(Ca~Cb)亚烷基”是指具有a至b个碳原子的亚烷基基团。亚烷基基团包括支链和直链烃基基团。例如,“(C1~C6)亚烷基”意在包括亚甲基、亚乙基、亚丙基、2-甲基亚丙基、二甲基亚乙基、亚戊基等等。因此,术语“亚丙基”可以通过下列结构例举:同样地,术语“二甲基亚丁基”可以例如通过下列结构的任一种例举: 此外,术语“(C1~C6)亚烷基”意在包括此类支链烃基基团,诸如环丙基亚甲基,其可以通过下列结构例举:

本发明中所述的“环烷基”、“环烷烃”是指具有多个碳原子且没有环杂原子且具有单个环或多个环(包括稠合、桥连、螺环和金刚烷体系)的饱和或部分饱和的环状基团。对于具有不含环杂原子的芳族和非芳族环的多环体系,当连接点位于非芳族碳原子时,适用术语“环烷基”(例如5,6,7,8,-四氢化萘-5-基)。术语“环烷基”包括环烯基基团,诸如环己烯基。环烷基基团的实例包括例如,金刚烷基、环丙基、环丁基、环己基、环戊基、环辛基、环戊烯基和环己烯基。包括多双环烷基环体系的环烷基基团的实例是双环己基、双环戊基、双环辛基等。下面例举并命名两种此类双环烷基多环结构:双环己基和双环己基。金刚烷基包括但不限于以下结构:

本发明中所述的“烯基”是指具有2至10个碳原子和在一些实施方案中2至6个碳原子或2 至4个碳原子且具有至少1个乙烯基不饱和位点(>C=C<)的直链或支链烃基基团。例如,(Ca-Cb) 烯基是指具有a至b个碳原子的烯基基团并且意在包括例如乙烯基、丙烯基、异丙烯基、1,3- 丁二烯基等。

本发明中所述的“亚烯基”是指具有2至10个碳原子、至少一个双键和两个不饱和化学价的烃链。例如,(C3-C6)亚烯基包括>C=CH-CH2-、-CH-CH=CH-CH2-等。

本发明中所述的“炔基”是指含有至少一个三键的直链一价烃基或支链一价烃基。术语“炔基”还意在包括具有一个三键和一个双键的那些烃基基团。例如,(C2-C6)炔基意在包括乙炔基、丙炔基等。

本发明中所述的“亚炔基”是指具有2至10个碳原子和至少一个三键的二价烃链。

本发明中所述的“卤素”为氟、氯、溴或碘。

本发明中所述的“卤素烷基”、“卤素取代的烷基”指烷基中的氢原子可被一个或多个卤素原子取代。例如C1~4卤素烷基指氢原子被一个或多个卤素原子取代的包含1~4个碳原子的烷基。

本发明中所述的“-OR”、“-NRR”等是指R基团与氧原子或氮原子以单键相连。

本发明中所述的“-C(O)R”、“-S(O)2R”等中的氧原子是与碳原子或硫原子以双键相连。

本发明中所述的“羰基”是指氧原子通过双键取代,即“=O”。

本发明中所述的“杂环”、“杂环烷基”、“杂环烷烃”是指包含至少一个杂原子的饱和环或非芳香性的不饱和环;其中杂原子指氮原子、氧原子、硫原子等。通常表示多个环原子的一价饱和或部分不饱和单环或二环环系统、优选3至9个环原子的一价饱和或部分不饱和单环或二环环系统,其包含1、2或3个选自N、O和S的环杂原子,其余的环原子是碳。二环表示由共有两个环原子的两个环组成的,即将两个环分开的桥是单键或是一个或两个环原子的链。单环饱和杂环烷基的实例是氧杂环丁基、氮杂环丁基、吡咯烷基、2-氧代-吡咯烷 -3-基、四氢呋喃基、四氢-噻吩基、吡唑烷基、咪唑烷基、噻唑烷基、哌啶基、四氢吡喃基、四氢噻喃基、哌嗪基、吗啉基、硫代吗啉基、1,1-二氧代-硫代吗啉-4-基、氮杂环庚基、二氮杂环庚基、高哌嗪基或氧杂氮杂环庚基。二环饱和杂环烷基的实例是8-氮杂-二环[3.2.1]辛基、奎宁环基、8-氧杂-3-氮杂-二环[3.2.1]辛基、9-氮杂-二环[3.3.1]壬基、部分不饱和杂环烷基的实例是二氢呋喃基、咪唑啉基、四氢-吡啶基或二氢吡喃基。

本发明中所述的“芳环”、“芳基”是指具有多个碳原子的芳烃基团。芳基通常是具有 5-20个碳原子的单环、二环或三环芳基。此外,本文所用的术语“芳基”是指可以是单个芳环或稠合在一起的多个芳环的芳族取代基。非限制性实例包括苯基、萘基或四氢萘基。

本发明中所述的“芳杂环”、“芳杂环基”是指包含至少一个杂原子的芳香性不饱和环;其中杂原子指氮原子、氧原子、硫原子等。通常包含多个环原子的、其中一个或多个环原子选自O、N、S的杂原子的芳族单环或双环烃。优选地有一到三个杂原子。杂环芳基例如代表:吡啶基、吲哚基、喹噁啉基、喹啉基、异喹啉基、苯并噻吩基、苯并呋喃基、苯并噻吩基、苯并吡喃基、苯并噻吡喃基、呋喃基、吡咯基、噻唑基、噁唑基、异噁唑基、三唑基、四唑基、吡唑基、咪唑基、噻吩基、噁二唑基、苯并咪唑基、苯并噻唑基、苯并噁唑基。

“立体异构体”包括对映异构体和非对映异构体;

术语“药学上可接受的”是指某载体、运载物、稀释剂、辅料,和/或所形成的盐通常在化学上或物理上与构成某药物剂型的其它成分相兼容,并在生理上与受体相兼容。

术语“盐”和“可药用的盐”是指上述化合物或其立体异构体,与无机和/或有机酸和碱形成的酸式和/或碱式盐,也包括两性离子盐(内盐),还包括季铵盐,例如烷基铵盐。这些盐可以是在化合物的最后分离和纯化中直接得到。也可以是通过将上述化合物,或其立体异构体,与一定数量的酸或碱适当(例如等当量)进行混合而得到。这些盐可能在溶液中形成沉淀而以过滤方法收集,或在溶剂蒸发后回收而得到,或在水介质中反应后冷冻干燥制得。本发明中所述盐可以是化合物的盐酸盐、硫酸盐、枸橼酸盐、苯磺酸盐、氢溴酸盐、氢氟酸盐、磷酸盐、乙酸盐、丙酸盐、丁二酸盐、草酸盐、苹果酸盐、琥珀酸盐、富马酸盐、马来酸盐、酒石酸盐或三氟乙酸盐。

在某些实施方式中,本发明的一种或多种化合物可以彼此联合使用。也可选择将本发明的化合物与任何其它的活性试剂结合使用,用于制备调控细胞功能或治疗疾病的药物或药物组合物。如果使用的是一组化合物,则可将这些化合物同时、分别或有序地对受试对象进行给药。

显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。

以下通过实施例形式的

具体实施方式

,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。

附图说明

图1:试验例3的EAE模型中实施例20达到的药效图;

图2:实施例20对于组织脑脊髓的组织病理学损伤的保护作用;

图3:IMQ模型中经皮下注射或灌胃途径给药的实施例20与抗体给药达到的药效结果;

图4.:IMQ模型中不同给药组小鼠皮肤厚度变化评价;

图5:IMQ模型中不同给药组小鼠皮肤组织中il6表达水平;

图6:IMQ模型中实施例20能够抑制IMQ所致小鼠皮肤病理损伤;

图7:IMQ模型中经灌胃途径给药的实施例20与抗体给药达到了近似的药效结果;

图8.:IMQ模型中不同给药组小鼠皮肤厚度变化评价;

图9:IMQ模型中不同给药组小鼠皮肤组织中il6表达水平;

具体实施方式

化合物的结构是通过核磁共振(NMR)和质谱(MS)来确定的。NMR位移(δ)以10-6(ppm)的单位给出。NMR的测定是用(Bruker AvanceIII 400和Bruker Avance 300)核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d6),氘代氯仿(CDCl3),氘代甲醇(CD3OD),内标为四甲基硅烷(TMS)。

LC-MS的测定使用岛津液质联用仪(Shimadzu LC-MS 2020(ESI))。HPLC的测定使用岛津高压液相色谱仪(Shimadzu LC-20A)。MPLC(中压制备色谱)使用Gilson GX-281反相制备色谱仪。薄层层析硅胶板用烟台黄海HSGF254或青岛GF254硅胶板,薄层层析分离纯化产品采用的规格是0.4mm~0.5mm。柱层析一般使用烟台黄海硅胶200~300目硅胶为载体。超临界流体色谱(SFC)

本发明的已知的起始原料可以采用或按照本领域已知的方法来合成,或可购买于安耐吉化学、成都科龙化工、韶远化学科技、百灵威科技等公司。

实施例中无特殊说明,反应在氮气氛围下进行。实施例中无特殊说明,溶液是指水溶液。实施例中无特殊说明,反应的温度为室温。实施例中无特殊说明,M是摩尔每升。室温为最适宜的反应温度,为20℃~30℃。

中间体Z1

步骤1、中间体Z-1的制备

氮气保护下,向反式-4-甲基环己基甲酸(20.0g,140.65mmol)的-20℃的无水四氢呋喃溶液中,缓慢滴加1M四氢铝锂的四氢呋喃溶液(170mL),滴毕,缓慢升至室温并搅拌过夜,反应液经水(7mL)淬灭,加入7mL 15%的NaOH水溶液,再加水20mL,搅拌片刻后抽滤,滤液减压浓缩得中间体Z1-1的粗品(18.0g,140.39mmol,99.82%产率),LCMS m/z: 129[M+1]+.

步骤2、中间体Z-2的制备

冰浴下和氮气保护下,向中间体Z1-1粗品(18.0g,140.39mmol)的二氯甲烷(400mL)溶液中加入戴斯-马丁试剂(65.50g,154.43mmol),室温搅拌反应2小时,反应液减压浓缩并经硅胶柱层析分离纯化得到中间体Z1-2,无色油状液体,(15.5g,122.82mmol,87.49%产率), LCMS m/z:127[M+1]+.

步骤3、中间体Z-3的制备

室温下,将钛酸乙酯(86.45g,379.17mmol)分批加至中间体Z1-2(14.5g,114.90mmol)和 S-对甲苯亚磺酰胺(17.83g,114.90mmol)的干燥的二氯甲烷(500mL)溶液中,加毕,升至 50℃并搅拌2小时,键入500mL冰水淬灭反应,抽滤,滤液经二氯甲烷(500mL*2)萃取,合并有机相,无水硫酸钠干燥,过滤,滤液浓缩得到中间体Z1-3(20.6g,84.65mmol,73.68%产率),无色胶状半固体,LCMS m/z:264[M+1]+.

步骤4、中间体Z-4的制备

-78℃并氮气保护下,将异丙醇(5.18g,86.30mmol)加至1M的二乙基氢化铝甲苯溶液 (130mL)和干燥的四氢呋喃(100mL)溶液,并于-78℃下搅拌1小时。将以上所得溶液于-78℃缓慢滴加至中间体Z1-3(21.0g,86.30mmol)的干燥四氢呋喃溶液中,30min滴毕,自然升至室温并搅拌过夜,冰浴下,缓慢加入500mL饱和氯化铵水溶液淬灭反应,搅拌30min 后,经硅藻土抽滤,加入500mL乙酸乙酯,分出有机层,水相经500mL*3乙酸乙酯萃取,合并有机相,无水硫酸钠干燥,过滤,浓缩,粗品经热的石油醚和乙酸乙酯溶液重结晶两次得S构型的中间体Z1-4(14g,48.3mmol,56%产率),白色固体,LCMS m/z:291[M+1]+.

步骤5、中间体Z-5的制备

冰浴下,向中间体Z1-4(1.5g,5.16mmol)的甲醇溶液中,加入4M HCl的乙酸乙酯溶液 (5.16mmol,30mL),氮气保护下,缓慢升至室温并搅拌反应2小时,减压浓缩,加入石油醚50mL打浆抽滤得中间体Z1-5(850mg,4.50mmol,87.22%产率),白色固体,LCMS m/z: 153[M+1]+.

步骤6、中间体Z-6的制备

室温下,向中间体Z1-5的4mL醋酸溶液中,加入浓盐酸(376.22mg,4.50mmol),随后升至110℃并搅拌反应3小时,反应液减压浓缩,加入石油醚50mL打浆抽滤得中间体1-6(840mg,4.04mmol,89.78%产率),白色固体,LCMS m/z:172[M+1]+.

步骤7,Z1的制备

室温相,向中间体Z1-6(840mg,4.91mmol)的10mL 1,4-二氧六环和10mL水的混合溶液中,加入Na2CO3(1.56g,14.72mmol)和二碳酸二叔丁酯(1.18g,5.40mmol),室温反应过夜,减压浓缩,经6N HCl盐酸调pH~3,水相经50mL*2乙酸乙酯萃取,合并有机相,无水硫酸钠干燥,过滤,浓缩,得中间体Z1(1.0g,3.69mmol,75.12%产率),白色固体,LCMS m/z: 272[M+1]+.

中间体Z2

步骤1、中间体Z2-1的制备

氮气保护和0℃下,向对硝基苯乙酸乙酯(156g,745.71mmol)的干燥的DMF(700mL)溶液中加入Cs2CO3(290.82g,894.85mmol),升至室温并搅拌1小时,随后降至0℃并缓慢滴加碘甲烷(116.43g,820.28mmol),滴毕,反应过夜,抽滤,滤液用2L乙酸乙酯稀释,饱和食盐水洗涤(3*1.5L),有机相无水硫酸钠干燥,过滤,浓缩即可得到中间体Z2-1(165g,739.16mmol,99.12%产率),MS m/z:224[M+1]+,粗品直接用于下一步。

步骤2、中间体Z2-2的制备

氮气保护和-10℃下,将中间体Z2-1(11.48g,478.44mmol)的DMF(300mL)溶液缓慢滴加至干燥的0.3L的DMF和NaH(11.48g,478.44mmol)的混合溶液中,30min后,降温至-50℃,滴加氯甲基氯甲醚(48.15g,598.05mmol),30min滴毕,反应液于-50℃~-10℃继续搅拌3小时,反应完毕,冷的饱和氯化铵淬灭反应,乙酸乙酯(2*400ml)萃取,合并有机相,经饱和食盐水(400ml*2)洗,无水硫酸钠干燥,过滤,减压浓缩至干,粗品经硅胶柱层析分离(石油醚 /乙酸乙酯100:1~50:1)得到中间体Z2-2(45g,168.36mmol,42.23%产率),MS m/z:268[M+1]+.

步骤3、中间体Z2-3的制备

将中间体Z2-2(45g,168.36mmol)溶于EtOH(100mL)中,氮气置换后,加入10%Pd/C(8 g),常压氢气氛下搅拌反应过夜,原料消失后,经硅藻土抽滤,乙醇洗涤,滤液减压浓缩至干,得到中间体Z2-3(34.6g,145.81mmol,86.60%产率),MS m/z:260[M+1+22]+,产物未经纯化直接用于下一步反应。

步骤4、中间体Z2-4的制备

将中间体Z2-3(15.9g,67.01mmol)溶于醋酐(136mL)中,冷却至0℃,并搅拌15min,缓慢滴加HNO3(9.31g,100.51mmol,68%质量分数),滴毕,反应继续搅拌30min,原料消失,将反应液倾入冰水中,乙酸乙酯(2*100mL)萃取,合并有机相,经饱和碳酸钠洗涤,无水硫酸钠干燥,过滤,减压浓缩至干得到中间体Z2-4粗品(17g,52.42mmol,78.23%产率),MS m/z:325[M+1]+

步骤5、中间体Z2-5的制备

将中间体Z2-4(21.73g,67.01mmol)溶于100ml乙醇中,加入NaOH(1.61g,40.20mmol),加热至50℃搅拌0.5小时,TLC显示原料消失,反应液减压浓缩至干,加入H2O(150mL),用6N HCl调pH值~7,水相再经CH2Cl2(2*100mL)萃取,合并有机相,无水硫酸钠干燥,过滤,减压浓缩至干,得到中间体Z2-5粗品(8g,28.34mmol,42.29%产率),MS m/z: 283[M+1]+

步骤6、中间体Z2a,Z2b的制备

将中间体Z2-5(21g,74.2mmol)溶于甲醇中,氮气氛下加入10%Pd/C(5g),常压氢化反应过夜,原料消失后,经硅藻土抽滤,滤液减压浓缩至干,MPLC C18反相柱纯化得到消旋体,再经SFC手性柱拆分分离,分别得单一构型Z2a(7.5g,40%产率,手性柱保留时间6.805 min,CHIRALPAK AY-H(AYH0CE-VC001)0.46cm I.D.*25cm L,流动相:正己烷/乙醇80/20 (V/V),35℃,流速:1mL/min)和单一构型Z2b(7.5g,40%产率,手性柱保留时间5.755min, CHIRALPAK AY-H(AYH0CE-VC001)0.46cm I.D.*25cm L,流动相:正己烷/乙醇80/20(V/V), 35℃,流速:1mL/min),MS m/z:253[M+1]+.

中间体Z3

步骤1、中间体Z3-1的制备

室温下,向对硝基苯乙酸(300g,1.66mol)的乙醇(1L)溶液中加入催化量的浓H2SO4(1.66 mol,2mL),升温至80℃并搅拌16小时,原料消失后,减压浓缩至干,溶于2L的乙酸乙酯,碳酸氢钠水溶液洗涤,饱和食盐水洗涤,无水硫酸钠干燥,过滤,浓缩即可得到中间体Z3-1(330 g,1.58mol,95.25%产率),MS m/z:210[M+1]+.

步骤2、中间体Z3-2的制备

氮气保护下,将中间体Z3-1对硝基苯乙酸乙酯(29.4g,140.54mmol)溶于干燥的1.2L的 N,N-二甲基乙酰胺中,干冰-乙醇浴冷却至內温-40℃,加入碳酸铯(114.54g,351.34mmol),-40℃搅拌15min,2-氯乙基氯甲基醚(19.94g,154.59mmol)缓慢滴加至反应液中,滴毕,允许反应恢复至室温,并搅拌过夜,待原料消失后,加入3L的冰水淬灭反应,乙酸乙酯(2L*2) 萃取,有机相经饱和食盐水(2L*2)洗,无水硫酸钠干燥,过滤,减压浓缩至干,粗品经硅胶柱层析分离得到中间体Z3-2(6.5g,24.50mmol,17.44%产率),MS m/z:266[M+1]+.

