一种薄壁管状构件的增材制造方法

文档序号:58417 发布日期:2021-10-01 浏览:43次 >En<

阅读说明:本技术 一种薄壁管状构件的增材制造方法 (Additive manufacturing method of thin-wall tubular component ) 是由 崔烺 朱继宏 赵健 李韶英 冯胜强 刘光 陈杰 贾利 王晓霞 张龙 戴宇 于 2021-06-30 设计创作,主要内容包括:本发明公开了一种薄壁管状构件的增材制造方法,包括以下步骤1)对管状钛基体表面进行除油、干燥及喷砂处理;2)在钛基体的外壁制备铝/不锈钢复合涂层,形成钛-铝/不锈钢复合管基体;3)钛-铝/不锈钢复合管基体的外壁上喷涂金属粉末来增材制造目标涂层;4)将步骤3)中的钛-铝/不锈钢-目标涂层复合管浸泡入加热的氢氧化钠水溶液中,电腐蚀后得到目标涂层对应的管状构件;5)将目标涂层对应的管状构件进行热处理;6)对目标涂层对应的管状构件进行机械加工,最终获得所需的薄壁管状构件。可实现管状构件的薄壁化和大型化;工艺简单、粉末利用率高,极大降低了加工工期,能够实现快速制备薄壁管状构件;内部结合良好,强度较高。(The invention discloses a material increase manufacturing method of a thin-wall tubular component, which comprises the following steps of 1) carrying out oil removal, drying and sand blasting treatment on the surface of a tubular titanium substrate; 2) preparing an aluminum/stainless steel composite coating on the outer wall of the titanium substrate to form a titanium-aluminum/stainless steel composite pipe substrate; 3) spraying metal powder on the outer wall of the titanium-aluminum/stainless steel composite pipe matrix to form a target coating by additive manufacturing; 4) soaking the titanium-aluminum/stainless steel-target coating composite tube in the step 3) into a heated sodium hydroxide aqueous solution, and performing electric corrosion to obtain a tubular component corresponding to the target coating; 5) carrying out heat treatment on the tubular component corresponding to the target coating; 6) and machining the tubular component corresponding to the target coating to finally obtain the required thin-wall tubular component. The tubular member can be thinned and enlarged; the process is simple, the powder utilization rate is high, the processing period is greatly reduced, and the thin-wall tubular component can be rapidly prepared; the internal bonding is good, and the strength is high.)

一种薄壁管状构件的增材制造方法

技术领域

本发明涉及增材制造领域,尤其涉及一种薄壁管状构件的增材制造方法。

背景技术

钽、铌及其合金材料(Ta-2.5W、Ta-10W、Ta-8W-2Hf、Ta-40Nb、Nb-30W-1Zr等)具有高熔点、耐腐蚀优异、抗热震性能好、蠕变强度高、膨胀系数小,且富有延展性等特点,被广泛应用于电子工业、化学工业、兵器、航空航天、原子能工业及医疗等行业中,其中电子工业和化学工业钽用量占整体钽用量总60%以上。在电子工业和化学工业中钽、铌及其合金材料被大量以管材形式制作电子发射管、高功率电子管及用于制造化学过程的反应容器和热交换器、管道、冷凝器、卡口加热器、螺旋线圈、U形管、热电偶等。

钽、铌及其合金的管状构件一般采用圆棒整体加工、粉末冶金、挤压-深冲(无缝管)以及冷轧-焊接(有缝管)等制备工艺。如专利号为ZL201410116026.2(授权公告号为CN103894442B)的中国发明专利公开了一种制备钽管的制备方法,主要步骤为线切割钽铸锭-预加热-涂覆抗氧化涂层-加热-挤压-真空热处理-轧制-真空热处理,最终获得所需钽管;申请号为201910207064.1的中国发明申请公开了一种粉末冶金制备钽管的方法,该方法为将冶金级钽粉经过筛粉、搅拌后,定量装入带有模芯的软套管中放入等静压机中进行等静压固化,将拆除软套管外套和模芯获得的钽粉管坯放入垂直烧结炉中烧结获得粉末冶金钽管坯,该方法制备工艺较简单;无缝管是使用挤压、管缩径或者用板材深冲成形制备;有缝管是先将钽块体成形成板带,然后制成管形,再把接缝用气体钨电弧(GTAW)焊接。

虽然以上方法都可以制备钽、铌及其合金的管状构件,但或多或少都存在一定的问题:

1)圆棒整体加工成管状构件的工艺复杂、加工周期长且线切割掏孔过程中材料浪费大;

2)粉末冶金工艺受限于压坯或包套尺寸及热等静压设备的限制,管状构件的尺寸及形状将受到很大的限制;

