Cool cushion system of high-efficient heat dissipation based on thermal cycle

文档序号:583353 发布日期:2021-05-25 浏览:26次 中文

阅读说明:本技术 一种基于热力循环的高效散热清凉坐垫系统 (Cool cushion system of high-efficient heat dissipation based on thermal cycle ) 是由 耿少航 秦侃 于 2021-01-14 设计创作,主要内容包括:本发明公布了一种基于热力循环的高效散热清凉坐垫系统,该坐垫系统由热力循环子系统、凝胶、高效热管、相变材料和电源组成,其中热力循环子系统由依次紧密相连的微型压缩机、冷凝器、膨胀阀和蒸发室组成一个闭式循环,闭式循环中各个部件之间流动的工质为R134a。其具有有电使用和无电使用两种工作模式,在有电使用模式工作时,高效热管与蒸发室相连,凝胶吸收来自人体的热量通过高效热管传导至热力循环子系统的蒸发室,热力循环子系统的工质R134a在蒸发室内吸收热量从而实现降温,同时相变材料有电使用模式工作时放热蓄冷。在无电使用模式工作时,高效热管与蒸发室断开,已经蓄冷的相变材料直接吸热蒸发实现降温。(The invention discloses a high-efficiency heat-dissipation cool cushion system based on thermodynamic cycle, which consists of a thermodynamic cycle subsystem, gel, a high-efficiency heat pipe, a phase-change material and a power supply, wherein the thermodynamic cycle subsystem forms closed cycle by a micro compressor, a condenser, an expansion valve and an evaporation chamber which are sequentially and closely connected, and a working medium flowing among all the components in the closed cycle is R134 a. The gel has two working modes of electricity utilization and no electricity utilization, when the electricity utilization mode works, the high-efficiency heat pipe is connected with the evaporation chamber, the gel absorbs heat from a human body and conducts the heat to the evaporation chamber of the thermodynamic cycle subsystem through the high-efficiency heat pipe, the working medium R134a of the thermodynamic cycle subsystem absorbs the heat in the evaporation chamber to realize cooling, and meanwhile, the phase-change material releases heat and stores cold when the electricity utilization mode works. When the device works in the electroless use mode, the high-efficiency heat pipe is disconnected from the evaporation chamber, and the cold-stored phase-change material directly absorbs heat and evaporates to realize cooling.)

1. The utility model provides a cool cushion system of high-efficient heat dissipation based on thermodynamic cycle which characterized in that includes:

the cool cushion system consists of a micro compressor 1, a condenser 2, an expansion valve 3, an evaporation chamber 4, gel 5, a high-efficiency heat pipe 6, a phase-change material 7 and a power supply 8; wherein the micro compressor 1, the condenser 2, the expansion valve 3 and the evaporation chamber 4 are sequentially and tightly connected to form a thermodynamic cycle subsystem, and the working medium flowing in the thermodynamic cycle subsystem is R134 a.

2. According to claim 1, a cooling cushion system with high-efficiency heat dissipation based on thermodynamic cycle is characterized in that: the system has two working modes of electricity use and electricity-free use, when the electricity use mode exists, the power supply 8 drives the micro compressor 1 to rotate, the thermodynamic cycle subsystem works, the evaporation chamber 4 is connected with the high-efficiency heat pipe 6, the gel 5 absorbs heat of a human body and conducts the heat to the evaporation chamber 4 through the high-efficiency heat pipe 6, the working medium of the evaporation chamber 4 absorbs the heat to realize cooling, and meanwhile, the phase-change material 7 transfers energy to the evaporation chamber 4 through the high-efficiency heat pipe 6 so as to store cold; when the power-free use mode is adopted, the thermodynamic cycle subsystem does not work, the evaporation chamber 4 is disconnected with the high-efficiency heat pipe 6, and the phase-change material 7 with cold accumulation absorbs heat through phase change to realize cooling.

[ technical field ] A method for producing a semiconductor device

The invention relates to a cool cushion system, in particular to a high-efficiency heat-dissipation cool cushion system based on thermodynamic cycle.

[ background of the invention ]

Along with the rapid development of national economy in recent years, the working strength of people is gradually increased, and the continuous working time per day is up to tens of hours. In the sultry confined environment, sit for a long time and lead to the malaise easily, not only can reduce work efficiency, still can influence healthy, cool cushion not only can alleviate fatigue, can also strengthen the travelling comfort, possess extensive market prospect.

In order to solve the problem of poor heat dissipation capability of the cool cushion and enhance the comfort of the cool cushion, the invention patent CN203228872 discloses a cool cushion using a phase-change material, which absorbs heat to cool the cool cushion; the invention patent CN104029755A2 discloses a water-cooling heat dissipation cushion, which realizes the cooling of the cushion through liquid-phase water convection heat exchange. However, they have disadvantages that the heat dissipating ability is limited and the heat dissipating effect is deteriorated after a long time use. The thermodynamic cycle has the advantage of strong heat transfer capacity, and the cooling cushion can be actively cooled by combining the thermodynamic cycle, so that the heat dissipation capacity of the cooling cushion is improved, and the comfort is enhanced.