步骤3、中间体Z3-3的制备

将中间体Z3-2(15g,56.55mmol)溶于EtOH(100mL)中,氮气置换后,加入10%Pd/C(3g),常压氢气氛下搅拌反应过夜,原料消失后,经硅藻土抽滤,乙醇洗涤,滤液减压浓缩至干,得到中间体Z3-3(12.7g,53.98mmol,95.46%产率),MS m/z:236[M+1]+,产物未经纯化直接用于下一步反应。

步骤4、中间体Z3-4的制备

将中间体Z3-3(16g,68.00mmol)溶于醋酐(136mL)中,冷却至0℃,并搅拌15min,缓慢滴加HNO3(9.45g,102.01mmol,68%质量分数),滴毕,反应继续搅拌30min,原料消失,将反应液倾入冰水中,乙酸乙酯(2*300mL)萃取,有机相经饱和碳酸钠洗涤,无水硫酸钠干燥,过滤,减压浓缩至干得到中间体Z3-4粗品(21g,65.15mmol,95.81%产率),MS m/z: 323[M+1]+,产物未经纯化直接用于下一步反应。

步骤5、中间体Z3-5的制备

将中间体Z3-4(21g,65.15mmol)溶于150ml乙醇中,加入SOCl2(23.25g,195.46mmol, 14.18mL),加热至50℃搅拌1小时,LC-MS显示原料消失,反应液减压浓缩至干,加入 CH2Cl2(150mL)和H2O(150mL),用饱和NaHCO3调pH值~8,水相再经CH2Cl2(2*150mL)萃取,合并有机相,无水硫酸钠干燥,过滤,减压浓缩至干,得到中间体Z3-5粗品(18g,64.22mmol,98.57%产率),MS m/z:281[M+1]+,产物未经纯化直接用于下一步反应。

步骤6、中间体Z3a,Z3b的制备

将中间体Z3-5(19g,67.79mmol)溶于甲醇中,氮气氛下加入10%Pd/C(5.7g),常压氢化反应过夜,原料消失后,经硅藻土抽滤,滤液减压浓缩至干,MPLC C18反相柱纯化得到消旋体,经SFC手性柱拆分分离,得单一构型3a(7.5g,44%产率,手性柱保留时间3.814min,CHIRALCEL OD-H(ODH0CD-TC013)0.46cm I.D.*15cm L,流动相:100%甲醇,35℃,流速:1mL/min)和另一单一构型3b(7.5g,44%产率,手性柱保留时间2.554min,CHIRALCEL OD-H(ODH0CD-TC013)0.46cm I.D.*15cm L,流动相:100%甲醇,35℃,流速:1mL/min), MS m/z:251[M+1]+.

中间体Z4

参照中间体Z3-5的制备路线中步骤2到步骤6的方法,在步骤2中用将2-氯乙基氯甲基醚替换为2,2'-二溴二乙醚,其余试剂和条件不变,可得中间体Z4.MS m/z:265[M+1]+.

中间体Z5

步骤1、中间体Z5-1的制备

氮气保护和0℃下,向对硝基苯乙酸乙酯Z3-1(156g,745.71mmol)的干燥的DMF(700 mL)溶液中加入Cs2CO3(290.82g,894.85mmol),升至室温并搅拌1小时,随后降至0℃并缓慢滴加碘甲烷(116.43g,820.28mmol),滴毕,反应过夜,抽滤,滤液用2L乙酸乙酯稀释,饱和食盐水洗涤(3*1.5L),有机相无水硫酸钠干燥,过滤,浓缩,即可得到中间体5-1(165g,739.16mmol,99.12%产率),MS m/z:224[M+1]+,粗品直接用于下一步。

步骤2、中间体Z5-2的制备

将中间体Z5-1(2.30g,10.30mmol)溶于EtOH(20mL)中,氮气置换后,加入10%Pd/C(0.5g),常压氢气氛下搅拌反应过夜,原料消失后,经硅藻土抽滤,乙醇洗涤,滤液减压浓缩至干,硅胶柱分离纯化得到中间体Z5-2(1.30g,6.73mmol,65.31%产率),MS m/z: 194[M+1]+

步骤3、中间体Z5-3的制备

将中间体Z5-2(2.70g,13.97mmol)溶于醋酐(10mL)中,冷却至0℃,并搅拌15min,缓慢滴加HNO3(1.76g,27.94mmol,68%质量分数),滴毕,反应继续搅拌30min,原料消失,将反应液倾入冰水中,乙酸乙酯(2*30mL)萃取,合并有机相,经饱和碳酸钠洗涤,无水硫酸钠干燥,过滤,减压浓缩至干得到中间体Z5-3粗品(3.45g,12.32mmol,88%产率),MS m/z:281[M+1]+

步骤4、中间体Z5-4的制备

将中间体Z5-3(3.45g,12.32mmol)溶于20ml乙醇中,加入SOCl2(4.40g,36.96mmol,2.68 mL),加热至50℃搅拌1小时,LC-MS显示原料消失,反应液减压浓缩至干,加入CH2Cl2(150 mL)和H2O(150mL),用饱和NaHCO3调pH值~8,水相再经CH2Cl2(2*150mL)萃取,合并有机相,无水硫酸钠干燥,过滤,减压浓缩至干,得到中间体Z5-4粗品(2.89g,12.07mmol,98%产率),MS m/z:239[M+1]+,产物未经纯化直接用于下一步反应。

步骤5、中间体Z5的制备

将中间体Z5-4(2.89g,12.07mmol)溶于10ml溶于乙醇中,氮气氛下加入Pd/C(0.5g),常压氢化反应过夜,原料消失后,经硅藻土抽滤,滤液减压浓缩至干,MPLC C18反相柱纯化得到中间体Z5(2.13g,10.26mmol,85%产率),MS m/z:209[M+1]+.

中间体Z6

参照中间体Z5制备路线步骤1到步骤5的方法,将步骤1中的碘甲烷用碘乙烷替换,其余试剂操作条件不变,可得中间体Z6,MS m/z:223[M+1]+.

中间体Z7

参照中间体Z5制备路线步骤1到步骤5的方法,在步骤1中用2-溴丙烷替代碘甲烷,同时改为在DMF-碳酸钾体系下反应。其余条件不变,可得中间体Z7,MS m/z:237[M+1]+.

中间体Z8

步骤1、中间体Z8-1的制备

氮气保护和0℃下,向对硝基苯乙酸乙酯Z3-1(350g,1.67mol l)的干燥的DMF(2L)溶液中加入Cs2CO3(2.73kg,8.37mol),升至室温并搅拌1小时,随后缓慢滴加碘甲烷(1.19kg, 8.37mol),滴毕,室温反应过夜,抽滤,滤液用10L乙酸乙酯稀释,饱和食盐水洗涤(3*10L),有机相无水硫酸钠干燥,过滤,浓缩,即可得到中间体Z8-1(320g,1.24mol,74.17%产率),MS m/z:238[M+1]+,粗品直接用于下一步。

步骤2~5、中间体Z8的制备

参照中间体Z5的合成路线中步骤2到步骤5的方法,在步骤2中用中间体Z8-1替换Z5-1,其余操作条件不变,可得中间体Z8,MS m/z:223[M+1]+.

中间体Z9

步骤1、中间体Z9-1的制备

参照中间体Z8合成路线中步骤1中间体Z8-1的制备方法,将对硝基苯乙酸乙酯替换为 2-氟-4-硝基苯乙酸乙酯,其余条件不变,可得中间体Z9-1,MS m/z:256[M+1]+.

步骤2~5、中间体Z9的制备

参照中间体Z5合成路线中步骤2到步骤5的方法,在步骤2中用中间体Z9-1替代中间体Z5-1,其余条件相同,可得中间体Z9,MS m/z:241[M+1]+.

中间体Z10

步骤1、中间体Z10-1的制备

参照中间体Z8合成路线中步骤1中间体Z8-1的制备方法,将对硝基苯乙酸乙酯替换为 2-氟-4-硝基-5-溴-苯乙酸乙酯,其余条件不变,可得中间体Z10-1,MS m/z:256[M+1]+.

步骤2~5、中间体Z10的制备

参照中间体Z5合成路线中步骤2到步骤5的方法,在步骤2中用中间体Z10-1替代中间体Z5-1,其余条件相同,可得中间体Z10,MS m/z:241[M+1]+.

中间体Z11

步骤1、中间体Z10-1的制备

参照中间体Z8合成路线中步骤1中间体Z8-1的制备方法,将对硝基苯乙酸乙酯替换为 3-氟-4-硝基-苯乙酸乙酯,其余条件不变,可得中间体Z11-1,MS m/z:256[M+1]+.

步骤2~5、中间体Z11的制备

参照中间体Z5合成路线中步骤2到步骤5的方法,在步骤2中用中间体Z11-1替代中间体Z5-1,其余条件相同,可得中间体Z11,MS m/z:241[M+1]+.

中间体Z12

步骤1、中间体Z12-1的制备

冰浴下,向4-硝基-苯乙酸乙酯(21g,100mmol)的DMF(15mL)溶液中分批次加入NaH(60%, 8.40g,210mmol,2.1equiv),然后混合液升至室温,搅拌反应1h。混合液冷却至0℃然后加入二溴乙烷(1.72mL,20mmol,2.0equiv),反应液先再零度下搅拌反应30分钟,然后升至室温搅拌1小时。反应完成后,混合液缓慢加水淬灭,用DCM萃取,合并的有机相用无水硫酸镁干燥,过滤后旋干,粗品用硅胶柱分离纯化得到Z12-1(6.0g,25.5mmol,25.5%收率)。 MS m/z:236[M+1]+.

步骤2~5、中间体Z12的制备

参照中间体Z5合成路线中步骤2到步骤5的方法,在步骤2中用中间体Z12-1替代中间体Z5-1,其余条件相同,可得中间体Z12,MS m/z:221[M+1]+.

中间体Z13

步骤1、中间体Z13-1的制备

参照中间体Z12-1的合成方法,用1,3-二碘丙烷替代二溴乙烷,其余条件不变,可得中间体Z13-1,MS m/z:250[M+1]+.

步骤2~5、中间体Z13的制备

参照中间体Z5合成路线中步骤2到步骤5的方法,在步骤2中用中间体Z13-1替代中间体Z5-1,其余条件相同,可得中间体Z13,MS m/z:225[M+1]+.

中间体Z14

步骤1、中间体Z14-1的制备

冰浴且氮气保护下,向叔丁醇钾(650mg,5.6mmol)的DMF(10mL)溶液中滴加4-硝基- 苯乙酸乙酯(1g,4.8mmol)的DMF(2mL).反应液零度下搅拌反应30min,然后滴加溴代环戊烷(860mg 5.7mmol),滴加完毕后,反应液升温至70℃搅拌反应1.5h。反应完成后,冷却至室温,倒入水中,用乙酸乙酯萃取,合并的有机相用无水硫酸钠干燥,过滤后浓缩,粗品用硅胶柱分离纯化得到中间体Z14-1(716mg,2.58mmol,收率51%),MS m/z:278[M+1]+.

步骤2~5、中间体Z14的制备

参照中间体Z5合成路线中步骤2到步骤5的方法,在步骤2中用中间体Z14-1替代中间体Z5-1,其余条件相同,可得中间体Z14,MS m/z:263[M+1]+.

中间体Z15

将Boc-D-环丁基甘氨酸(100mg,0.44mmol)溶于15mL干燥的四氢呋喃中,氮气保护下加入1.76mL 1M的硼烷四氢呋喃溶液,升至65℃搅拌反应过夜,缓慢滴加少许甲醇淬灭,加水稀释,乙酸乙酯萃取(10mL*2),合并有机相,无水硫酸钠干燥,过滤,减压浓缩,得中间体Z15-1(86mg,0.40mmol,91%产率),MS m/z:216[M+1]+.

于25mL茄型瓶中依次加入中间体Z15-1(30mg,139.35μmol)、DCM(1.5mL),冰浴条件下加入TFA(1mL),冰浴条件反应1hr。将体系直接旋干,得中间体Z15粗品,MS m/z: 116[M+1]+,未经纯化直接用于下一步。

中间体Z16

步骤1,Z16-1的制备

零度下,向环丁基甲酸(20g,199.77mmol)的THF(200mL)溶液中加入逐滴LDA(53.50g, 499.42mmol,188mL),滴加耗时约30分钟。混合液0℃下搅拌30mins,然后逐滴加入CH3I (31.19g,219.75mmol),滴加完毕后,反应液室温搅拌过夜。反应完成后,加水(200mL)淬灭反应,用6N HCl调节pH至4,然后用EA(200mL*2)萃取混合液,合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤旋干后得Z16-1(21g,183.98mmol,92.10%产率),MS m/z: 115[M+1]+

步骤2,Z16-2的制备

零度且氮气保护下,向Z16-1(20g,175.22mmol)的DCM(500mL)溶液中加入4,5,6,7-四氯-2-羟基-异吲哚啉-1,3-二酮(58.58g,175.22mmol)、DMAP(2.14g,17.52mmol)和DIC(26.54g,210.26mmol),混合液室温搅拌3小时,反应完成后,混合液在低于30度的水浴中减压蒸馏得到Z16-2(69g,173.79mmol,99.18%产率),粗品未经纯化直接用于下一步反应。MS m/z:396[M+1]+

步骤3,Z16-3的制备

零度下,向Z16-2(84g,211.57mmol)的NMP(600mL)溶液中加入甲基(2Z)-2-[(R)-(2,4,6- 三甲基苯基]亚磺酰基]亚氨基乙酸酯(69.67g,275.04mmol)和Ni(OAc)2.4H2O(13.17g,52.89 mmol),分批次加入Zn(41.51g,634.70mmol),控制反应液温度在20℃以下,加完后氮气保护,常温搅拌反应过夜。反应完成后,加饱和食盐水淬灭,加入EA稀释,过滤除去固体残渣,滤液分液,下层水相用EA再萃取2次,合并EA,旋干,得蓝黑色液体,过柱纯化,PE/EA=2/1,收集产物Z16-3(52g,154.09mmol,72.83%产率)。MS m/z:338[M+1]+

步骤4,Z16-4的制备

零度下,向Z16-3(100g,296.32mmol)的MeOH(1L)溶液中加入TFA(67.57g,592.64mmol,43.88mL)。然后反应混合液室温搅拌1小时,反应混合液减压浓缩,粗品用300mL 水稀释,用CH2Cl2(300mL*2)萃取,分离得到的水相用饱和K2CO3溶液调节pH至8.0,然后用CH2Cl2萃取,合并的有机相用无水硫酸钠干燥,过滤然后减压浓缩得到Z16-4(50.7g,296.08mmol,99.92%产率),MS m/z:172[M+1]+

步骤5,Z16-5的制备

零度下,向Z16-4(460mg,2.69mmol)的CH2Cl2(30mL)溶液中缓慢加入TEA(326.20mg, 3.22mmol,449.62μL)和Boc2O(703.54mg,3.22mmol),混合液升至室温搅拌反应2h,反应完成后,反应液用30mL的饱和食盐水淬灭,用DCM萃取,合并的有机相用无水硫酸钠干燥,过滤后浓缩,粗品用硅胶柱分离纯化得Z16-5(692mg,2.55mmol,94.93%产率),MSm/z: 216[M+1-56]+

步骤6,Z16-6的制备

向Z16-5(160mg,589.64μmol)的THF(10mL)溶液中加入LiOH.H2O(50.15mg,1.19mmol)的水溶液(10mL),混合液室温搅拌2h,用6N的HCl水溶液调节pH至4.0左右,然后加DCM萃取,合并的有机相浓缩,粗品用硅胶柱分离纯化得到Z16-6(138mg,567.20μmol, 96.19%产率)。MS m/z:244[M+1]+

步骤7,Z16-7的制备

零下5度下,向Z16-6(3.0g,13.08mmol)的无水THF(65.5mL)溶液中加入NMM(1.46g, 14.39mmol)和TEA(2.49g,24.63mmol,3.44mL)和氯甲酸异丁酯(1.97g,14.39mmol),混合液在-5℃下搅拌30min,过滤混合液。维持-5℃条件,NaBH4(1.49g,39.25mmol)的冰水 (39.3mL)溶液逐滴加入上述滤液中,滴加完毕后,混合液在-5℃下搅拌1小时,反应液加水淬灭,用EA萃取,合并的有机相用饱和食盐水洗涤,无水硫酸钠干燥,过滤后浓缩,粗品用硅胶柱分离纯化得到Z16-7(2.8g,13.01mmol,99.40%产率),MS m/z:230[M+1]+。

步骤8,中间体Z16的制备

零度下,向Z16-7(2.8g,13.01mmol)的DCM(20mL)溶液中加入TFA(5mL),反应混合液零度下搅拌1小时,反应完成后,混合液经浓缩,干燥,得Z16(1.25g,7.34mmol,79.24%产率)。MS m/z:130[M+1]+

中间体Z17

步骤1,Z17-1的制备

向Z15-1(300mg,1.39mmol)的DMF(4mL)溶液中加入Ag2O(968.77mg,4.18mmol,135.68μL),在氮气保护下加入碘甲烷(1.98g,13.93mmol)。然后室温搅拌18hr,反应完成后,旋干反应液,粗品用硅胶柱分离纯化(洗脱剂:石油醚与乙酸乙酯比例为5比1至1比1)得中间体Z17-1(200mg,872.16μmol,62.59%yield),MS m/z:230[M+1]+

步骤2,Z17的制备

零度下,向Z17-1(20mg,87.22μmol)的DCM(1mL)溶液中加入TFA(0.2mL),室温搅拌2小时,反应完成后,旋干反应液,得中间体Z17(10mg,77.40μmol,88.74%yield),MS m/z:130[M+1]+

中间体Z18

步骤1,Z18-1的制备

室温下,向1-甲基环丁基甲酰胺(100mg,774.25μmol)的干燥THF(5mL)溶液中加入BH3.THF(3.87mmol,3.8mL),混合液升温至65℃并搅拌过夜。反应完成后,冷却至0℃,加入4mL MeOH淬灭反应,减压浓缩混合液得到中间体Z18-1粗品(85mg,738.02μmol, 95.32%yield),未经纯化,直接用于下一步反应。MS m/z:116[M+1]+

步骤2,Z18-2的制备

冰浴下,向Z18-1(85mg,738.02μmol)的THF(3mL)/H2O(3mL)混合液中加入NaHCO3(185.98mg,2.21mmol)和CbzOSU(248.95mg,738.02μmol),混合液室温下搅拌反应2h。反应完成后,反应液加水稀释,加乙酸乙酯萃取,合并的有机相用无水硫酸钠干燥,过滤后浓缩得粗品,粗品用硅胶柱分离纯化得到中间体Z18-2(30mg,88.91μmol,12.05%yield),MS m/z:338[M+1]+

步骤3,Z18的制备

室温下,向Z18-2(15mg,44.46μmol)的THF(4.29mL)/H2O(1.71mL)溶液中加入LiOH(1.06mg,44.46μmol),反应混合液在N2的保护下搅拌反应2hr,反应完成后。旋干反应液,加入DCM(50mL*2)与水(50mL*2),加入HCl调pH至4,分离得水相,水相用 NaOH调pH至8,再加入15mL DCM萃取,分离有机相,经无水硫酸钠干燥,旋干得中间体Z18(3mg,26.05μmol,58.59%yield),MS m/z:116[M+1]+

中间体Z19

步骤1至步骤2,Z19-2的制备

将Boc-D-环丁基甘氨酸(500mg,2.18mmol)溶于DCM(5mL),氮气保护下,依次加入NH4Cl(233.30mg,4.36mmol)、HBTU(1.07g,2.84mmol)、DIPEA(1.13g,8.72mmol,1.52 mL),室温搅拌反应2小时,加入少许水淬灭,DCM(25*2)萃取,合并有机相,用水洗涤,无水硫酸钠干燥,减压浓缩至干,产物TLC(PE:EA=1:1,Rf=0.25),经层析柱得中间体Z19-1 (430mg,1.88mmol,86.37%产率),MS m/z:229[M+1]+1H NMR(400MHz,Methanol-d4)δ 3.98(d,J=8.8Hz,1H),2.71–2.53(m,1H),2.09–1.80(m,6H),1.47(s,9H).