3)无缝管管壁厚均匀难控制,难生产薄壁管状构件及大直径的管状构件;

4)有缝管对带材尺寸要求高且焊缝强度不高。这些问题极大地限制了钽、铌及其合金材料管状构件的推广和应用。

发明内容

本发明所要解决的技术问题是针对现有技术的现状,提供一种薄壁管状构件的制备方法,该制备方法具有工艺简单、加工工期短、节省用料,得到的管状构件的尺寸不受限制、强度较高,可以用于生产大直径的薄壁管状构件。

本发明为解决上述技术问题采用的技术方案为:一种薄壁管状构件的增材制造方法,其特征在于:包括以下步骤

1)将管状钛基体装夹在机床上,对管状钛基体表面进行除油、干燥及喷砂处理;

2)在所述步骤1)的钛基体的外壁制备铝/不锈钢复合涂层,形成钛-铝/不锈钢复合管基体;

3)将目标涂层对应的金属粉末混匀,采用喷涂设备在所述步骤2)得到的钛-铝/不锈钢复合管基体的外壁上喷涂所述金属粉末来增材制造目标涂层,得到钛-铝/不锈钢-目标涂层复合管;所述目标涂层对应的金属粉末为钽粉末或铌粉末或钽合金粉末或铌合金粉末;

4)将所述步骤3)中的钛-铝/不锈钢-目标涂层复合管浸泡入加热的氢氧化钠水溶液中,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快中间位置的铝/不锈钢复合涂层的腐蚀,进而去除位于中间位置的铝/不锈钢复合涂层,从而管状钛基体脱落,得到目标涂层对应的管状构件;

5)将所述步骤4)得到的目标涂层对应的管状构件进行热处理;

6)对所述步骤5)得到的目标涂层对应的管状构件进行机械加工,最终获得所需的薄壁管状构件。

作为改进,所述步骤1)中的所述钛基体采用中空管,其直径大于或等于3mm,所述喷砂设备使用超音速空气火焰喷涂设备,喷砂时的空气压力为60~80PSI,丙烷压力为50~70PSI,喷砂距离为200~300mm,喷砂速率为80~200g/min。

进一步,所述步骤2)制备铝/不锈钢复合涂层时采用铝/不锈钢复合粉末喷涂的方式,其中不锈钢为Cr25双相不锈钢,铝/不锈钢复合粉末中双相不锈钢的质量百分数比为5%~30%,双相不锈钢粉末粒度为70~150μm,铝/不锈钢复合涂层的厚度大于或等于0.2mm。

进一步,在所述步骤2)中,所述铝/不锈钢复合涂层的制备方法采用等离子喷涂、氧乙炔喷焊、超音速火焰喷涂、冷喷涂中的任一种。

进一步,所述步骤3)中目标涂层对应的金属粉末的松装密度为6~14g/cm3,目标涂层的厚度大于或等于0.2mm。

进一步,所述步骤3)中的喷涂是保护气氛冷喷涂,首先将喷涂腔室抽真空至600~800Pa,然后往喷涂腔室通入纯度不低于99%的氮气或氩气至0.1~0.3MPa,并在喷涂过程中不断将氮气或氩气通入喷涂腔室,以维持喷涂腔室内的压力。

进一步,所述步骤3)采用的喷涂设置包括保护气氛冷喷涂系统、无保护气氛冷喷涂系统、氦气循环冷喷涂系统、激光辅助冷喷涂系统中的任一种。

进一步,所述步骤4)中氢氧化钠水溶液的质量百分比浓度为5~60%,温度为40~100℃,浸泡时间为10~100h。

进一步,所述步骤5)中热处理的温度为1200~1500℃,热处理的时间为0.5~4h,热处理的环境采用真空热处理或者氩气热处理或者氮气热处理。

进一步,所述步骤6)中最终获得的管状构件的内径大于或等于3mm,壁厚大于或等于0.1mm。

与现有技术相比,本发明的优点在于:

1、通过氢氧化钠水溶液腐蚀位于中间的铝/不锈钢复合涂层,从而钛基体与目标涂层分离,目标涂层对应于最后的管状构件,相比现有技术需要对圆棒掏孔来制备的方法,本制造方法无需掏孔的步骤,因此工艺简单;由于铝/不锈钢两种材料电位不同,容易形成电偶腐蚀,电偶腐蚀速度较快,进而提高生产速度,极大降低了管状构件的加工工期,能够实现快速制备管状构件;另外,钛基体、管状构件均与氢氧化钠水溶液基本不反应,对薄壁管状构件和钛基体都无损伤,钛基体可以被重复利用;采用喷涂金属粉末的方式得到管状构件对应的目标涂层,不会像现有技术那样对圆棒掏孔去除的材料有较大的浪费,因此能够节省用料;