[ summary of the invention ]

The invention aims to solve the technical problems that the existing cool cushion has poor heat dissipation capability, and the comfort is reduced due to heat dissipation deterioration after long-time use, and the like, and provides a novel cool cushion system with high-efficiency and lasting heat dissipation, so that the heat dissipation capability of the cushion is not deteriorated after long-time use, and the cool cushion still has good comfort.

The technical solution of the invention is as follows:

a cool cushion system using thermodynamic cycle for active, high-efficiency and lasting heat dissipation. The cushion system consists of a thermodynamic cycle subsystem, a phase-change material, a high-efficiency heat pipe, gel and the like. The device has two working modes of electrified use and non-electrified use, and can meet the requirements of different occasions.

The thermodynamic cycle subsystem consists of a micro compressor, a condenser, an expansion valve and an evaporation chamber which are closely connected in sequence, and a working medium flowing among all parts in the system is R134 a. Wherein the outlet of the micro compressor is connected with the inlet of the condenser, and the low-pressure R134a gas is compressed into high-pressure R134a gas in the micro compressor; the outlet of the condenser is connected with the inlet of the expansion valve, and the high-pressure R134a gas is condensed into R134a liquid in the condenser; the outlet of the expansion valve is connected with the inlet of the evaporation chamber, and the pressure and the temperature of the R134a liquid are reduced after the expansion of the expansion valve; the outlet of the evaporation chamber is connected with the inlet of the micro compressor, and the low-temperature and low-pressure R134a liquid absorbs heat from the heat pipe in the evaporation chamber and evaporates into R134a gas to complete the whole cycle.

Phase change material be stored in the closed region that is enclosed by high-efficient heat pipe, phase change material releases the heat cold-storage in the use model that has the electricity, absorbs the heat in the use model that does not have the electricity and realizes the cooling, ensures through phase change material phase transition that cool cushion can both normal use in two kinds of mode.

The high-efficiency heat pipe has extremely strong heat conduction capability, can conduct heat absorbed by gel from a human body to an evaporation chamber of the thermodynamic cycle subsystem in an extremely short time, not only ensures that the thermodynamic cycle subsystem can normally operate, but also timely cools down, and ensures that the comfort of the cool cushion after long-time use is not reduced.

The gel not only can ensure that the cool cushion has better comfort, but also can be quickly led out by the high-efficiency heat pipe after absorbing the heat of a human body, and also provides a heat source for an evaporation chamber of the thermodynamic cycle subsystem.

In the system, the following beneficial effects are achieved:

(1) the high-efficiency and lasting heat dissipation of the cool cushion is realized through the combination of the thermal cycle and the phase-change material, the heat dissipation capacity of the cool cushion is enhanced, the cooling capacity of the cool cushion is not degraded after the cool cushion is used for a long time, and the comfort is not reduced.

(2) The cool cushion has two working models of electrified use and non-electrified use, and can meet the requirements of different occasions.

[ description of the drawings ]

Fig. 1 is a schematic diagram showing the principle of the cool cushion system for actively and efficiently dissipating heat permanently by using thermodynamic cycle.

In the figure: 1. a micro compressor; 2. a condenser; 3. an expansion valve; 4. an evaporation chamber; 5. gelling; 6. a high-efficiency heat pipe; 7. a phase change material; 8. a power source.

[ detailed description ] embodiments

The cooling cushion system comprises a micro compressor 1, a condenser 2, an expansion valve 3, an evaporation chamber 4, gel 5, a high-efficiency heat pipe 6, a phase-change material 7 and a power supply 8.

The present embodiment has two operation modes of electricity use and no electricity use during operation, and the two operation modes are described below separately.

The power-on use mode comprises: as shown in fig. 1, the power supply 8 drives the micro-compressor 1 to rotate, so that the low-pressure R134a gas is compressed into the high-pressure R134a gas, the high-pressure R134a gas is condensed into the R134a liquid in the condenser 2, the pressure and temperature of the R134a liquid are reduced after the R134a liquid is expanded by the expansion valve 3, and the expanded low-temperature low-pressure R134a liquid absorbs heat transferred by the high-efficiency heat pipe 6 in the evaporation chamber 4, so that the R134a gas is formed, and the whole cycle is completed. The evaporation chamber 4 is connected with the high-efficiency heat pipe 6, and the gel 5 absorbs heat of a human body and conducts the heat to the evaporation chamber 4 through the high-efficiency heat pipe 6, so that efficient and lasting cooling is realized. In the whole electrified use process, the phase-change material 7 transfers energy to the evaporation chamber 4 through the high-efficiency heat pipe 6 so as to store cold.

A no-power use mode: during non-electrical use, the thermodynamic cycle subsystem is not operating and the evaporation chamber 4 is disconnected from the high efficiency heat pipe 6, as shown in fig. 1. When a human body contacts the gel 5 and is heated, the heat is rapidly conducted to the phase-change material 7 through the high-efficiency heat pipe 6, and the phase-change material 7 which stores cold absorbs the heat through phase change to realize cooling.

This cool cushion system realizes high-efficient lasting cooling through thermal cycle, ensures that cool cushion uses heat-sinking capability not worsen for a long time, and the comfort level does not reduce, provides two kinds of mode for the system through phase change material, can satisfy the demand of multiple occasion.

5页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:采用混合工质的喷射器增效的J-T制冷循环系统及控制方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!