25mL茄型瓶中加入中间体Z19-1(430mg,1.88mmol),氮气保护室温条件下加入THF(12 mL)、BH3.THF(4.7mL,1M in THF),于氮气条件65℃搅拌反应2小时。缓慢滴加少许甲醇淬灭,再加入NaHCO3水溶液调节体系pH至8-9,Z19-2体系用于下一步反应。MS m/z: 215[M+1]+.

步骤3至步骤4,Z19的制备

参照中间体Z18步骤2到步骤3的方法,在步骤2中将Z18-2替换为Z19-2,其余方法相同,可得Z19,MS m/z:337[M+1]+.

中间体Z20

将Boc-D-环丁基甘氨酸(500mg,2.18mmol)溶于DMF(5mL),氮气保护下,依次加入1- 氨基丙酮盐酸盐(359mg,3.28mmol)、HATU(1.24g,3.28mmol)、TEA(0.69g,6.84mmol),室温搅拌反应1小时,加入少许水淬灭,乙酸乙酯(25*2)萃取,合并有机相,用水洗涤,无水硫酸钠干燥,减压浓缩得中间体Z20-1粗品,未经纯化直接用于下一步,MS m/z:266[M+1]+.

将上一步所得中间体Z20-1粗品溶于4mL的DMF中,于微波加热至140℃反应2小时,水稀释,乙酸乙酯(25*2)萃取,合并有机相,用水洗涤,无水硫酸钠干燥,减压浓缩得中间体Z20-2粗品,未经纯化直接用于下一步,MS m/z:285[M+1]+.中间体Z20-2经TFA脱Boc,粗品经MPLC C18反相柱分离纯化即可得到中间体Z20,MS m/z:166[M+1]+.

中间体Z21

参照中间体Z20的制备方法,将起始原料1-氨基丙酮盐酸盐替换为乙酰肼,其余试剂和操作方法不变,可得到中间体Z21,MS m/z:167[M+1]+.

中间体Z22

步骤1,中间体Z22-1的制备

冰浴下,向Fmoc-D-(1-甲基环丁基)甘氨酸(10g,27.37mmol)的二氯甲烷(137mL)溶液中加入HBTU(8.34g,32.84mmol)和三乙胺(8.31g,82.10mmol),然后加入氯化铵(2.96个,54.73mmol)。反应液逐渐升至室温搅拌1小时,反应液加水稀释,以二氯甲烷萃取,合并的有机相用无水硫酸钠干燥,旋干得到的粗品,用硅胶柱分离纯化,得到中间体Z22-1 (9g,24.7mmol,90%的收率),MS m/z:365.0(M+1)+

步骤2,中间体Z22-2的制备

冰浴下,于50mL三口瓶中加入Z22-1(500mg,1.38mmol),氮气保护下,依次加入THF(6mL)和BH3THF(2.76mL),氮气保护下加热至65℃,然后搅拌反应5小时。反应体系冷却至室温,加入甲醇(1mL),Boc2O(451mg,2.1mmol)和水(1mL),继续室温搅拌1小时。体系旋干后,加水稀释,用乙酸乙酯萃取,有机相用水、饱和食盐水洗涤,无水硫酸钠干燥,旋干后粗品用正相硅胶柱纯化得到中间体Z22-2(161mg,0.36mmol, 26%收率),MS m/z:451.0(M+1)+

步骤3,中间体Z22的制备

向Z22-2(161mg,0.36mmol)的THF(6mL),H2O(2mL)和MeOH(1mL)的混合溶液中加入LiOHH2O(20mg,0.5mmol),室温下搅拌过夜,反应完后,直接旋干反应液,粗品用石油醚洗涤,得到中间体Z22(66mg,0.31mmol,85%收率)。MS m/z:229.0(M+1)+

中间体Z23的制备

步骤1,Z23-1的合成

零度下,向2-(4-溴苯基)乙酸酯(20g,0.83mmol)的乙腈(220mL)溶液加入DBU(15g,98.73mmol)和p-ABSA(19.76g,82.27mmol)。反应液升温至25℃并搅拌48h。反应完成后,加入饱和aq.NH4Cl淬灭反应,然后用乙酸乙酯萃取,合并的有机相用无水硫酸钠干燥,过滤浓缩后,用正相硅胶柱分离纯化得Z23-1(8g,29.63mmol,收率36%)。

步骤2,Z23-2的合成

向Z23-1(1g,3.72mmol)甲苯(16mL)中加入Rh2(esp)2(14mg,0.018mmol),N-Cbz 3-氯丙胺(846mg,3.72mmol),混合液氮气置换后在氮气保护下升温至60℃并搅拌5小时。冷却至室温后,加入四丁基溴化铵(1.2g,3.72mmol)和CsOH.H2O(1.25g,7.43mmol),混合液室温搅拌过夜,反应液过滤,用乙酸乙酯洗涤,浓缩滤液,粗品用正相硅胶柱分离纯化得到Z23-2(1.29g,2.97mmol)。MS m/z:432[M+1]+.

步骤3,Z23-3的合成

向Z23-2(4.8g,11.14mmol)的dioxane(70mL)中加入AcNH2(986mmol,55.68mmol),Pd2(dba)3(510mg,0.55mmol),Xantphos(645mg,1.12mmol)和CS2CO3(10.9g,33.43mmol),反应混合液用氮气置换几次,在氮气的保护下80℃搅拌过夜。反应完成后,浓缩反应液,加水和乙酸乙酯萃取,合并的有机相用无水硫酸钠干燥,浓缩后的粗品用正相硅胶柱分离纯化得Z23-3(2.7g,6.5mmol,59%收率)。MS m/z:411[M+1]+

步骤4,Z23-4的合成

零度下,向Z23-3(3.8g,9.3mmol)的Ac2O(40mL)中加入65%硝酸(1.5mL,18.6mmol),混合液逐渐升至室温,并搅拌过夜,反应完成后,浓缩反应液,粗品加水稀释,乙酸乙酯萃取,合并的有机相旋干后,用正相硅胶柱分离纯化得Z23-4(3.2g,7.0mmol,收率75%),MS m/z:456[M+1]+

步骤5,Z23-5的合成

零度下,向Z23-4(3.2g,7.0mmol)的乙醇(35mL)溶液中加入SOCl2(1mL),滴加完毕后,缓慢升温至70℃,并在此温度搅拌5小时。反应完成后,旋干溶液,粗品用正相硅胶柱分离纯化得Z23-5(1.36g,3.29mmol,收率47%),MS m/z:414[M+1]+

步骤6,Z23-6的合成

零度下,向Z23-5(1.36g,3.29mmol)的甲醇(15mL)溶液中加入氨水(1.5mL),加入保险粉(2.6g,15mmol)的水溶液,反应完成后,滤除混合液中固体,浓缩滤液加水和乙酸乙酯萃取,合并的有机相用水和饱和食盐水洗涤,浓缩,粗品用硅胶柱分离纯化得Z23-6(819mg,2.1mmol,65%收率),MS m/z:384[M+1]+。未经纯化直接用于下一步反应。

中间体Z24的制备

步骤1,中间体Z24-1的制备

在反应瓶中加入4-溴-3氟-2硝基苯胺(10g,42.55mmol)的二氧六环(200mL)和水(20 mL)溶液中,依次加入3,6-二氢-2H-吡喃-4-硼酸频哪醇酯(8.94g,42.55mmol)、Pd(dppf) Cl2(1.55g,2.12mmol)和K2CO3(17.60g,127.54mmol),混合均匀后,抽真空氮气保护,升温到100℃反应3小时,反应完后降温到室温,过滤,滤液加入乙酸乙酯和盐水分层,浓缩干得到粗品Z24-1(9.69g,40.68mmol,95.60%收率),MS m/z:239.0(M+1)+

步骤2,中间体Z24-2的制备

向Z24-1(700mg,2.94mmol)的醋酸(7mL)溶液中加入Ac2O(484mg,4.74mmol),混合液加热到90℃反应2小时,反应完后滴加到35ml水中,过滤浓缩干后得Z24-2(618mg,2.21mmol,75.04%收率)。MS m/z:281.0(M+1)+

步骤3,中间体Z24-3的制备

向Z24-2(200mg,713.65μmol)的二氯甲烷溶液中加入m-CPBA(246.31mg,1.43mmol),混合液室温搅拌过夜,原料1/3剩余,反应液升温至40℃继续反应4h后,加碳酸钠水溶液和乙酸乙酯萃取,有机层用亚硫酸钠水溶液洗涤,分离的有机层经浓缩后得到中间体Z24-3 (205mg,691.98μmol,96.96%收率),MS m/z:297.0(M+1)+

步骤4,中间体Z24-4的制备

冰浴下,向Z24-3(1.9g,6.41mmol)的二氯甲烷(50mL)溶液中加入BF3.OEt(2.74g,19.28 mmol),逐步升至室温并搅拌2小时,反应完后用碳酸钠淬灭,乙酸乙酯萃取,旋干有机相后得粗品,用正向硅胶柱分离纯化,(洗脱剂,二氯甲烷/乙酸乙酯=10:1~5:1)得到Z24-4(1.37 g,4.62mmol,72.11%收率)产品。MS m/z:297.0(M+1)+

步骤5,中间体Z24-5的制备

在反应瓶中加入NaClO2(1.31g,12.95mmol)和NaH2PO4(1.59g,10.17mmol),混匀后降温到0℃,滴加Z24-4(1.37g,4.62mmol)的叔丁醇(12mL)和水(9mL)的混合溶液,保温搅拌1小时,反应完后调酸到pH=5-6,乙酸乙酯萃取后浓缩有机相得到Z24-5(1.38g,4.42mmol,95.57%收率)。MS m/z:297.0(M+1)+

步骤6,中间体Z24-6的制备

向Z24-5(600mg,1.92mmol)的EtOH(12mL)溶液中滴加SOCl2(685.82mg,5.76mmol,418.18μL),滴加完毕后升温到60℃反应12小时。冷却至室温,反应液倒入碳酸氢钠溶液中,然后用乙酸乙酯萃取,浓缩得到粗品Z24-6(434mg,1.46mmol,75.72%收率),MS m/z:299.0(M+1)+

步骤7,中间体Z24的制备

向Z24-6(434mg,1.61mmol)的乙醇(8mL)溶液中加入钯碳,氢气球置换后在室温下搅拌12小时,反应完后过滤掉钯碳,滤液浓缩,用正向硅胶柱(二氯甲烷/甲醇=50/1,v/v)纯化得到Z24(187mg,697.02μmol,43.40%收率),MS m/z:269.0(M+1)+

中间体Z25的制备

参照中间体Z22的合成方法,以Boc-D-(环丁基)甘氨酸为原料经与甲胺缩合,硼烷还原羰基,上Fmoc,最后盐酸气脱Boc得到中间体Z25,MS m/z:351.0(M+1)+

中间体Z26的制备

参照中间体Z22的合成路线中步骤1到步骤2的方法,在步骤1中将Fmoc-D-(1-甲基环丁基)甘氨酸替换为Boc-D-(环丁基)甘氨酸,将氯化铵替换为二甲胺,其余操作相同,可得中间体Z26-2,MS m/z:243.0(M+1)+

浴下,向Z26-2(15mg,61.89μmol)的DCM(0.5mL)溶液中加入HCl/EA,氮气保护下搅拌反应2h,反应完成后,旋干溶剂得中间体Z26,MS m/z:143.0(M+1)+。以

中间体Z27的制备

步骤1,中间体Z27-1的制备

在反应瓶中加入4-溴-3氟-2硝基苯胺(10g,42.55mmol)的二氧六环(200mL)和水(20 mL)溶液中,依次加入3,6-二氢-2H-吡喃-4-硼酸频哪醇酯(8.94g,42.55mmol)、Pd(dppf) Cl2(1.55g,2.12mmol)和K2CO3(17.60g,127.54mmol),混合均匀后,抽真空氮气保护,升温到100℃反应3小时,反应完后降温到室温,过滤,滤液加入乙酸乙酯和盐水分层,浓缩干得到粗品Z27-1(9.69g,40.68mmol,95.60%收率),MS m/z:239.0(M+1)+

步骤2,中间体Z27-2的制备

向Z27-1(700mg,2.94mmol)的醋酸(7mL)溶液中加入Ac2O(484mg,4.74mmol),混合液加热到90℃反应2小时,反应完后滴加到35ml水中,过滤浓缩干后得Z27-2(618mg,2.21mmol,75.04%收率)。MS m/z:281.0(M+1)+

步骤3,中间体Z27-3的制备

向Z27-2(200mg,713.65μmol)的二氯甲烷溶液中加入m-CPBA(246.31mg,1.43mmol),混合液室温搅拌过夜,原料1/3剩余,反应液升温至40℃继续反应4h后,加碳酸钠水溶液和乙酸乙酯萃取,有机层用亚硫酸钠水溶液洗涤,分离的有机层经浓缩后得到中间体Z27-3 (205mg,691.98μmol,96.96%收率),MS m/z:297.0(M+1)+

步骤4,中间体Z27-4的制备

冰浴下,向Z27-3(1.9g,6.41mmol)的二氯甲烷(50mL)溶液中加入BF3.OEt(2.74g,19.28 mmol),逐步升至室温并搅拌2小时,反应完后用碳酸钠淬灭,乙酸乙酯萃取,旋干有机相后得粗品,用正向硅胶柱分离纯化,(洗脱剂,二氯甲烷/乙酸乙酯=10:1~5:1)得到Z27-4(1.37 g,4.62mmol,72.11%收率)产品。MS m/z:297.0(M+1)+

步骤5,中间体Z27-5的制备

在反应瓶中加入NaClO2(1.31g,12.95mmol)和NaH2PO4(1.59g,10.17mmol),混匀后降温到0℃,滴加Z27-4(1.37g,4.62mmol)的叔丁醇(12mL)和水(9mL)的混合溶液,保温搅拌1小时,反应完后调酸到pH=5-6,乙酸乙酯萃取后浓缩有机相得到Z27-5(1.38g,4.42mmol,95.57%收率)。MS m/z:297.0(M+1)+

步骤6,中间体Z27-6的制备

向Z27-5(600mg,1.92mmol)的EtOH(12mL)溶液中滴加SOCl2(685.82mg,5.76mmol,418.18μL),滴加完毕后升温到60℃反应12小时。冷却至室温,反应液倒入碳酸氢钠溶液中,然后用乙酸乙酯萃取,浓缩得到粗品Z27-6(434mg,1.46mmol,75.72%收率),MS m/z:299.0(M+1)+

步骤7,中间体Z27的制备

向Z27-6(434mg,1.61mmol)的乙醇(8mL)溶液中加入钯碳,氢气球置换后在室温下搅拌12小时,反应完后过滤掉钯碳,滤液浓缩,用正向硅胶柱(二氯甲烷/甲醇=50/1,v/v)纯化得到Z27(187mg,697.02μmol,43.40%收率),MS m/z:269.0(M+1)+

中间体Z28的制备

参照中间体Z27合成路线步骤1到步骤7的方法,用4-氯-5溴-2硝基苯为原料,经历相同的操作步骤,可得中间体Z28。MS m/z:285.0(M+1)+

中间体Z29的制备

参照中间体Z27合成路线步骤1到步骤7的方法,用4-甲基-5溴-2硝基苯为原料,经历相同的操作步骤,可得中间体Z29,MS m/z:265.0(M+1)+

中间体Z30的制备

参照中间体Z27合成路线步骤1到步骤7的方法,用2-氨基-5-溴-3-硝基吡啶为起始原料,经历相同的操作步骤,可得中间体Z29,MS m/z:252.0(M+1)+

中间体Z31的制备

参照中间体Z27合成路线步骤1到步骤7的方法,用4-溴-5氟-2硝基苯胺为起始原料,经历相同的操作步骤,可得中间体Z31,MS m/z:269.0(M+1)+

中间体Z32的制备

参照中间体Z27合成路线步骤1到步骤7的方法,用4-溴-2氟-6硝基苯胺为起始原料,经历相同的操作步骤,可得中间体Z32,MS m/z:269.0(M+1)+

中间体Z33的制备

步骤1,中间体Z33-1的制备

冰浴下,向丙二酸二叔丁酯(22.72g,105.05mmol)的DMF(250mL)溶液中加入NaH(7.56g,315.14mmol),混合液零度下搅拌30分钟,然后逐滴加入1-溴-4,5-二氟-2-硝基苯(25 g,105.05mmol)的DMF(50mL)溶液。反应液在室温下搅拌3小时。

反应液用饱和氯化铵淬灭,乙酸乙酯萃取,合并的有机相用水和饱和食盐水洗涤,无水硫酸钠干燥,浓缩后得到Z33-1(41g,粗品),未经纯化直接用于下一步反应。

步骤2,中间体Z33-2的制备

室温下,向Z33-1(94.0g,216.46mmol)的醋酸(320mL)溶液中缓慢加入HCl(120mL),反应混合液升温至110度并搅拌2小时。

反应液直接浓缩得到Z33-2(60g,粗品),未经纯化直接用于下一步反应。

步骤3,中间体Z33-3的制备

室温下,向Z33-2(60g,215.80mmol)的乙醇(300mL)溶液中缓慢滴加浓硫酸(5mL),反应液升温至85度并搅拌2小时。

反应液浓缩,加水稀释,用乙酸乙酯萃取,合并的有机相依次用饱和碳酸氢钠溶液和饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩得到Z33-3(66g)黄色色油状物。

步骤4,中间体Z33-4的制备

室温下,向Z33-3(34.0g,111.08mmol)的DMF(300mL)溶液中加入Cs2CO3(36.19g,111.08mmol),搅拌30分钟后,冷却至零度,加入MeI(12.61g,88.86mmol),反应液室温搅拌过夜。反应完成后,加饱和氯化铵水溶液淬灭,乙酸乙酯萃取,合并的有机相用水和饱和是食盐水洗涤,无水硫酸钠干燥,浓缩后的粗品用硅胶柱(乙酸乙酯/石油醚=0%to 60%洗脱)得到中间体Z33-4(25g,71%)黄色油状物。

步骤5,中间体Z33-5的制备

冰浴下,向中间体Z33-4(11.0g,34.36mmol)的DMF(125mL)溶液中分批次加入NaH(907.18mg,37.80mmol),混合液在零度下搅拌30分钟。然后加入MOMBr(5.58g,44.67mmol)的DMF(25mL)溶液,反应液室温搅拌过夜。反应完成后,混合药物浓缩,粗品用硅胶柱分离纯化(乙酸乙酯/石油醚=0~100%)得到中间体Z33-5(5g,40%收率)黄色固体。

步骤6,中间体Z33-6的制备

向中间体Z33-5(9.4g,25.81mmol)的乙醇溶液中加入醋酸(15mL)和水(50mL),混合液升温至50度,分批次缓慢加入铁粉(10.81g,193.59mmol),加完后,反应液升温至85度并搅拌3小时。反应完成后过滤铁粉,并用乙醇洗涤滤饼,滤液浓缩得中间体Z33-6(8.4g,97%收率,粗品),MS m/z:334.0(M+1)+

未经纯化直接用于下一步反应。

步骤7,中间体Z33-7的制备

向中间体Z33-6(8.4g,25.14mmol)的二氯甲烷(120mL)溶液中加入醋酸酐(2.57g,25.14 mmol),室温下搅拌3小时,反应完成后,浓缩反应液得到中间体Z33-7(9.4g,99%收率,粗)。MS(ESI)m/z=378.0(M+2)+.