2、通过喷涂容易控制目标涂层的厚度和目标涂层的面积,从而便于实现最后管状构件的薄壁化和大型化,管状构件的壁厚、内径和长度尺寸不容易像现有技术那样受加工设备的限制,这样可以扩展管状构件的应用;

3、采用喷涂配合电偶腐蚀,管状构件的壁厚比较均匀。

4、采用本方法得到的管状构件内部结合紧密、致密度高,与焊接相比,本发明制备的管状构件的强度较高,管状构件内部不容易有气孔、裂纹等缺陷。

附图说明

图1(a)是本发明提供的等离子喷涂过程示意图,图1(b)是冷喷涂增材制造过程的示意图;

图2是本发明实施例3等离子喷涂铝/不锈钢复合涂层横截面微观形貌;

图3是实施例3冷喷涂增材制造钽管的横截面微观形貌。

具体实施方式

以下结合附图实施例对本发明作进一步详细描述。

实施例1:

参见图1,一种薄壁管状构件的增材制造方法,包括以下步骤

1)将管状钛基体装夹在机床上,对管状钛基体表面进行除油、干燥及喷砂处理;步骤1)中的钛基体采用中空管,其直径为3mm,喷砂设备使用超音速空气火焰喷涂(HVAF)设备,喷砂时的空气压力为60PSI,丙烷压力为50PSI,喷砂距离为250mm,喷砂速率为80g/min。

2)在步骤1)的钛基体的外壁制备铝/不锈钢复合涂层,形成钛-铝/不锈钢复合管基体;步骤2)制备铝/不锈钢复合涂层时采用铝/不锈钢复合粉末喷涂的方式,铝/Cr25不锈钢复合粉末装入等离子送粉罐中,不锈钢为Cr25双相不锈钢,铝/不锈钢复合粉末中双相不锈钢的质量百分数比为30%,双相不锈钢粉末粒度为70~150μm,铝/不锈钢复合涂层的厚度为1mm。在步骤2)中,铝/不锈钢复合涂层的制备方法采用等离子喷涂,等离子喷涂也可以替换为氧乙炔喷焊、超音速火焰喷涂、冷喷涂中的任一种。

3)将目标涂层对应的金属粉末混匀,采用喷涂设备在步骤2)得到的钛-铝/不锈钢复合管基体的外壁上喷涂金属粉末来增材制造目标涂层,得到钛-铝/不锈钢-目标涂层复合管;

在步骤3)中,本实施例中,目标涂层对应的金属粉末为钽粉末,步骤3)中目标涂层对应的金属粉末的松装密度为6g/cm3,目标涂层的厚度0.2mm。步骤3)中的喷涂是保护气氛冷喷涂,首先将喷涂腔室抽真空至800Pa,然后往喷涂腔室通入纯度不低于99%的氮气或氩气至0.2MPa,并在喷涂过程中不断将氮气或氩气通入喷涂腔室,以维持喷涂腔室内的压力。也就是本实施例中步骤3)采用的喷涂设置为保护气氛冷喷涂系统,在其它实施例中,保护气氛冷喷涂系统也可以替换为无保护气氛冷喷涂系统、氦气循环冷喷涂系统、激光辅助冷喷涂系统中的任一种。

4)将步骤3)中的钛-铝/不锈钢-目标涂层复合管浸泡入加热的氢氧化钠水溶液中,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快中间位置的铝/不锈钢复合涂层的腐蚀,进而去除位于中间位置的铝/不锈钢复合涂层,从而管状钛基体脱落,得到目标涂层对应的管状构件;

步骤4)中氢氧化钠水溶液的质量百分比浓度为5%,温度为40℃,浸泡时间为100h,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快铝/不锈钢复合涂层的腐蚀,进而去除铝/不锈钢复合涂层。

5)将步骤4)得到的目标涂层对应的管状构件进行热处理;步骤5)中热处理的温度为1200℃,热处理的时间为0.5h,热处理的环境采用真空热处理或者氩气热处理或者氮气热处理,热处理结束后随加热炉冷却到室温,以提高管状构件力学性能,具体是提高抗拉强度、伸长率、导电率。

6)对步骤5)热处理后的管状构件进行线切割及磨粒流内孔抛光加工,最终获得所需的薄壁管状构件,本实施例为得到钽管。步骤6)中最终获得的管状构件的内径3mm,壁厚0.1mm。