步骤8,中间体Z33-8的制备

冰浴下,向Z33-7(1g,2.66mmol)的HNO3(68%)(3.0mL)溶液中逐滴加入H2SO4(98%) (3.0mL),反应液零度下搅拌1小时。反应完成后,用饱和碳酸氢钠溶液淬灭反应,用乙酸乙酯萃取,有机相浓缩后得到粗品中间体Z33-8(0.9g,80%收率)。MS(ESI)m/z=422.0(M+1)+.

步骤9,中间体Z33-9的制备

冰浴下,向Z33-8(3.13g,7.43mmol)的乙醇溶液中加入SOCl2(5.30g,44.59mmol,3.23 mL),反应液升温至60℃并搅拌过夜。反应完成后,浓缩反应液,粗品用硅胶柱分离纯化,得到中间体Z33-9(575mg,20%收率)。MS(ESI)m/z=379.0(M+1)+.

步骤10,中间体Z33的制备

向中间体Z33-9(0.570g,1.50mmol)的乙醇(50mL)溶液中加入Pd/C(0.057g),H2置换后, H2保护下室温搅拌过夜。反应完成后,过滤除掉Pd/C,滤液浓缩,MPLC C18反相柱纯化得到消旋体Z33(420mg,90%纯度,93%收率)。MS m/z:271.0(M+1)+

中间体Z34的制备

参照中间体Z2合成路线中步骤1到步骤6的操作,以2-(3-氟-4-硝基苯)乙酸酯乙酯为起始原料,其余操作相同,可得中间体Z34。MS m/z:271.0(M+1)+

中间体Z35的制备

步骤1,Z35-1的合成

零度下,向2-(4-溴苯基)乙酸酯的(20g,0.83mmol)的乙腈(220mL)溶液加入DBU(15 g,98.73mmol)和p-ABSA(19.76g,82.27mmol)。反应液升温至25℃并搅拌48h。反应完成后,加入饱和aq.NH4Cl淬灭反应,然后用乙酸乙酯萃取,合并的有机相用无水硫酸钠干燥,过滤浓缩后,用正相硅胶柱分离纯化得Z35-1(8g,29.63mmol,收率36%)。

步骤2,Z35-2的合成

向Z35-1(1g,3.72mmol)甲苯(16mL)中加入Rh2(esp)2(14mg,0.018mmol),N-Cbz3- 氯丙胺(846mg,3.72mmol),混合液氮气置换后在氮气保护下升温至60℃并搅拌5小时。冷却至室温后,加入四丁基溴化铵(1.2g,3.72mmol)和CsOH.H2O(1.25g,7.43mmol),混合液室温搅拌过夜,反应液过滤,用乙酸乙酯洗涤,浓缩滤液,粗品用正相硅胶柱分离纯化得到Z35-2(1.29g,2.97mmol)。MS m/z:432[M+1]+.

步骤3,Z35-3的合成

向Z35-2(4.8g,11.14mmol)的dioxane(70mL)中加入AcNH2(986mmol,55.68mmol),Pd2(dba)3(510mg,0.55mmol),Xantphos(645mg,1.12mmol)和CS2CO3(10.9g,33.43mmol),反应混合液氮气置换几次,在氮气的保护下80℃搅拌过夜。反应完成后,浓缩反应液,加水和乙酸乙酯萃取,合并的有机相用无水硫酸钠干燥,浓缩后的粗品用正相硅胶柱分离纯化得Z35-3(2.7g,6.5mmol,59%收率)。MS m/z:411[M+1]+.

步骤4,Z35-4的合成

零度下,向Z35-3(3.8g,9.3mmol)的Ac2O(40mL)中加入65%硝酸(1.5mL,18.6mmol),混合液逐渐升至室温,并搅拌过夜,反应完成后,浓缩反应液,粗品加水稀释,乙酸乙酯萃取,合并的有机相旋干后,用正相硅胶柱分离纯化得Z35-4(3.2g,7.0mmol,收率75%),MS m/z:456[M+1]+.

步骤5,Z35-5的合成

零度下,向Z35-4(3.2g,7.0mmol)的乙醇(35mL)溶液中加入SOCl2(1mL),滴加完毕后,缓慢升温至70℃,并在此温度搅拌5小时。反应完成后,旋干溶液,粗品用正相硅胶柱分离纯化得Z35-5(1.36g,3.29mmol,收率47%),MS m/z:414[M+1]+.

步骤6,Z35的合成

零度下,向Z35-5(1.36g,3.29mmol)的甲醇(15mL)溶液中加入氨水(1.5mL),加入保险粉(2.6g,15mmol)的水溶液,反应完成后,滤除混合液中固体,浓缩滤液加水和乙酸乙酯萃取,合并的有机相用水和饱和食盐水洗涤,浓缩,粗品用硅胶柱分离纯化得Z35(819mg,2.1mmol,65%收率),MS m/z:384[M+1]+。未经纯化直接用于下一步反应。

中间体Z36的制备

参照中间体Z2合成路线中步骤1到步骤6的方法,在步骤1中用对硝基苯乙酸苄酯为原料,步骤2中用3-碘四氢呋喃代替MOMCl与Z36-1反应,其余步骤相同,可得中间体Z36,MS m/z:341[M+1]+

中间体Z37的制备

参照中间体Z2合成路线中步骤1到步骤6的方法,在步骤1中用对硝基苯乙酸苄酯为原料,步骤2中用3-碘四氢-2H-吡喃代替MOMCl与Z37-1反应,其余步骤相同,可得中间体Z37,MS m/z:355[M+1]+

中间体Z38的制备

参照中间体Z2合成路线中步骤2到步骤6的方法,以中间体Z2-1为原料,用3-碘吡咯烷-1-羧酸叔丁酯代替MOMCl与Z2-1反应,还原硝基后,上乙酰基保护,脱掉Boc后换Cbz保护,然后硝化反应,脱乙酰基保护,最后还原硝基,可得中间体Z38,MS m/z:412[M+1]+

中间体Z39的制备

参照中间体Z2合成路线中步骤2到步骤6的方法,以中间体Z2-为原料,用4-((甲磺酰基)氧基)哌啶-1-甲酸叔丁酯替换MOMCl与Z2-1反应,还原硝基后,上乙酰基保护,然后硝化反应,再上Cbz保护,脱乙酰基保护,最后还原硝基,可得中间体Z39,MS m/z:426 [M+1]+

中间体Z40的制备

参照上述二胺中间体合成路线,以2-(1-甲基-1H-吡唑-4-基)乙酸乙酯为原料和4氟硝基苯反应得到中间体化合物Z40-1,用碘甲烷上甲基,然后还原硝基,硝化反应,脱乙酰基反应,最后还原硝基。可得中间体Z40,MS m/z:289[M+1]+

实施例1化合物1a和1b的制备

步骤1,1-1a的制备

将中间体Z1(138mg,508.57μmol),EDCI(117.17mg,610.28μmol),DIPEA(328.63mg, 2.54mmol,442.90μL),HOAt(83.00mg,610.28μmol)及中间体邻苯二胺Z2a(128.16mg, 508.57μmol)依次加入到DCM(3mL)中,室温反1小时,加水淬灭,减压除去大部分有机溶剂,乙酸乙酯(20ml*3)萃取,合并有机相,再分别饱和氯化铵和饱和食盐水洗,无水硫酸钠干燥,减压旋干,粗品经硅胶柱层析纯化分离,即可得到中间体1-1a的结构异构体混合物(142 mg,281μmol,55%产率),MS m/z:506(M+1)+,二者不用分离并用于下一步。

步骤2,1-2a的制备

将中间体1-1a的结构异构体混合物(142mg,281μmol)加至AcOH(2mL)中,55℃反应12h,减压浓缩旋干,用饱和NaHCO3溶液调节pH至弱碱性,DCM(10*2)萃取,无水Na2SO4干燥,旋干得粗品1-2a(141mg,279μmol,99.35%产率),未经纯化直接用于下一步,MS m/z: 506(M+1)+

步骤3,1-3a的制备

将中间体1-2a(141mg,279μmol)溶于DCM(3mL)中,冰浴下滴加TFA(1.5mL),冰浴下继续搅拌反应1h,减压浓缩即可得到中间体1-3a的粗品,MS m/z:406(M+1)+,未经纯化直接用于下一步反应。

步骤4,1-4a的制备

将HBTU(87.00mg,342.70μmol),DIPEA(102.21mg,790.84μmol,137.75μL),依次加至 1-甲基-1H-吡唑-5-羧酸(36.57mg,289.97μmol)的DCM(3mL)溶液中,15min后加入上一步中间体1-3a粗品,室温反应2h,加水淬灭,乙酸乙酯(20ml*3)萃取,合并有机相,再分别饱和氯化铵和饱和食盐水洗,无水硫酸钠干燥,减压旋干,粗品经MPLC反相C18柱层析纯化分离(乙腈/0.05%水0~40%)即可得到1-4a(97mg,195μmol,70%产率),MS m/z:496(M+1)+

步骤5,1-5a的制备

向1-4a(97mg,195μmol)的MeOH(1mL)和水(0.1mL)的混合液中加入NaOH(62mg,1.56mmol),于80℃反应10小时,LC-MS显示原料已反应完毕,经1N HCl调pH~4,DCM(10 ml*2)萃取,合并有机相,经饱和食盐水洗,无水硫酸钠干燥,过滤,减压浓缩得到中间体1-5a的粗品(82mg,176μmol,90%产率),MS m/z:468[M+1]+,未经纯化直接用于下一步反应。

步骤6,化合物1a的制备

将HBTU(24.36mg,64.29μmol),DIPEA(19.17mg,148.36μmol,25.84μL),依次加至中间体1-5a(23.4mg,50μmol)的DCM(1mL)溶液中,15min后加入中间体Z15(64.29μmol),室温反应1h,减压浓缩,粗品经MPLC反相C18柱层析纯化分离(乙腈/0.05%水0~40%)即可得到化合物1a(20mg,35μmol,70%产率),MS m/z:565(M+1)+。其核磁数据为1H NMR (400MHz,Methanol-d4)δ7.58(s,1H),7.52(d,J=8.5Hz,1H),7.49(d,J=2.1Hz,1H),7.27(dd, J=8.6,1.7Hz,1H),7.09(d,J=8.9Hz,1H),6.95(d,J=2.1Hz,1H),5.09(d,J=8.6Hz,1H),4.08(s,3H),4.01–3.88(m,J=4.7Hz,2H),3.73(d,J=9.5Hz,1H),3.46(d,J=5.0Hz,2H),3.39(s,3H),2.56–2.42(m,1H),2.11–1.97(m,3H),1.94–1.87(m,1H),1.87–1.80(m,2H),1.80–1.76(m,2H),1.74–1.67(m,1H),1.59(s,3H),1.48–1.42(m,1H),1.38–1.34(m,1H),1.26–1.05(m,3H),1.05–0.98(m,1H),0.98–0.93(m,1H),0.90(d,J=6.5Hz,4H).

类似地,以中间体Z1和Z2b为原料,经过上述同样路线即可得到化合物1b。

实施例2至实施例18、化合物2a/2b~18a/18b的制备

以下表中化合物可参照实施例1路线方法,由中间体1-5a和1-5b分别与表中相应缩合原料反应得到。

实施例19化合物19a、19b的制备

参考实施例1制备化合物1a的方法,以中间体Z1和中间体Z3a为原料,以类似的合成路线,经缩合、关咪唑环、脱Boc保护、引入1-甲基-1H-吡唑-5-酰基,酯水解,再与Z25的胺缩合,最后经氢氧化锂脱Fmoc即可得到化合物19a。同样的,以中间体Z1和中间体Z3b 为原料,经同样的步骤可得化合物19b,MS m/z:563(M+1)+。化合物19a的核磁氢谱:1H NMR(400MHz,Methanol-d4)δ8.54(s,1H),7.58(s,1H),7.53(d,J=8.5Hz,1H),7.47(d,J=2.1Hz,1H),7.24(dd,J=8.5,1.8Hz,1H),6.93(d,J=2.2Hz,1H),5.05(d,J=8.6Hz,1H),4.67 (d,J=8.6Hz,1H),4.05(s,3H),4.02–3.94(m,4H),2.95–2.85(m,1H),2.84–2.74(m,1H), 2.68(dd,J=12.9,9.6Hz,1H),2.57–2.50(m,1H),2.49(s,3H),2.34–2.21(m,1H),2.09–1.90 (m,3H),1.82–1.55(m,6H),1.49–1.25(m,4H),1.24–0.91(m,4H),0.88(d,J=6.5Hz,3H).

实施例20、化合物20的制备

参考实施例1制备化合物1a的方法,以Boc-D-环己基甘氨酸和中间体Z8为原料,以类似的合成路线,经缩合、关咪唑环、脱Boc保护、引入1-甲基-1H-吡唑-5-酰基,酯水解,再与Fmoc保护的中间体Z19缩合,最后脱Fmoc即可得到化合物20,MS m/z:520(M+1)+1H NMR(400MHz,Methanol-d4)δ7.80(s,1H),7.72(d,J=8.7Hz,1H),7.57(dd,J=8.6,1.7Hz,1H),7.49(d,J=2.1Hz,1H),7.04(d,J=2.1Hz,1H),5.17(dd,J=8.7,2.8Hz,1H),4.10–4.04 (m,1H),4.03(s,3H),2.94(dd,J=13.2,3.3Hz,1H),2.79(dd,J=13.1,9.6Hz,1H),2.44–2.18 (m,2H),2.11–1.95(m,2H),1.89–1.70(m,7H),1.69(s,3H),1.62(s,3H),1.57–0.99(m,7H).

实施例21至实施例83、化合物21到化合物83的制备

方法A:参考实施例20制备方法中步骤6和步骤7的方法,用20-5a酸与下表中对应的胺进行缩合,可得下表中对应化合物。

方法B:第一步,参考实施例20制备方法中步骤6和步骤7的方法,用20-5a酸与下表中对应的胺进行缩合;第二步,参照中间体Z18合成路线中步骤3脱Fmoc的操作,上述缩合产物替代中间体Z18-2,其余方法相同,可得表中对应化合物。

方法C:第一步,参考实施例20制备方法中步骤6和步骤7的方法,用20-5a酸与下表中对应的胺进行缩合;第二步,参照中间体Z16步骤8脱Boc的操作,用上述缩合产物替代中间体Z16-8,其余方法相同,可得终产物。

未经特别说明,表中化合物均为采用方法A制备得。

实施例84、化合物84的制备

冰浴下,向化合物21(50mg,86.84μmol)的DMF(1mL)溶液中依次加入TEA(17.58mg,173.69μmol,24.23μL)和1-[[(4-硝基苯氧基)羰基]氧基]-2-甲基丙酸乙酯,混合液在零度下搅拌反应2小时,反应完成后。混合液用PreHPLC(ACN/H2O,0.05%NH4HCO3)分离纯化得到化合物84(20mg,26.84μmol,30.91%产率,98.5%纯度),MS m/z:734(M+1)+。核磁数据:1HNMR(400MHz,Methanol-d4)δ7.66–7.53(m,1H),7.47(d,J=2.1Hz,2H),7.26–7.16(m, 1H),6.93(dd,J=2.1,0.7Hz,1H),6.74–6.54(m,1H),5.12–5.03(m,1H),4.69–4.57(m,1H),4.13–4.08(m,1H),4.06(d,J=1.1Hz,3H),4.00–3.86(m,3H),3.16–3.10(m,1H),2.92–2.80(m,1H),2.74(d,J=32.3Hz,3H),2.58–2.44(m,2H),2.33–2.22(m,1H),2.09–1.91(m,3H),1.81–1.73(m,2H),1.72–1.62(m,4H),1.51–1.34(m,5H),1.23–1.16(m,2H),1.15–1.08(m,8H),1.07–0.92(m,2H),0.88(d,J=6.5Hz,3H).

实施例85、化合物85的制备

室温下,向化合物20(60mg,115.46μmol)和羧甲基纤维素(20.80mg,115.46μmol)的 MeOH(0.3mL)溶液中加入NaOAc.3H2O(15.70mg,115.46μmol),混合液室温下搅拌过夜。反应完成后,浓缩反应液,粗品用mHPLC(ACN/H2O,0.05%NH4HCO3)分离纯化得到化合物85(13mg,18.01μmol,15.60%产率,94.465%纯度),MS m/z:682(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.57(d,J=30.1Hz,2H),7.47(d,J=2.2Hz,1H),7.26 (dd,J=8.6,1.7Hz,1H),6.98–6.90(m,1H),5.14–5.05(m,1H),4.06(s,3H),4.04–3.56(m, 6H),2.84–2.50(m,3H),2.48–2.37(m,1H),2.34–2.19(m,1H),2.18–2.05(m,1H),2.03– 1.88(m,2H),1.87–1.64(m,9H),1.60(dd,J=6.6,4.2Hz,6H),1.49–0.98(m,7H).

实施例86、化合物86的制备

步骤1,86-1的制备

室温下,向20-2(1g,2.25mmol)的H2O(3mL)/EtOH(15mL)混合液中加入NaOH(450mg,11.27mmol),混合液升温至80℃并搅拌18h。反应完成后,加水稀释反应液,加乙酸乙酯萃取。分离的水相用3N HCl调节溶液pH至4-5,然后用乙酸乙酯萃取,浓缩分离得到的有机相,得到粗品化合物86-1(0.9g,2.17mmol,96.08%收率),未经进一步纯化直接用于下一步反应。MS m/z:416(M+1)+。

步骤2,86-2的制备

向86-1(380mg,914.51μmol)的DCM(6mL)溶液中加入HBTU(450.58mg,1.19mmol)和DIPEA(354.57mg,2.74mmol,477.86μL),室温搅拌30min后,加入中间体Z-15(136.92 mg,1.19mmol),继续搅拌反应2h。反应完成后,旋干反应液,粗品用mHPLC分离纯化 (TFA(0.005%)/H2O,ACN),得到化合物86-2(136.92mg,1.19mmol),MS m/z:513(M+1) +

步骤3,86-3的制备

零度下,向86-2(62.50mg,109.72μmol)的DCM(1.5mL)溶液中加入(1.54g,13.51mmol, 1mL),反应混合液在零度搅拌反应1小时。浓缩混合液得到的粗品86-3(56mg,106.34μmol, 96.93%收率,TF),MS m/z:413(M+1)+

步骤4,86的制备

室温下,向86-3(15mg,36.36μmol)和5-甲基异恶唑羧酸(5.08mg,39.99μmol)的DCM (0.5mL)溶液中,加入HBTU(17.91mg,47.27μmol)和DIPEA(14.10mg,109.07μmol,19.00μL),混合液室温搅拌反应2小时。反应完成后,旋干反应液,粗品用mHPLC (FA(0.005%)/H2O,ACN)分离纯化,得到化合物86(4mg,7.67μmol,21.09%收率),MS m/z:522(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ8.82(s,1H),7.59(d,J=1.8 Hz,1H),7.51(d,J=8.5Hz,1H),7.30–7.22(m,1H),6.50(d,J=9.0Hz,1H),5.08(d,J=8.4Hz, 1H),3.95–3.85(m,1H),3.41–3.37(m,2H),2.63(s,3H),2.38(s,1H),2.18(s,1H),2.14–2.04(m,1H),1.93(s,2H),1.84–1.65(m,11H),1.60(d,J=12.1Hz,7H),1.45(d,J=12.6Hz,1H),1.41–1.01(m,8H).

实施例87至实施例102、化合物86至化合物102的制备

参照实施例86的合成步骤4的方法,用下列表格中羧酸替代5-甲基异恶唑羧酸,与中间体化合物86-3进行缩合,得到表格中的相应化合物。

实施例103、化合物103的制备

向86-3(30mg,72.72μmol)的DMA(1mL)溶液中加入CDI(31.40mg,218.15μmol)和Et3N(36.72mg,363.58μmol),混合液在氮气保护下升温至80℃,并搅拌过夜,然后再加入(环丙基甲基)甲基胺(30.96mg,363.58μmol),继续搅拌反应3小时。反应液经mHPLC (ACN/0.05%FA)分离纯化得粗品,又经过Pre.HPLC分离纯化得到化合物103(11mg,20.47 μmol,28.15%产率,97.46%纯度),MS m/z:524(M+1)+。核磁数据:1H NMR(400MHz, Methanol-d4)δ7.73(d,J=1.7Hz,1H),7.68(d,J=8.7Hz,1H),7.55(dd,J=8.7,1.7Hz,1H), 6.82(d,J=9.0Hz,1H),3.93(tt,J=9.7,5.7Hz,1H),3.46(dd,J=11.3,4.1Hz,1H),3.38(dd,J=11.3,6.0Hz,2H),3.17(dd,J=6.7,1.6Hz,2H),3.04(s,3H),2.45–2.33(m,1H),2.17–2.07(m,1H),2.05–1.95(m,2H),1.86–1.79(m,3H),1.79–1.70(m,5H),1.64(s,3H),1.62(s,3H),1.41 –0.92(m,9H),0.49(d,J=8.0Hz,2H),0.21(t,J=5.3Hz,2H).

实施例104、化合物104的制备

参照实施例20合成路线中步骤4到步骤7的方法,在步骤4中用1-甲基-1H-1,2,4-三唑 -5-羧酸代替1-甲基-1H-吡唑-5-酰基,其余操作步骤相同,可得化合物104,MS m/z:521(M+1) +。核磁数据:1H NMR(400MHz,MeOD)δ7.99(s,1H),7.82–7.62(m,2H),7.63–7.44(m,1H), 7.18(d,J=8.2Hz,1H),5.24(d,J=7.9Hz,1H),4.15(s,3H),4.05(dd,J=17.3,7.4Hz,1H),3.00 –2.86(m,2H),2.78(dd,J=13.1,9.6Hz,1H),2.45–2.18(m,3H),2.07–1.08(m,27H).

实施例105、化合物105的制备

参照实施例86合成路线中步骤2到步骤4的方法,在步骤2中用中间体Z19代替中将体 Z15,在步骤4中,用3,5-二甲基异噁唑-4-羧酸代替5-甲基异恶唑-4-甲酸,其余操作步骤相同,可得化合物105-3,经LiOH水解Fmoc,可得化合物105,MS m/z:535(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ8.53(s,1H),7.60(s,1H),7.51(d,J=8.6Hz,1H),7.36–7.18 (m,1H),5.08(d,J=8.7Hz,1H),4.00–3.85(m,1H),2.84–2.71(m,1H),2.62–2.54(m,1H), 2.52(d,J=1.0Hz,3H),2.32(d,J=1.0Hz,3H),2.28(d,J=8.2Hz,1H),2.07(d,J=10.2Hz,1H), 1.97(d,J=11.4Hz,2H),1.87–1.78(m,2H),1.73(d,J=16.1Hz,5H),1.65(s,3H),1.60(s,3H), 1.41(d,J=13.2Hz,1H),1.37–1.14(m,5H),1.14–1.02(m,1H).

实施例106、化合物106的制备

参照实施例86合成路线中步骤1到步骤4的方法,在步骤2中用中间体Z22代替Z19与106-1的酸缩合,步骤3中用Pd/C脱出Cbz保护基,在步骤4中用3-甲基异恶唑-4-羧酸代替5-甲基异恶唑-4-甲酸106-3缩合得到中间体106-4,最后经TFA脱除Boc保护基,可得化合物106,MS m/z:535(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ8.56(d,J= 1.2Hz,1H),7.80(d,J=1.6Hz,1H),7.73(d,J=8.7Hz,1H),7.58(dd,J=8.7,1.7Hz,1H),5.25 (d,J=8.1Hz,2H),4.34–4.20(m,1H),3.00–2.80(m,3H),2.14(d,J=1.1Hz,3H),2.11–1.81 (m,7H),1.74(d,J=4.5Hz,7H),1.63(s,4H),1.56–1.05(m,9H),0.93(s,3H).

实施例107、化合物107的制备

参照实施例106合成路线中步骤4和步骤5的方法,在步骤4中用4-甲基异恶唑-3-甲酸代替3-甲基异恶唑-4-羧酸,经TFA条件脱除Boc保护基,可得化合物107,MS m/z:535(M+1) +。核磁数据:1H NMR(400MHz,Methanol-d4)δ9.25(s,1H),7.83(d,J=1.7Hz,1H),7.73(d,J =8.7Hz,1H),7.58(dd,J=8.7,1.7Hz,1H),5.15(d,J=8.0Hz,1H),4.27(ddt,J=9.5,5.7,2.8Hz, 1H),2.90(qd,J=13.3,6.8Hz,2H),2.36(s,3H),2.18(ddt,J=13.1,9.1,4.9Hz,1H),2.05(d,J= 12.1Hz,2H),2.00–1.81(m,5H),1.81–1.68(m,7H),1.63(s,4H),1.54–1.16(m,8H),1.09(qd, J=12.2,3.4Hz,1H),0.93(s,3H).

实施例108化合物108的制备

参照实施例106合成路线中步骤4和步骤5的方法,在步骤4中用1-甲基-1H-1,2,4-三唑-5-羧酸代替3-甲基异恶唑-4-羧酸,经TFA条件脱除Boc保护基,可得化合物108,MS m/z: 535(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.99(s,1H),7.75(d,J=1.6Hz,1H), 7.68(d,J=8.7Hz,1H),7.52(dd,J=8.6,1.7Hz,1H),5.23(d,J=7.9Hz,1H),4.28–4.20(m, 1H),4.16(s,3H),2.97–2.80(m,2H),1.89(dddd,J=24.8,16.7,11.1,7.2Hz,6H),1.77(d,J= 12.7Hz,2H),1.73(s,4H),1.63(s,4H),1.53(d,J=12.6Hz,1H),1.49–1.06(m,7H),0.91(s, 3H).

实施例109、化合物109的制备

参照实施例1合成路线步骤1到步骤6的方法,步骤1中的起始原料换为2-(((苄氧基) 羰基)氨基)-2-(四氢-2H-吡喃-2-基)乙酸和中间体Z8,经类似的路线,可以制得实施例化合物109.MS m/z:523(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.60(d,J=4.1Hz,2H),7.54–7.46(m,4H),7.27(d,J=1.4Hz,1H),7.25(d,J=1.7Hz,1H),6.97(dd,J=2.1,0.8Hz,1H),6.92(dd,J=2.1,0.7Hz,1H),6.48(d,J=8.9Hz,2H),5.35(d,J=4.9Hz,1H), 5.32(d,J=6.2Hz,1H),4.09(s,3H),4.07(s,3H),4.05–3.83(m,9H),3.59–3.37(m,11H),2.58 –2.46(m,2H),2.43–2.31(m,2H),2.09–1.65(m,30H),1.62(s,6H),1.59(s,6H),1.57–1.43 (m,8H).

实施例110、化合物110的制备

参照实施例109的合成路线,在步骤1中用2-((叔丁氧基羰基)氨基)-2-(4,4-二氟环己基)乙酸与中间体Z8缩合,其余步骤类似,可以制得实施例化合物110,MS m/z:523(M+1) +。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.48(d,J=2.1Hz,1H),7.27(dd,J=8.5,1.8Hz, 1H),6.93(d,J=2.2Hz,1H),6.50(d,J=9.0Hz,1H),5.20(d,J=8.6Hz,1H),4.08(s,3H),3.89 (tt,J=9.4,4.8Hz,1H),3.39(t,J=5.1Hz,2H),2.45–1.66(m,7H),1.62(s,3H),1.59(s,3H), 1.53–1.05(m,6H),1.03–0.76(m,4H).

实施例111、化合物111的制备

参照实施例1合成路线步骤1到步骤6的方法,步骤1中用2-(金刚烷-1-基)-2-((叔丁氧羰基)氨基)乙酸和中间体Z8为起始原料,经历相似的步骤,在步骤5中缩合中间体Z22,可以制得化合物111-6,然后在DCM溶液中用TFA脱Boc保护基,可得实施例化合物 111,MS m/z:700(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.84(s,1H),7.75 (d,J=8.7Hz,1H),7.59(d,J=8.8Hz,1H),7.54–7.45(m,1H),7.13(s,1H),6.88(d,J=8.8Hz,1H),5.16(s,1H),4.01(s,3H),2.97–2.81(m,2H),2.06(s,3H),2.01–1.86(m,4H),1.82(d,J= 13.3Hz,5H),1.74(t,J=8.9Hz,12H),1.64(s,5H),1.52–1.37(m,1H),0.93(s,3H).

实施例112至实施例119、化合物112至化合物119的制备

参照实施例111的合成路线,仅在步骤1中用表格中的Boc保护的氨基酸替代2-(金刚烷-1-基)-2-((叔丁氧羰基)氨基)乙酸与Z8缩合,其余步骤一致,可以制得表格中相应实施例化合物。

实施例119、化合物119的制备

室温下,向(S)-2-(叔丁氧基羰基-氨基)-3-甲基丁酸(4.39mg,20.22μmol)的DCM(1mL) 溶液中加入DMAP(493.99ug,4.04μmol)和EDCI(5.79mg,30.33μmol),混合液室温搅拌15 min后,加入22(10mg,20.22μmol)。反应液室温搅拌反应2h。反应完成后,加入NaHCO3水溶液稀释,用DCM萃取,合并的有机相旋干得粗品,用mHPLC (ACN/H2O/TFA(TFA=0.05%))分离纯化得到化合物119(6mg,8.65μmol,42.77%yield),MS m/z:694(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.78–7.64(m,2H),7.55– 7.46(m,2H),7.08–6.93(m,2H),5.15(d,J=8.1Hz,1H),4.27–4.14(m,1H),4.04(s,4H),4.02 –3.93(m,1H),3.85(d,J=5.9Hz,1H),2.27–2.13(m,1H),2.09–1.93(m,2H),1.85(d,J=13.3 Hz,1H),1.81–1.68(m,2H),1.63(d,J=5.1Hz,6H),1.59–1.47(m,3H),1.37(s,12H),1.33– 1.15(m,4H),1.15–1.01(m,1H),0.93–0.77(m,10H).

实施例120、化合物120的制备

参照实施例109的合成路线,在步骤1中用(s)-2-氨基-2-(螺[2.5]辛基-6-基)乙酸与中间体Z8缩合,其余步骤类似,可以制得实施例化合物120,MS m/z:547(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.70(d,J=1.6Hz,1H),7.64(d,J=8.7Hz,1H),7.49(d,J=2.2Hz,1H),7.47(dd,J=8.6,1.7Hz,1H),7.00(d,J=2.2Hz,1H),6.72(d,J=8.9Hz,1H), 5.20(d,J=8.3Hz,1H),4.05(s,3H),3.97–3.87(m,1H)3.49–3.34(m,2H),2.45–2.31(m,1H), 2.31–2.17(m,1H),2.07–1.90(m,2H),1.90–1.66(m,7H),1.62(d,J=8.7Hz,6H),1.48(d,J= 12.4Hz,1H),1.31(dqd,J=48.5,12.4,3.8Hz,2H),1.01(d,J=13.4Hz,1H),0.93(d,J=13.4Hz, 1H),0.29(m,2H),0.21(m,2H).

实施例121、化合物121的制备

参照实施例1合成路线,在步骤1中,用(s)-2-((叔丁氧羰基)氨基)-2-环己基乙酸和中间体Z11为起始原料,经类似的合成步骤,关环,脱Boc,缩合N甲基吡唑酸,水解乙酯,最后缩合(R)-2-氨基丁-1-醇,可得实施例化合物121,MS m/z:513(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.50–7.44(m,1H),7.37(s,1H),7.03–6.91(m,2H), 6.77(d,J=8.7Hz,1H),5.09(d,J=8.7Hz,1H),4.29(s,1H),4.06(s,3H),3.81(tq,J=10.5,5.6 Hz,1H),3.44(qd,J=10.9,5.4Hz,2H),3.31(s,3H),2.16–2.03(m,1H),1.97(d,J=12.8Hz,1H),1.76(dd,J=29.2,9.7Hz,2H),1.69(d,J=5.8Hz,2H),1.59(d,J=6.1Hz,7H),1.38(dtd,J=44.4,14.6,13.8,7.3Hz,3H),1.25(s,4H),1.12(ddd,J=36.2,16.8,10.3Hz,1H),0.98 (t,J=7.4Hz,1H),0.82(t,J=7.4Hz,3H).

实施例122、化合物122的制备

参照实施例121步骤6的合成方法,用中间体121-5与Z15缩合,可得实施例化合物122。 MS m/z:539(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.71-7.61(m,1H),7.47(d,J=2.2Hz,1H),7.37(s,1H),7.03–6.91(m,2H),6.65(d,J=9.0Hz,1H),5.09(d,J=8.8Hz,1H),4.29(t,J=6.6Hz,1H),4.06(s,3H),3.98–3.85(m,1H),3.40(qd,J=11.2,4.9Hz,2H), 2.39(tq,J=15.4,8.8,8.1Hz,1H),2.14(s,1H),2.02–1.92(m,3H),1.87–1.76(m,4H),1.79– 1.63(m,4H),1.59(d,J=12.7Hz,5H),1.52–1.20(m,2H),1.24–1.19(m,1H),1.23–1.05(m, 1H),0.98(t,J=7.4Hz,1H).

实施例123和124、化合物123和124的制备

步骤1、实施例123的制备

参照实施例121步骤6的合成方法,用中间体121-5与(R)2-氨基-2-环丁基乙酸甲酯缩合,可得实施例化合物123,MS m/z:539(M+1)+

步骤2、实施例124的制备

化合物123(15mg,26.47μmol)溶解在MeOH(5mL)中,加入NaOH(21.17mg,529.41μmol), 反应液室温搅拌过夜,反应完成后,减压整除溶剂,粗品分散在1M HCl和EA溶液中,分离的EA层浓缩后,粗品用Pre-HPLC分离纯化,得到实施例化合物124(6mg,0.01mmol,收率36.8%),白色固体MS m/z:553(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ 7.49(dd,J=6.6,1.8Hz,2H),7.28–7.16(m,1H),7.00(d,J=2.2Hz,1H),5.12(d,J=8.3Hz, 1H),4.33(dd,J=8.9,3.2Hz,1H),4.04(s,3H),2.65(dt,J=16.7,8.1Hz,1H),2.24–2.11(m,1H), 2.03(ddt,J=12.2,8.1,3.7Hz,2H),2.02–1.78(m,2H),1.80–1.65(m,3H),1.62(s,6H),1.47 (d,J=12.7Hz,1H),1.44–0.93(m,6H).

实施例125、化合物125的制备

参照实施例121的合成路线,在步骤1中,用中间体Z9代替中间体Z11,其余试剂方法不变,可得化合物125,MS m/z:513(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4) δ7.69–7.55(m,1H),7.47(d,J=2.1Hz,1H),7.24(s,1H),6.93(d,J=2.1Hz,1H),6.61(d,J=8.7Hz,1H),5.07(d,J=8.8Hz,1H),4.06(s,3H),3.83–3.74(m,1H),3.53–3.45(m,1H),3.41–3.35(m,1H),2.87(s,1H),2.19–2.06(m,1H),2.03–1.92(m,1H),1.86–1.78(m,1H),1.75–1.66(m,2H),1.65–1.52(m,7H),1.49–1.41(m,1H),1.38–1.28(m,3H),1.27–1.16(m,2H),1.16–1.05(m,1H),0.86(t,J=7.4Hz,4H).

实施例126、化合物126的制备

参照实施例121的合成路线,在步骤1中用中间体Z10替换中间体Z11,其余试剂路线相同,可得实施例化合物126,MS m/z:513(M+1)+

实施例127和128、化合物127和128的制备

步骤1、中间体127-1的制备

冰浴下,向20-5a(1.4g,3.31mmol)的DMF(15mL)溶液中加入HBTU(1.63g,4.30mmol)和DIPEA(1.28g,9.92mmol,1.73mL),混合液在0℃下搅拌10min,然后加入肼基甲酸叔丁酯(655.33mg,4.96mmol),反应液升至室温搅拌3小时。反应完成后,旋除溶剂,粗品用mHPLC分离纯化得到中间体127-1(1.1g,2.05mmol,61.89%收率),MS m/z:538(M+1) +

步骤2、中间体127-2的制备

室温下,127-1(580mg,1.08mmol)溶解在HCl/EA(4M,7mL)溶液中,混合液室温搅拌30min,反应完成后,旋除溶剂得到中间体127-2(485mg,1.02mmol,94.85%收率),MS m/z:438(M+1)+

步骤3、实施例127和128的制备

室温下,向127-2(80mg,168.78μmol)的EtOH(8mL)溶液中加入甲基环丁烷氨基甲酸酯盐酸盐(30.30mg,202.53μmol)和TEA(85.39mg,843.89μmol,117.70μL),反应混合液升温至90℃并搅拌过夜。反应完成后,旋干反应液,粗品用PreHPLC分离纯化得到实施例化合物127(8.7mg,16.20μmol,9.60%收率,93.2%纯度),MS m/z:501(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.71–7.63(m,2H),7.50(d,J=2.1Hz,1H),7.46(dd,J=8.7,1.8Hz,1H),7.03(d,J=2.2Hz,1H),5.16(d,J=8.0Hz,1H),4.03(s,3H),3.75–3.62(m,1H),2.43–2.29(m,4H),2.27–2.16(m,1H),2.18–2.06(m,1H),2.07–1.99(m,1H),2.00–1.88(m,1H),1.85(m,7H),1.81–1.63(m,2H),1.52(d,J=12.7Hz,1H),1.45–1.28(m,2H),1.29–1.12(m,2H),1.15–1.00(m,1H).

和实施例化合物128(9mg,17.10μmol,10.13%收率95.3%纯度)。MS m/z:502(M+1) +。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.77–7.60(m,2H),7.57–7.39(m,2H),7.00(d, J=2.2Hz,1H),5.15(d,J=8.1Hz,1H),4.04(s,3H),3.76–3.64(m,1H),2.45–2.28(m,4H), 2.27–2.16(m,1H),2.11(m,1H),2.06–1.92(m,2H),1.88(m,7H),1.74(m,2H),1.53(m,1H), 1.43–1.25(m,3H),1.25–1.02(m,3H).

实施例129、化合物129的制备

冰浴下,向中间体127-2(74mg,156.12μmol)的DCM(5mL)溶液中加入TEA(47.39mg,468.36μmol,65.32μL),然后滴加对硝基苯基氯甲酸酯(34.61mg,171.73μmol),反应混合液室温搅拌反应2小时。反应完成后,旋除溶剂,粗品用mHPLC分离纯化得到化合物129(11.7mg,24.31μmol,15.57%收率,96.3%纯度).MS m/z:502(M+1)+。核磁数据:1H NMR(400 MHz,Methanol-d4)δ7.74–7.66(m,2H),7.54–7.48(m,2H),7.01(d,J=2.2Hz,1H),5.16(d,J =8.0Hz,1H),4.04(s,3H),2.29–2.15(m,1H),2.02(m,1H),1.84(m,1H),1.76(m,8H),1.54(m,1H),1.43–1.28(m,2H),1.28–1.14(m,2H),1.08(m,1H).

实施例130、化合物130的制备

参照实施例19合成路线中步骤6的方法,用Z16替换Z25,其余操作相同,可得实施例化合物130,MS m/z:577(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.63(d,J=1.7Hz,1H),7.56(d,J=8.4Hz,1H),7.50(d,J=2.1Hz,1H),7.29(dd,J=8.5,1.8Hz,1H),6.95 (d,J=2.1Hz,1H),6.83(d,J=9.4Hz,1H),5.10(d,J=8.6Hz,1H),4.69(d,J=8.5Hz,1H),4.08 (s,3H),4.05–3.97(m,4H),3.53(dd,J=11.4,4.0Hz,1H),3.40(dd,J=11.4,7.8Hz,1H),2.89 (dt,J=12.5,6.1Hz,1H),2.57(dt,J=12.6,7.9Hz,1H),2.13–1.96(m,2H),1.92–1.67(m,5H), 1.63–1.25(m,6H),1.23–0.96(m,4H),0.94(s,3H),0.91(d,J=6.5Hz,3H).

实施例131、化合物131的制备

参照实施例19合成方法,在步骤6中,用中间体Z19替代中间体Z25,其余操作相同,最后脱除Fmoc,可得实施例化合物131,MS m/z:562(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ8.54(s,1H),7.58(s,1H),7.53(d,J=8.4Hz,1H),7.47(s,1H),7.25(d,J=10.2 Hz,1H),6.93(d,J=2.2Hz,1H),5.06(d,J=8.6Hz,1H),4.66(d,J=8.5Hz,1H),4.05(s,3H), 4.03–3.93(m,3H),3.93–3.85(m,1H),2.94–2.84(m,1H),2.78(dd,J=13.2,3.6Hz,1H), 2.67–2.56(m,1H),2.56–2.46(m,1H),2.35–2.24(m,1H),2.10–1.89(m,3H),1.82–1.56(m, 6H),1.52–1.43(m,1H),1.42–1.36(m,1H),1.35–1.29(m,1H),1.25–0.90(m,4H),0.88(d,J= 6.5Hz,3H).

实施例132、化合物132的制备

参照实施例19合成方法,在步骤6中,用中间体Z15替代中间体Z25,其余操作相同,可得实施例化合物132,MS m/z:563(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4) δ7.61(s,1H),7.55(d,J=8.5Hz,1H),7.49(d,J=2.1Hz,1H),7.27(dd,J=8.5,1.8Hz,1H), 7.00(d,J=9.0Hz,1H),6.95(d,J=2.2Hz,1H),5.10(d,J=8.6Hz,1H),4.63(d,J=8.5Hz,1H),4.08(s,3H),4.02–3.97(m,3H),3.93–3.85(m,1H),3.46–3.35(m,2H),2.93–2.83(m,1H),2.54–2.45(m,1H),2.42–2.33(m,1H),2.10–2.04(m,1H),2.04–1.98(m,1H),1.95–1.90(m,1H),1.83–1.55(m,8H),1.25–1.08(m,3H),1.07–0.92(m,3H),0.90(d,J=6.5Hz,3H).

实施例133、化合物133的制备

冰浴下,向化合物19a(50mg,86.84μmol)的DMF(1mL)溶液中加入TEA(17.58mg,173.69μmol,24.23μL),混合液零度下搅拌2小时。反应液用Pre.HPLC分离纯化(ACN/H2O,0.05%NH4HCO3),得到实施例化合物133(20mg,26.84μmol,30.91%收率,98.5%纯度), MS(ESI)m/z=734(M+1)+,核磁数据:1H NMR(400MHz,Methanol-d4)δ7.66–7.53(m,1H),7.47(d,J=2.1Hz,2H),7.26–7.16(m,1H),6.93(dd,J=2.1,0.7Hz,1H),6.74–6.54(m,1H),5.12– 5.03(m,1H),4.69–4.57(m,1H),4.13–4.08(m,1H),4.06(d,J=1.1Hz,3H),4.00–3.86(m, 3H),3.16–3.10(m,1H),2.92–2.80(m,1H),2.74(d,J=32.3Hz,3H),2.58–2.44(m,2H),2.33 –2.22(m,1H),2.09–1.91(m,3H),1.81–1.73(m,2H),1.72–1.62(m,4H),1.51–1.34(m,5H), 1.23–1.16(m,2H),1.15–1.08(m,8H),1.07–0.92(m,2H),0.88(d,J=6.5Hz,3H).

实施例134、化合物134的制备

参照实施例86合成路线中步骤1到步骤4的方法,步骤1中以中间体19-2a为原料,经水解,缩合中间体Z16,脱Boc保护,最后与氯甲酸甲酯反应,得化合物134,MS(ESI)m/z=527(M+1)+,核磁数据:1H NMR(400MHz,Methanol-d4)δ7.61(d,J=2.0Hz,1H),7.54(d,J=8.4Hz,1H),7.28(dd,J=8.4,1.8Hz,1H),6.81(d,J=9.4Hz,1H),4.70(d,J=8.6Hz,2H),4.07– 3.92(m,4H),3.66(s,3H),3.53(dd,J=11.4,4.1Hz,1H),3.41(dd,J=11.4,7.8Hz,1H),2.89 (dt,J=12.4,6.1Hz,1H),2.57(dt,J=12.7,7.9Hz,1H),1.96–1.64(m,7H),1.64–1.46(m,2H), 1.45–1.26(m,3H),1.23–1.08(m,2H),1.03–0.96(m,1H),0.94(s,3H),0.89(d,J=6.5Hz, 3H).

实施例135、化合物135的制备

参照实施例1合成路线中步骤1和步骤2的方法,用2-(金刚烷-1-基)-2-((叔丁氧羰基)氨基)乙酸和中间体Z8为起始原料,经缩合、关环操作,可得中间体135-2,然后参照实施例86合成路线步骤1到步骤6的合成,经水解酯,缩合中间体Z16,然后脱Boc,最后缩合N-甲基吡唑羧酸,可得化合物135,MS(ESI)m/z=615(M+1)+,核磁数据:1H NMR(400 MHz,Methanol-d4)δ7.80–7.70(m,2H),7.61–7.51(m,2H),7.14–7.05(m,2H),5.12(s,1H), 4.64(d,J=8.9Hz,1H),4.12–3.99(m,7H),3.57(dd,J=11.4,3.9Hz,1H),2.94(dt,J=12.6,6.4Hz,1H),2.59–2.47(m,1H),2.07(s,3H),1.94-1.50(m,15H),1.36-1.30(m,2H),1.00(s,3H).

实施例136、化合物136的制备

步骤1、中间体136-1的制备

冰浴下,向中间体135-3(150mg,302.66μmol)的DCM(3mL)溶液中加入TFA(34.51mg, 302.66μmol,2mL),然后混合液零度下搅拌1小时。浓缩混合液得到136-1的粗品(140mg, 274.77μmol,90.79%收率,TF),未经纯化直接用于下一步反应。MS(ESI)m/z=396(M+1)+

步骤2、中间体136-2的制备

零度下,向136-1(140mg,274.77μmol,TF)的THF(3mL)/H2O(3mL)混合液中加入NaHCO3(46.16mg,549.54μmol)和CbzOSU(68.48mg,274.77μmol)。混合液室温搅拌30 min。反应完成后,加水稀释,用6N HCl调节pH至4~6,混合液用乙酸乙酯萃取,合并的有机相用无水硫酸钠干燥,过滤后,旋干滤液,得到中间体136-2(140mg,264.34μmol,96.20%收率),MS(ESI)m/z=530(M+1)+.

步骤3、中间体136-3的制备

室温下,向136-2(140mg,264.34μmol),Z22(72.43mg,317.21μmol)和HBTU(80.53mg, 317.21μmol)的CH2Cl2(5mL)溶液中加DIPEA(102.49mg,793.01μmol,138.13μL)。混合液室温搅拌1小时,反应完成后,浓缩反应液,粗品用mHPLC(CH3CN/H2O,0.05%TF)分离纯化,得到中间体136-3(170mg,229.75μmol,86.91%收率),MS(ESI)m/z=740(M+1)+

步骤4、中间体136-4的制备

向136-3(170mg,229.75μmol)的MeOH(4mL)溶液中加入Pd/C(80mg,658.71μmol),氢气置换后,混合液在氢气保护下室温搅拌反应2小时。反应完成后,滤除Pd/C,浓缩滤液,得到中间体136-4(135mg,222.84μmol,96.99%收率),MS(ESI)m/z=606(M+1)+

步骤5、化合物136的制备

向136-4(135mg,222.84μmol)和2-甲基吡唑-3-羧酸(30.91mg,245.13μmol)的DCM(7 mL)/DMF(3mL)混合液中加入HBTU(73.54mg,289.70μmol)和DIPEA(86.40mg,668.53 μmol)。混合液氮气保护下室温搅拌反应1小时。混合液用0.2mLMeOH淬灭,减压浓缩,粗品用mHPLC(CH3CN/H2O,0.05%TF)分离纯化,得到化合物136-6(80mg,112.06μmol, 50.29%收率),MS(ESI)m/z=714(M+1)+

步骤6、化合物136的制备

冰浴下,向136-6(80mg,112.06μmol)的CH2Cl2(2.3mL)溶液中加入TFA(2.31g,20.26 mmol,1.5mL),混合液零度下搅拌反应1小时。反应完成后,浓缩混合液,粗品用mHPLC(ACN/H2O,0.05%FA)分离纯化,得到化合物136(45mg,73.31μmol,65.42%收率), MS(ESI)m/z=614(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ8.49(s,1H),7.60(t,2H),7.53(d,J=2.2Hz,1H),7.30(dd,J=8.4,1.9Hz,1H),7.02(d,J=2.2Hz,1H),5.15(s,1H),4.79 (d,J=8.7Hz,1H),4.14(dd,J=10.6,2.6Hz,1H),4.09(s,3H),4.08–3.99(m,2H),3.95(d,J= 8.7Hz,1H),2.98–2.76(m,3H),2.75–2.64(m,1H),2.02(s,3H),1.88–1.71(m,10H),1.63(t, 8H),0.88(s,3H).

实施例137、化合物137的制备

参照实施例136合成路线中步骤1到步骤5的方法,在步骤3中,用中间体Z16替代中间体Z22,在步骤5中,用三氟乙酸替代2-甲基吡唑-3-羧酸,其余步骤方法相同,可得化合物137,MS(ESI)m/z=714(M+1)+

实施例138、化合物138的制备

参照实施例1合成路线中步骤1到步骤6的方法,在步骤1中用2-((叔丁氧基羰基)氨基)-2-(7-甲基螺[2.5]辛-4-基)乙酸替代Z1,用中间体Z3替代中间体Z2a,其余步骤相同,可得中间体138-6。在经过TFA/DCM体系脱除Boc保护基,可得化合物138,MS(ESI)m/z=602 (M+1)+

实施例139、化合物139的制备

参照实施例1步骤6的缩合方法,用中间体138-5为原料与Z15相同条件下缩合,可得到化合物139,MS(ESI)m/z=589(M+1)+

实施例140、化合物140的制备

参照实施例1步骤6的缩合方法,用中间体138-5为原料与Z16相同条件下缩合,可得到化合物140,MS(ESI)m/z=603(M+1)+

实施例141、化合物141的制备

参照实施例1合成路线中步骤1到步骤6的方法,在步骤1中用2-((叔丁氧基羰基)氨基)-2-(2,2,4-三甲基环己基)乙酸替代Z1,用中间体Z3替代中间体Z2a,其余步骤相同,可得中间体141-6。在经过TFA/DCM体系脱除Boc保护基,可得化合物141,MS(ESI)m/z=604(M+1)+。核磁数据1H NMR(400MHz,Methanol-d4)δ8.53(s,1H),7.66(d,J=1.7Hz,1H),7.62(d,J=8.4Hz,1H),7.57–7.52(m,1H),7.45(dd,J=8.0,1.4Hz,1H),7.34–7.31(m,1H),7.26–7.21(m,1H),6.32(d,J=2.2Hz,1H),6.01(d,J=12.0Hz,1H),4.82(d,J=8.5Hz,2H),4.17–4.11(m,1H),4.08–4.00(m,2H),3.92(d,J=8.5Hz,1H),3.85(s,3H),3.73(d,J=11.9Hz, 1H),2.94–2.87(m,2H),2.87–2.77(m,2H),2.75–2.65(m,1H),1.86–1.71(m,3H),1.66–1.48(m,2H),1.22–1.13(m,1H),1.10(s,3H),0.84(s,3H),0.75(dt,J=9.6,4.9Hz,1H), -0.15–-0.24(m,2H).

实施例142和143、化合物142和143的制备

参照实施例141的制备方法,用中间体141-5为起始原料,与下表中的胺缩合,得到相应结构化合物142、143.

实施例144、化合物144的制备

参照实施例141步骤3到步骤5的方法,步骤1中以141-3为原料与醋酸酐反应,在季碳胺上上乙酰基,然后水解酯基,最后缩合中间体Z15,可得化合物144,MS(ESI)m/z=604(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.58(s,1H),7.53(d,J=8.5Hz,1H),7.26(dd,J=8.5,1.6Hz,1H),5.68(d,J=2.9Hz,1H),4.64(d,J=8.5Hz,1H),4.04–3.96(m,3H),3.94–3.84(m,1H),3.48–3.38(m,2H),2.95–2.81(m,1H),2.55–2.45(m,1H),2.44–2.32(m,1H),2.10(s,3H),2.07–2.00(m,1H),1.96–1.89(m,1H),1.89–1.79(m,1H),1.79–1.71(m,2H),1.70–1.60(m,4H),1.60–1.56(m,1H),1.43–1.35(m,2H),1.08(s,3H),1.06–1.01(m,1H),0.98(s,3H),0.96–0.89(m,1H),0.87(d,J=6.4Hz,3H).

实施例145、化合物145的制备

参照实施例144的方法,用144-2为原料与中间体Z16缩合,可得化合物145,MS(ESI)m/z= 539(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.63(s,1H),7.58(d,J=8.5Hz,1H), 7.35(d,J=8.2Hz,1H),5.68(s,1H),4.68–4.63(m,1H),4.07–3.92(m,5H),3.53(dd,J=11.4, 4.1Hz,1H),3.46–3.35(m,1H),2.95–2.79(m,1H),2.60–2.46(m,1H),2.08(s,3H), 2.00–1.94(m,1H),1.93–1.84(m,2H),1.83–1.71(m,2H),1.69–1.55(m,3H),1.55–1.48(m, 1H),1.45–1.35(m,2H),1.34–1.27(m,2H),1.04(s,3H),0.98(s,3H),0.95(s,3H),0.92–0.87 (m,1H),0.85(d,J=6.3Hz,3H).

实施例146、化合物146的制备

参照实施例141步骤3到步骤5的方法,步骤1中以141-3为原料与氯甲酸甲酯反应,然后水解酯基,最后缩合中间体Z16,可得化合物146,MS(ESI)m/z=555(M+1)+。核磁数据:1HNMR(400MHz,Methanol-d4)δ7.59(s,1H),7.52(d,J=8.4Hz,1H),7.26(dd,J=8.5,1.8Hz,1H),6.79(d,J=9.3Hz,1H),4.68(d,J=8.5Hz,1H),4.04–3.92(m,4H),3.61(s,1H),3.62–3.47(m,4H),3.45–3.32(m,1H),2.92–2.80(m,2H),2.60-2.54(m,1H),2.38–2.23(m,2H),2.03-2.01(m,2H),1.89–1.70(m,9H),1.59–1.09(m,12H).

实施例147、化合物147的制备

参照实施例1的合成路线中步骤1到步骤6的方法,在步骤1中,用以2-(((苄氧基)羰基)氨基)-2-(4,4-二氟环己基)乙酸和中间体Z3替代Z1和Z2a为起始原料进行缩合,在步骤3中,用PdCl2加Et3SiH在DCM和TEA体系下脱除Cbz,其余条件不变,可得实施例化合物147,MS(ESI)m/z=585(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.58(d, J=8.6Hz,1H),7.48(d,J=2.1Hz,1H),7.33(dd,J=8.6,1.8Hz,1H),7.04(d,J=8.9Hz,1H),6.94(d,J=2.2Hz,1H),5.22(d,J=8.5Hz,1H),4.60(d,J=8.6Hz,1H),4.07(s,3H),4.02–3.95 (m,3H),3.88(ddd,J=9.2,4.9,2.6Hz,1H),3.47–3.40(m,1H),3.37(dd,J=11.3,5.9Hz,1H), 2.87(dt,J=12.7,6.3Hz,1H),2.52–2.23(m,3H),2.19–1.98(m,3H),1.87–1.53(m,4H),1.41 –1.31(m,3H),0.95–0.84(m,4H).

实施例148和149、化合物148和149的制备

参照实施例147合成路线步骤1到步骤6的方法,在步骤1中用表格中的氨基酸原料替换2-(((苄氧基)羰基)氨基)-2-(4,4-二氟环己基)乙酸,其余操作步骤相同,可得相应化合物148、149。

实施例150、化合物150的制备

参照实施例1的合成方法,在步骤1中用Boc-D-环己基甘氨酸和中间体Z3为起始原料,经历相同的缩合,关环,脱Boc,缩合2-甲基吡唑4-羧酸,酯水解,最后缩合环丁基甲胺步骤,得到化合物150,MS(ESI)m/z=585(M+1)+。核磁数据1H NMR(400MHz,Methanol-d4)δ7.54(d,J=6.5Hz,1H),7.50(d,J=5.6Hz,1H),7.47(d,J=2.1Hz,1H),7.22(dd,J=8.5,1.8Hz,1H),6.93(d,J=2.1Hz,1H),5.09(d,J=8.7Hz,1H),4.54(d,J=8.6Hz,1H),4.06(s,3H),4.02 (d,J=8.6Hz,1H),3.99–3.90(m,2H),3.19–3.07(m,2H),2.89(dt,J=12.6,6.3Hz,1H),2.47– 2.31(m,2H),2.19–2.05(m,1H),1.89–1.63(m,7H),1.60–1.48(m,2H),1.37–1.02(m,5H).

实施例151、化合物151的制备

参照实施例150的合成方法,在步骤6中用甲胺与中间体151-5缩合,可得化合物151, MS(ESI)m/z=465(M+1)+。核磁数据1H NMR(400MHz,DMSO-d6)δ12.30(d,J=8.7Hz,1H), 8.76(s,1H),7.61(s,1H),7.53–7.43(m,2H),7.41–7.32(m,1H),7.15–6.98(m,2H),5.01 (t,J=8.6Hz,1H),4.53(t,J=7.2Hz,1H),4.01(s,3H),3.87–3.72(m,3H),3.35(s,3H),2.93–2.83(m,1H),2.24–2.15(m,1H),2.14–2.04(m,1H),1.94–1.82(m,1H), 1.77–1.68(m,1H),1.68–1.55(m,2H),1.44–1.32(m,1H),1.25–1.20(m,1H),1.19–1.05(m, 3H),1.04–0.92(m,1H).

实施例152、化合物152的制备

参照实施例1的合成路线,用Boc-D-环己基甘氨酸和中间体Z30为起始原料,经历经历相同的缩合,关环,脱Boc,缩合2-甲基吡唑4-羧酸,酯水解,最后缩合中间体Z15等步骤,可得化合物152,MS(ESI)m/z=550(M+1)+。核磁数据1HNMR(400MHz,MeOD):δ ppm 8.39-8.43(m,1H),8.01(t,J=2.0Hz,1H),7.88(s,1H),7.48(d,J=3.6Hz,1H), 7.25-7.31(m,1H),6.94(d,J=2.0Hz,1H),5.10-5.13(m,2H),4.58(d,J=8.8Hz,1H),4.51(d,J =8.8Hz,1H),4.13(d,J=7.2Hz,1H),4.06(s,3H),3.88-4.05(m,5H),2.86-3.07(m, 3H),2.27-2.49(m,5H),1.70-2.02(m,8H),1.22-1.40(m,7H),.

实施例153到157、化合物152-157的制备

参照实施例152的合成路线,在步骤1中将原料Z27替换为下表中相应中间体二胺,经历相同的步骤可得化合物152-157.

实施例158、化合物158的制备

参照实施例152的合成路线,在步骤1中用(2S)-2-((((苄氧基)羰基)氨基)-2-(螺[2.5]辛-4-基)乙酸替换Boc-D-环己基甘氨酸,用中间体Z32替换中间体Z27,其余操作方法相同,可得化合物158,MS(ESI)m/z=593(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4) δ7.46(d,J=2.1Hz,1H),7.43–7.38(m,1H),7.20–7.03(m,2H),6.90(m,1H),5.72(d,J=11.6Hz,1H),4.53(m,1H),4.14(m,1H),4.02–3.93(m,2H),3.93–3.83(m,1H),3.49–3.33(m,2H),3.03–2.80(m,1H),2.53–2.17(m,2H),2.02(d,J=12.9Hz,1H),1.97–1.86(m,2H),1.84–1.41(m,12H),0.60(d,J=13.6Hz,1H),0.14(m,2H),-0.33(m,1H),-0.60(m,1H).

实施例159、化合物159的制备

参照实施例152的合成路线,在步骤1中用(2S)-2-((((苄氧基)羰基)氨基)-2-(四氢-2H-吡喃-2-基)乙酸替换Boc-D-环己基甘氨酸,用中间体Z32替换中间体Z27,其余操作方法相同,可得化合物159,MS(ESI)m/z=569(M+1)+

实施例160、化合物160的制备

参照实施例136的合成路线,Boc-D-环己基甘氨酸与中间体Z32缩合关环后,先水解乙酯,然后缩合中间体Z15,脱除Boc,最后与三氟乙酸乙酯酯交换反应,可得化合物160,MS(ESI)m/z=555(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.44(t,J=1.5Hz,1H),7.20–7.09(m,1H),4.98(d,J=9.1Hz,1H),4.16–3.85(m,4H),3.50–3.33(m,2H),3.01–2.81(m,1H),2.52–2.27(m,2H),2.25–2.09(m,1H),2.05–1.88(m,2H),1.90–1.56(m,8H),1.45–0.93(m,6H).

实施例161、化合物161的制备

以中间体160-3和3-甲基异恶唑-4-羧酸缩合,可得化合物161,MS(ESI)m/z=568(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ9.22(s,1H),7.49(s,1H),7.21(ddd,J=11.9,4.6, 1.4Hz,2H),5.09(d,J=8.1Hz,1H),4.50(dd,J=26.4,8.8Hz,1H),4.14–3.83(m,4H),3.49– 3.33(m,2H),2.90(ddt,J=22.4,12.9,6.2Hz,1H),2.46-2.30(m,5H),2.12(qd,J=9.3,8.2,5.5 Hz,1H),2.05–1.89(m,2H),1.88–1.55(m,8H),1.54–0.99(m,6H).

实施例162、化合物162的制备

参照实施例150的合成方法,Boc-D-环己基甘氨酸与中间体Z32缩合关环后,脱除Boc 保护基,缩合2-甲基吡唑4-羧酸,水解乙酯,然后缩合中间体Z22,最后脱除Boc保护基,可得化合物162,MS(ESI)m/z=580(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.47(d,J=2.2Hz,1H),7.39(d,J=1.5Hz,1H),7.04(dd,J=12.0,1.5Hz,1H),6.94(d,J=2.2Hz, 1H),5.31(s,2H),5.09(d,J=8.7Hz,1H),5.03(s,4H),4.62(d,J=8.7Hz,1H),4.06(s,3H),4.05 –3.91(m,4H),3.34(s,1H),2.90(dt,J=12.9,6.4Hz,1H),2.62(dd,J=13.3,3.3Hz,1H),2.53– 2.39(m,2H),2.16–2.03(m,1H),2.01–1.74(m,3H),1.70(s,1H),1.51(dtd,J=13.8,10.1,9.0, 4.7Hz,1H),1.43–1.33(m,1H),1.34–1.25(m,3H),1.22(s,2H),1.22–1.04(m,1H),1.07– 0.85(m,1H),0.93(s,2H).

实施例163、化合物163的制备

参照实施例162合成路线中步骤4,用中间体Z17替换中间体Z22与162-3缩合,可得化合物163,MS(ESI)m/z=581(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.48(d,J=2.2 Hz,1H),7.39(s,1H),7.20(d,J=9.1Hz,1H),7.09(d,J=12.1Hz,1H),6.96(s,1H),5.09(d,J=8.5Hz,1H), 4.46(d,J=8.9Hz,1H),4.05(d,J=0.9Hz,4H),3.96(dd,J=7.9,6.3Hz,2H),3.60(q,J=7.1Hz,1H),3.22(t, J=4.9Hz,1H),3.17(s,3H),2.87(dt,J=13.0,6.6Hz,1H),2.43–2.30(m,2H),2.23–2.07(m,1H),2.06– 1.88(m,2H),1.86–1.64(m,6H),1.29(s,4H),1.17(t,J=7.1Hz,1H),0.94–0.84(m,1H).

实施例164、化合物164的制备

照实施例1的合成路线中步骤1到步骤6的方法,步骤1中用Boc-D-环己基甘氨酸替换中间体Z1,其余试剂和操作相同,可得化合物164,MS(ESI)m/z=551(M+1)+。核磁数据:

1H NMR(400MHz,Methanol-d4)δ7.59(d,J=1.7Hz,1H),7.56–7.45(m,2H),7.28(dd,J =8.6,1.8Hz,1H),7.10(d,J=8.9Hz,1H),6.95(d,J=2.1Hz,1H),5.11(d,J=8.7Hz,1H),4.08 (s,3H),3.95(dd,J=9.2,4.5Hz,2H),3.73(d,J=9.5Hz,1H),3.48–3.44(m,2H),3.40(s,3H), 2.49(h,J=8.3,7.7Hz,1H),2.12(s,1H),2.05–1.98(m,1H),1.94–1.67(m,8H),1.59(s,3H), 1.46(d,J=12.9Hz,1H),1.41–1.13(m,5H).

实施例165和166、化合物164和165的制备

参照实施例1的合成路线中步骤1到步骤6的方法,步骤1中用Boc-D-环己基甘氨酸替换中间体Z1,在步骤6中用表中中间体结构替换Z15,其余操作步骤相同,最后参照中间体Z18合成路线中步骤3的方法,用LiOH在THF/H2O体系下脱除Fmoc保护基,可得表中相应结构化合物。

实施例167、化合物167的制备

参照实施例1步骤1和步骤2的操作步骤,用Boc-D-环己基甘氨酸和中间体Z2a为原料,经缩合、关环得到化合物167-2。再参照实施例86的操作步骤,以167-2为原料,经水解酯,缩合中间体Z15,脱除boc保护基,最后缩合异丙酸,得带化合物167,MS(ESI)m/z=551(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.57(d,J=1.7Hz,1H),7.48(d,J=8.5Hz,1H),7.25(dd,J=8.5,1.8Hz,1H),7.01(d,J=8.9Hz,1H),4.91(d,J=8.5Hz,1H),3.99–3.89(m,2H),3.67(d,J=9.5Hz,1H),3.52–3.38(m,3H),3.36(s,3H),2.63–2.40(m,2H),2.03 –1.94(m,2H),1.92–1.70(m,3H),1.68(s,1H),1.60(s,3H),1.43–0.95(m,11H).

实施例168到174、化合物168-174的制备

参照实施例167的合成路线,用表中羧酸替换步骤6中的异丙酸与中间体167-5缩合,可得表中对应结构化合物168-174.

实施例175、化合物175的制备

参照实施例1的合成路线中步骤1到步骤6的方法,步骤1中用2-((叔丁氧基羰基)氨基)-2-(2,2,4-三甲基环己基)乙酸替换中间体Z1,在步骤6中用中间体Z16替换中间体Z15,其余操作方法相同,可得化合物175,MS(ESI)m/z=607(M+1)+。核磁数据:1H NMR(400MHz, Methanol-d4)δ7.59(d,J=1.7Hz,1H),7.52(d,J=2.1Hz,2H),7.28(dd,J=8.5,1.8Hz,1H), 7.15(d,J=9.2Hz,1H),6.92(d,J=2.1Hz,1H),5.85(d,J=3.4Hz,1H),4.14(s,3H),4.09–4.02 (m,1H),3.97(d,J=9.6Hz,1H),3.76(d,J=9.6Hz,1H),3.57(dd,J=11.4,4.2Hz,1H),3.49– 3.44(m,1H),3.42(s,3H),2.15–1.99(m,3H),1.98–1.84(m,2H),1.84–1.70(m,3H),1.69– 1.60(m,4H),1.59(s,3H),1.56–1.48(m,1H),1.44–1.36(m,1H),1.08(s,3H),1.05(s,3H),1.01 (s,3H),0.97–0.91(m,1H),0.88(d,J=6.4Hz,3H).

实施例176、化合物176的制备

参照实施例1的合成路线步骤1到步骤6的方法,用Boc-D-环己基甘氨酸和中间体Z34 替换Z1和Z2a为起始原料,经历相同的操作步骤,可得化合物176,MS(ESI)m/z=569(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.47(d,J=2.2Hz,2H),7.35(s,2H),7.17(d,J=8.9Hz,1H),7.10(d,J=8.9Hz,1H),7.05–6.98(m,2H),6.94(d,J=2.1Hz,2H),5.08(d,J=8.7 Hz,2H),4.06(s,6H),3.99–3.84(m,5H),3.76–3.63(m,2H),3.51–3.40(m,4H),3.37(d,J= 6.3Hz,6H),2.47(d,J=6.1Hz,2H),2.23–1.62(m,25H),1.57(d,J=13.2Hz,7H),1.48–0.95 (m,15H).

实施例177、化合物177的制备

与化合物176的合成类似,参照实施例1的合成路线步骤1到步骤6的方法,用Boc-D- 环己基甘氨酸和中间体Z33替换Z1和Z2a为起始原料,经历相同的操作步骤,可得化合物177,MS(ESI)m/z=569(M+1)+。核磁数据:1H NMR(400MHz,Methanol-d4)δ7.37(d,J=2.2Hz,1H),7.23–7.13(m,2H),6.95(d,J=8.8Hz,1H),6.84(d,J=2.2Hz,1H),4.99(d,J=8.7Hz,1H), 3.96(s,3H),3.92–3.76(m,2H),3.59–3.47(m,1H),3.37(t,J=4.6Hz,2H),3.26(s,3H),2.40 (q,J=7.9Hz,1H),2.06–1.75(m,3H),1.71(ddd,J=15.8,7.5,4.4Hz,4H),1.59(s,1H),1.54(s, 3H),1.37–0.87(m,8H),0.85–0.73(m,1H).

实施例178、化合物178的制备

参照实施例1合成路线步骤1到步骤6的方法,用Boc-D-环己基甘氨酸和中间体Z35替换Z1和Z2a为起始原料,在步骤6中用(S)-ALPHA-甲基-环丁烷甲胺替换Z15,其余操作步骤相同,可得化合物178-1,MS(ESI)m/z=666(M+1)+

向178-1(50.00mg,75.10μmol)的2-异丙醇(8mL)溶液中加入Pd/C(20mg,164.68 μmol),混合液氢气置换后在氢气的保护下室温搅拌2小时,反应完成后,过滤,浓缩滤液得到的粗品用mHPLC分离纯化得到化合物178(6.7mg,12.16μmol,16.19%收率,96.5%纯度),MS(ESI)m/z=569(M+1)+1H NMR(400MHz,DMSO-d6)δ8.94(d,J=7.6Hz,1H),7.66– 7.56(m,1H),7.50(d,J=2.1Hz,1H),7.39(dd,J=26.8,8.6Hz,1H),7.25(m,1H),7.07(t,J=1.5Hz,1H),5.12–5.02(m,1H),4.23(t,J=11.3Hz,1H),3.98(d,J=1.2Hz,3H),3.85–3.70(m,1H),3.43(m,1H),3.18(dd,J=15.1,11.5Hz,1H),3.09(m,1H),2.86–2.76(m,1H),2.25–1.99 (m,2H),1.97–1.69(m,4H),1.69–1.48(m,4H),1.47–1.27(m,3H),1.29–1.04(m,4H),1.03– 0.92(m,1H),0.83(dd,J=42.6,6.6Hz,3H).

实施例179、化合物179的制备

向化合物178(10.00mg,18.81μmol)的DCM(5mL)溶液中加入Ac2O(5.76mg,56.42 μmol)和TEA(9.52mg,94.04μmol,13.12μL),混合液室温搅拌2小时。反应完成后,旋除溶剂,粗品用mHPLC分离纯化得到化合物179(2.9mg,5.05μmol,26.88%收率).MS(ESI)m/z= 574(M+1)+。核磁数据1H NMR(400MHz,DMSO-d6)δ7.64–7.52(m,2H),7.50(d,J=2.1Hz, 1H),7.46–7.25(m,2H),7.07(d,J=2.0Hz,1H),5.08(d,J=8.4Hz,1H),4.56–4.19(m,1H), 3.99(s,3H),3.74(q,J=8.2Hz,1H),3.50–3.32(m,2H),3.28–3.12(m,1H),2.93–2.77(m,1H),2.39–2.05(m,3H),2.05–1.84(m,4H),1.84–1.56(m,6H),1.56–1.32(m,4H),1.12(m,6H),0.90–0.71(m,3H).

实施例180、化合物180的制备

零度下,向178(11.00mg,20.69μmol)的DCM(4mL)溶液中加入氯甲酸甲酯(2.93mg,31.03μmol)和TEA(2.09mg,20.69μmol,2.89μL),反应混合液在零度下搅拌反应1小时。反应完成后,减压蒸馏除掉溶剂,粗品用mHPLC分离纯化得到化合物180(1.1mg,1.87μmol,9.02%收率),MS(ESI)m/z=590(M+1)+。核磁数据1H NMR(400MHz,DMSO-d6)δ7.60–7.50 (m,2H),7.50(m,1H),7.37(d,J=8.7Hz,1H),7.24(d,J=7.3Hz,1H),7.05(d,J=2.1Hz,1H),5.06(d,J=8.6Hz,1H),4.39–4.21(m,1H),3.99(s,3H),3.60(d,J=13.4Hz,3H),3.55–3.43(m, 1H),3.43–3.20(m,2H),2.81(s,1H),2.32–2.02(m,3H),1.95–1.68(m,3H),1.68-1.63(s,3H), 1.56–1.40(m,3H),1.35(m,1H),1.11(m,6H),0.81(m,3H).

实施例181、化合物181的制备

室温下,向化合物178(15.00mg,28.21μmol)的MeOH(5mL)溶液中加入甲醛醇溶液(5 mg),混合液室温下搅拌反应30min,然后加入NaCNBH3(5.32mg,84.64μmol),反应液室温搅拌过夜。反应完成后,减压蒸馏,旋除溶剂,粗品用mHPLC分离纯化181(8.4mg,15.39 μmol,54.56%收率).MS(ESI)m/z=590(M+1)+。核磁数据1H NMR(400MHz,DMSO-d6)δ 7.60–7.50(m,2H),7.48(d,J=2.1Hz,1H),7.36(m,1H),7.13(d,J=8.5Hz,1H),7.05(dd,J=2.1,1.0Hz,1H),5.05(d,J=8.8Hz,1H),4.67–4.03(m,1H),4.00(s,3H),3.75(m,2H),3.43(m, 2H),3.17–2.95(m,1H),2.95–2.80(m,4H),2.77(s,1H),2.28–2.00(m,2H),1.96–1.66(m, 4H),1.66–1.48(m,4H),1.48–1.19(m,4H),1.19–0.92(m,4H),0.92–0.70(m,3H).

实施例182、化合物182的制备

与化合物178的合成类似,参照实施例1合成路线步骤1到步骤6的方法,用Boc-D-环己基甘氨酸和中间体Z35替换Z1和Z2a为起始原料,在步骤6中用(R)-2-氨基丁醇替换Z15,其余操作步骤相同,可得化合物182-1,MS(ESI)m/z=656(M+1)+

用182-1为原料,参照化合物180的方法,脱除Cbz保护基,得到化合物182,MS(ESI)m/z=522(M+1)+。核磁数据1H-NMR(MeOD)0.79(3.0H,t,J=7.44Hz),1.03-1.42(6.0H,m),1.43-1.57(2.0H,m),1.73(2.0H,t,J=13.78Hz),1.84(1.0H,d,J=13.08Hz),2.05(1.0H,t,J=7.66 Hz),2.16-2.26(1.0H,m),2.61-2.72(1.0H,m),2.87-2.97(1.0H,m),3.33-3.46(4.0H,m),3.54-3.63 (1.0H,m),3.74-3.84(1.0H,m),4.03(3.0H,s),4.37(1.0H,d,J=11.68Hz),5.15(1.0H,d,J=8.44 Hz),7.02(1.0H,d,J=2.20Hz),7.46-7.55(2.0H,m),7.77(1.0H,d,J=8.60Hz),7.82(1.0H,d, J=1.32Hz).

实施例183、化合物183的制备

以化合物182为原料,参照实施例179的合成方法,上乙酰基即可得化合物183, MS(ESI)m/z=564(M+1)+。核磁数据1H-NMR(MeOD)0.71-0.82(3.0H,m),1.05-1.43(7.0H,m),1.48-1.60(2.0H,m),1.74(2.0H,t,J=16.59Hz),1.85(1.0H,d,J=13.24Hz),2.00-2.09(2.0H,m), 2.18-2.30(1.0H,m),2.42-2.53(1.0H,m),2.84-3.01(1.0H,m),3.37(2.0H,t,J=5.96Hz),3.45-3.67 (2.0H,m),3.74-3.91(2.0H,m),4.03(3.0H,s),4.45(1.0H,q,J=28.54Hz),5.18(1.0H,q,J=3.36 Hz),7.04(1.0H,d,J=2.08Hz),7.50(1.0H,d,J=2.04Hz),7.60-7.65(1.0H,m),7.75-7.83(2H,m).

实施例184、化合物184的制备

以化合物182为原料,参照实施例180的合成方法,与氯甲酸甲酯反应,可得化合物184, MS(ESI)m/z=580(M+1)+。核磁数据1H-NMR(MeOD)0.76(3.0H,q,J=7.16Hz),1.05-1.44 (7.0H,m),1.48-1.62(2.0H,m),1.74(2.0H,t,J=17.17Hz),1.85(1.0H,d,J=12.76Hz),2.05(1.0H, d,J=12.64Hz),2.19-2.31(1.0H,m),2.37-2.47(1.0H,m),2.83-2.94(1.0H,m),3.37(2.0H,d, J=5.48Hz),3.42-3.55(2.0H,m),3.66-3.84(4.0H,m),4.03(3.0H,s),4.34(1.0H,q,J=8.74Hz), 5.18(1.0H,d,J=8.04Hz),7.04(1.0H,d,J=2.16Hz),7.50(1.0H,d,J=2.12Hz),7.62(1.0H,d, J=7.68Hz),7.73-7.82(2.0H,m).

实施例185、化合物185的制备

与化合物178的合成类似,参照实施例1合成路线步骤1到步骤6的方法,用Boc-D-环己基甘氨酸和中间体Z35替换Z1和Z2a为起始原料,在步骤6中用环丁基甲胺替换Z15,其余操作步骤相同,可得化合物185-1,MS(ESI)m/z=652(M+1)+

用185-1为原料,参照化合物180的方法,脱除Cbz保护基,得到化合物185,MS(ESI)m/z= 518(M+1)+。核磁数据1H NMR(400MHz,DMSO-d6)δ9.00(d,J=7.1Hz,1H),7.75(t,J=5.9 Hz,1H),7.71–7.58(m,2H),7.51(d,J=2.1Hz,1H),7.32(d,J=8.8Hz,1H),7.07(dd,J=2.2, 1.1Hz,1H),5.14–5.04(m,1H),4.26(d,J=11.6Hz,1H),3.97(s,3H),3.43(m,1H),3.22(d,J= 11.6Hz,1H),3.19–2.93(m,3H),2.87–2.76(m,1H),2.39–2.24(m,1H),2.19–2.04(m,1H), 1.91(d,J=12.4Hz,1H),1.82–1.52(m,7H),1.51–1.32(m,3H),1.31–0.92(m,5H).

实施例186、化合物186的制备

类似实施例178的合成,参照实施例1合成路线步骤1到步骤6的方法,用Boc-D-环己基甘氨酸和中间体Z35替换Z1和Z2a为起始原料,在步骤6中用(R)-2-氨基-2-环丙基-1-乙醇替换Z15,其余操作步骤相同,可得化合物186-1,MS(ESI)m/z=668(M+1)+

脱除Cbz保护基,然后与乙酸酐反应得到化合物186,MS(ESI)m/z=576(M+1)+。核磁数据1H-NMR(MeOD)0.11-0.24(2.0H,m),0.26-0.53(2.0H,m),0.78-0.91(1.0H,m),1.02-1.43 (7.0H,m),1.54(1.0H,d,J=11.32Hz),1.67-1.89(3.0H,m),2.05(2.0H,s),2.17-2.30(1.0H,m), 2.42-2.53(1.0H,m),2.85-3.00(1.0H,m),3.18-3.27(1.0H,m),3.44-3.67(4.0H,m),3.83(1.0H,q, J=15.55Hz),4.03(3.0H,s),4.43(1.0H,q,J=28.06Hz),5.17(1.0H,d,J=7.96Hz),7.04(1.0H,d, J=2.16Hz),7.50(1.0H,d,J=2.04Hz),7.59-7.65(1.0H,m),7.76(1.0H,d,J=6.40Hz),7.79(1.0H, s).

实施例187、化合物187的制备

以化合物186-2为原料,参照实施例180的合成方法,与氯甲酸甲酯反应,可得化合物 187,MS(ESI)m/z=592(M+1)+。核磁数据1H-NMR(MeOD)0.11-0.24(2.0H,m),0.27-0.52(2.0H,m),0.77-0.90(1.0H,m),1.02-1.45(7.0H,m),1.55(1.0H,d,J=11.40Hz),1.75(2.0H,q, J=11.67Hz),1.85(1.0H,d,J=13.28Hz),2.04(1.0H,d,J=12.08Hz),2.17-2.28(1.0H,m), 2.35-2.46(1.0H,m),2.81-2.93(1.0H,m),3.18-3.26(1.0H,m),3.42-3.59(4.0H,m),3.71(3.0H,d, J=12.28Hz),4.03(3.0H,s),4.32(1.0H,q,J=8.82Hz),5.16(1.0H,d,J=7.92Hz),7.03(1.0H,d, J=2.16Hz),7.50(1.0H,d,J=2.12Hz),7.56-7.62(1.0H,m),7.74(1.4H,d,J=1.20Hz),7.76(1H,s).

实施例188、化合物188的制备

类似实施例178的合成,参照实施例1合成路线步骤1到步骤6的方法,用Boc-D-环己基甘氨酸和中间体Z35替换Z1和Z2a为起始原料,在步骤6中用Z22替换Z15,其余操作步骤相同,可得化合物188-1,MS(ESI)m/z=795(M+1)+

脱除Cbz保护基,然后与乙酸酐反应,最后TFA体系脱除Boc,可得化合物188, MS(ESI)m/z=603(M+1)+。核磁数据:1H-NMR(MeOD)0.87(3.0H,d,J=33.77Hz),1.08-1.63(9.0H,m),1.65-1.96(7.0H,m),2.14-2.31(2.0H,m),2.32-2.48(1.0H,m),2.77-3.11(3.0H,m), 3.44-3.62(2.0H,m),3.63-3.94(2.0H,m),3.98-4.15(4.0H,m),4.16-4.32(2.0H,m),5.17(1.0H,d, J=5.80Hz),7.04(1.0H,s),7.50(1.0H,s),7.60(1.0H,q,J=8.70Hz),7.73-7.89(2.0H,m).

实施例189、化合物189的制备

以化合物188-2为原料,参照实施例180的合成方法,与氯甲酸甲酯反应,然后脱除Boc 保护基,可得化合物189,MS(ESI)m/z=619(M+1)+。核磁数据:1H-NMR(MeOD)0.82(3.0H,s),1.00-1.64(10.0H,m),1.65-1.91(6.0H,m),2.03(1.0H,d,J=11.76Hz),2.20(1.0H,d,J=8.52 Hz),2.54-2.61(1.0H,m),2.77-2.97(3.0H,m),3.54(2.0H,s),3.69(3.0H,d,J=12.68Hz),4.03 (3.0H,s),4.17(1.0H,d,J=8.44Hz),4.50(1.0H,t,J=13.44Hz),5.14(1.0H,d,J=7.88Hz),7.01 (1.0H,s),7.51(2.0H,d,J=12.00Hz),7.73(1.0H,d,J=8.24Hz),7.77(1.0H,s).

实施例190至实施例199、化合物189至化合物199的制备

方法A:参照实施例1合成路线步骤1到步骤6的方法,在步骤1中用Boc-D-环己基甘氨酸和表中对用二胺中间体为起始原料,在步骤6中用表中相应胺替换中间体Z15,其余步骤相同,可得表中相应结构化合物。

方法B:参照实施例1合成路线步骤1到步骤6的方法,在步骤1中用Boc-D-环己基甘氨酸和表中对用二胺中间体为起始原料,在步骤6中用表中相应胺替换中间体Z15,其余步骤相同,可得相应中间体;参照中间体Z18合成路线中步骤3脱Fmoc的操作,上述缩合产物替代中间体Z18-2,其余方法相同,可得表中对应化合物。

方法C:参照实施例1合成路线步骤1到步骤6的方法,在步骤1中用Boc-D-环己基甘氨酸和表中对用二胺中间体为起始原料,在步骤6中用表中相应胺替换中间体Z15,其余步骤相同,可得相应中间体;参照中间体Z16步骤8脱Boc的操作,用上述中间体替代中间体Z16-8,其余方法相同,可得表中对应化合物。

方法D:参照实施例1合成路线步骤1到步骤6的方法,在步骤1中用Boc-D-环己基甘氨酸和表中对用二胺中间体为起始原料,在步骤6中用表中相应胺替换中间体Z15,其余步骤相同,可得相应中间体;参照实施例106步骤3中方法,用Pd/C脱出Cbz保护基,可得表中对应化合物。

未经特别说明,表中实施例化合物为方法A制备得。

实施例200和201、化合物200和201的制备

参照实施例86的合成路线中步骤2到步骤4的方法,在步骤2中用下表中的胺替换中间体Z15与中间体86-1缩合,在步骤4中用表格中的酸替换5-甲基异恶唑羧酸,其余操作相同,可得表中相应结构化合物。

为了说明本发明的有益效果,本发明提供以下试验例。

试验例1 IL-17酶联免疫吸附测定(ELISA)实验

通过竞争性ELISA对IL-17A抑制剂对受体-配体结合的抑制情况进行了定量检测。将 0.2μg/ml IL-17a(Sino Biological lnc.Cat#12047-H07B)以100μl每孔在96孔板中37度孵育 30分钟。用PBST(PBS,0.05%Tween-20)洗板4次,每次200μl每孔,加入200μl 5%脱脂牛奶于25度摇床上孵育30分钟。准备100X浓度待测化合物,浓度从0.003μM到30μM。用PBST(PBS,0.05%Tween-20)洗板4次后加入89μl PBST和1μl 100X浓度待测化合物混匀后于25度预孵育10分钟。加入10μl 16nM IL-17R于25度摇床上孵育30分钟。洗板4次后,加入100μl抗Fc标签HRP偶联抗体于25度摇床上孵育30分钟。洗板4次后,加入100μl TMB 底物溶液25度避光孵育。加入20%HCl后,采用酶标仪于450nm波长检测光吸收值。

按照上述方法对实施例制备的化合物进行去IL-17A抑制活性检测,试验结果见表1,其中测定各化合物的IC50按照说明分类,表1中:

“+”表示IC50测定值小于100μM大于1μM;

“++”表示IC50测定值小于1μM大于100nM;

“+++”表示IC50测定值小于100nM;

“-”表示尚未测试。

表1、化合物对IL-17A的抑制活性

试验例2、本发明化合物抑制IL17A蛋白诱导HT-29细胞产生趋化因子GROα/CXCL1

将5x104个/孔的人结直肠癌上皮细胞HT-29(成都中源共创科技有限公司)加入96孔板中,在37℃培养箱培养过夜。将30ng/mL的IL17A蛋白(R&D,#317-ILB)与梯度浓度的IL17A 小分子抑制剂或与0.3μg/mL阳性对照IL17A抗体(R&D,#AF-317-NA)的混合物在37℃温育1小时后加入到上述96孔板中,与HT-29细胞在37℃共温育48小时,然后用GROα的ELISA试剂盒(Cisbio,#62HCXC1PEG)检测细胞培养上清中的GROα的水平。

按照上述方法,对实施例制备的化合物进行HT-29细胞中中和人IL17A介导的信号传导,试验结果见表2。

表2、化合物对IL-17A的抑制活性

实施例 HT-29 IC<sub>50</sub>(μM)
化合物19a 0.073
化合物20 0.089
化合物21 0.148
化合物22 0.143
化合物23 0.302
化合物164 0.044
化合物183 0.142
化合物197 0.53

试验例3、小鼠脑脊髓炎药效模型

在10周雌性C57BL/6小鼠中,使用MOG蛋白引发脑脊髓炎模型。自造模前一天起,每日两次灌胃(30mg/kg)或腹腔注射(3,10,30mg/kg)给予实施例20溶液,或每三天一次腹腔注射给予IL17A抗体溶液(第一、二次10mg/kg,之后5mg/kg);对照组、模型组给予空白溶剂。每日根据小鼠脑脊髓炎模型的评分系统进行评分,并绘制评分曲线。疾病评分的结果显示(图1),腹腔注射给予实施例20能够剂量依赖性的抑制小鼠脑脊髓炎的发病,终末日评分内,10,30mg/kg的化合物对于脑脊髓炎严重程度的抑制与模型组相比具有显著性差异,同时灌胃给予的实施例20也对于疾病严重程度存在抑制作用。

在模型21天时,收集小鼠脑、脊髓样本固定于4%多聚甲醛中,进行HE染色,考察实施例20对于组织脑脊髓的组织病理学损伤的保护作用。HE染色的结果显示(图2),实施例20各途径、各剂量都能够抑制疾病造成的脑部、脊髓部位炎性病变。

试验例4、小鼠咪喹莫特乳膏诱导的银屑病药效模型

将10周龄的雌性C57BL/6N小鼠的背部剃除约2.5×4cm的毛,从第一天至第五天连续涂抹咪喹莫特(IMQ,Imiquimod)乳膏以建立银屑病模型。各组分别每日两次通过皮下注射给予实施例20-3,10,30mg/kg,通过灌胃给予实施例20-30mg/kg,每隔一天通过腹腔注射给予 IL17A抗体溶液(2mg/kg),或每日一次腹腔注射给予地塞米松溶液(10mg/kg)。根据PASI 评分,背部病变拍照,腹腔注射或灌胃途径给予不同剂量实施例20减轻了IMQ诱导的皮肤炎症水平(图3)。

在实验第一天和第五天分别测定小鼠皮肤厚度,考察皮厚变化情况,结果显示各组别实施例20和IL17A抗体给药不同程度逆转了IMQ造成的皮肤增厚(图4)。

实验第五天采集各组小鼠皮肤,RT-qPCR法检测il6与il1β基因的转录水平,结果显示 (图5)各组别实施例20和IL17A抗体给药皆一定程度逆转了皮肤组织中il6表达水平的上调,并可以显著地逆转il1β基因的表达水平的上调。

在实验第五天时,收集小鼠皮肤样本固定于4%多聚甲醛中,进行HE染色,考察实施例 20对于IMQ所致皮肤病理损伤的影响。同时灌胃给予的实施例20也对于疾病严重程度存在抑制作用。HE染色的结果显示(图6),实施例20和IL17A抗体给药都能够抑制皮肤的炎性病变。

试验例5、小鼠咪喹莫特乳膏诱导的银屑病药效模型

将10周龄的雌性C57BL/6N小鼠的背部剃除约2.5×4cm的毛,从第一天至第五天连续涂抹咪喹莫特(IMQ,Imiquimod)乳膏以建立银屑病模型。各组分别每日两次通过灌胃给予实施例20-1,3,10,30mg/kg,每隔一天通过腹腔注射给予IL17A抗体溶液(2mg/kg),或每日一次腹腔注射给予地塞米松溶液(10mg/kg)。根据PASI评分,背部病变拍照(图7),给予不同剂量实施例20减轻了IMQ诱导的皮肤炎症水平,除1mg/kg剂量外,其余剂量效果与 IL17A抗体近似。

在实验第一天和第五天分别测定小鼠皮肤厚度,考察皮厚变化情况,结果显示(图8) IL17A抗体和实施例20对于IMQ诱导的皮肤增厚存在抑制,高剂量实施例20(30mg/kg)的皮肤厚度变化与模型组存在显著性差异。

实验第五天采集各组小鼠皮肤,RT-qPCR法检测il6与il1β基因的转录水平,结果显示 (图9)各组别实施例20和IL17A抗体给药皆一定程度逆转了皮肤组织中il6表达水平的上调;除实施例20(3mg/kg)之外,各组别给药可以显著地逆转il1β基因的表达水平的上调。

试验表明,本发明实施例的化合物具有良好的IL-17A抑制活性,可以有效用于与IL-17A 活性异常疾病的治疗。

综上所述,本发明公开的式I所示的新化合物,表现出了良好的IL-17A抑制活性,为临床治疗与IL-17A活性异常相关的疾病提供了一种新的药用可能。

162页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种免疫调节剂

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!