在其它实施例中,目标涂层对应的金属粉末也可以替换为铌粉末或钽合金粉末或者铌合金粉末,相应地得到对应材质的管状构件。

本发明通过氢氧化钠水溶液腐蚀位于中间的铝/不锈钢涂层,从而钛基体与目标涂层分离,目标涂层对应于最后的管状构件,相比现有技术需要对圆棒掏孔来制造,本制造方法无需掏孔的步骤,因此工艺简单;由于铝/Cr两种材料电位不同,容易形成电偶腐蚀,电偶腐蚀速度较快,进而提高生产速度,极大降低了管状构件的加工工期,能够实现快速制备管状构件;另外,钛基体、管状构件均与氢氧化钠水溶液基本不反应,对钽管和钛基体都无损伤,钛基体可以被重复利用;采用喷涂金属粉末的方式得到管状构件对应的目标涂层,不会像现有技术那样对圆棒掏孔去除的材料有较大的浪费,因此能够节省用料。

通过喷涂容易控制目标涂层的厚度和目标涂层的面积,从而便于实现最后管状构件的薄壁化和大型化,管状构件的壁厚、内径和长度尺寸不容易像现有技术那样受加工设备的限制,这样可以扩展管状构件的应用;

采用喷涂配合电偶腐蚀,管状构件的壁厚比较均匀。

管状构件内部结合紧密、致密度高,与焊接相比,本发明制备的管状构件的强度较高,性能优异。

实施例2:

一种薄壁管状构件的增材制造方法,包括以下步骤

1)将管状钛基体装夹在机床上,对管状钛基体表面进行除油、干燥及喷砂处理;步骤1)中的钛基体采用中空管,其直径10mm,喷砂设备使用超音速空气火焰喷涂(HVAF)设备,喷砂时的空气压力为70PSI,丙烷压力为60PSI,喷砂距离为300mm,喷砂速率为100g/min。

2)在步骤1)的钛基体的外壁制备铝/不锈钢复合涂层,形成钛-铝/不锈钢复合管基体;步骤2)制备铝/不锈钢复合涂层时采用铝/不锈钢复合粉末喷涂的方式,铝/Cr25不锈钢复合粉末装入等离子送粉罐中,不锈钢为Cr25双相不锈钢,铝/不锈钢复合粉末中双相不锈钢的质量百分数比为20%,双相不锈钢粉末粒度为70~150μm,铝/不锈钢复合涂层的厚度0.5mm。在步骤2)中,铝/不锈钢复合涂层的制备方法采用等离子喷涂,也可以是氧乙炔喷焊、超音速火焰喷涂、冷喷涂中的任一种。

3)将目标涂层对应的金属粉末混匀,采用喷涂设备在步骤2)得到的钛-铝/不锈钢复合管基体的外壁上喷涂金属粉末来增材制造目标涂层,得到钛-铝/不锈钢-目标涂层复合管;

在步骤3)中,目标涂层对应的金属粉末为钽粉末;步骤3)中目标涂层对应的金属粉末的松装密度为14g/cm3,目标涂层的厚度0.3mm。步骤3)中的喷涂是保护气氛冷喷涂,首先将喷涂腔室抽真空至700Pa,然后往喷涂腔室通入纯度不低于99%的氮气或氩气至0.3MPa,并在喷涂过程中不断将氮气或氩气通入喷涂腔室,以维持喷涂腔室内的压力;对应地,步骤3)采用的喷涂设置包括保护气氛冷喷涂系统,也可以替换为无保护气氛冷喷涂系统、氦气循环冷喷涂系统、激光辅助冷喷涂系统中的任一种。

4)将步骤3)中的钛-铝/不锈钢-目标涂层复合管浸泡入加热的氢氧化钠水溶液中,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快中间位置的铝/不锈钢复合涂层的腐蚀,进而去除位于中间位置的铝/不锈钢复合涂层,从而管状钛基体脱落,得到目标涂层对应的管状构件;

步骤4)中氢氧化钠水溶液的质量百分比浓度为30%,温度为80℃,浸泡时间为40h。

5)将步骤4)得到的目标涂层对应的管状构件进行热处理;步骤5)中热处理的温度为1300℃,热处理的时间为0.5h,热处理的环境采用真空热处理或者氩气热处理或者氮气热处理,热处理结束后随炉冷却到室温。

6)对步骤5)热处理后的管状构件进行线切割及磨粒流内孔抛光加工,最终获得所需的薄壁管状构件,即得到钽管。步骤6)中最终获得的管状构件的内径10mm,壁厚大于0.1mm。

实施例3:

一种薄壁管状构件的增材制造方法,包括以下步骤

1)将直径为30mm的管状钛基体装夹在机床上,对管状钛基体表面进行除油、干燥及喷砂处理;步骤1)中的钛基体采用中空管,喷砂设备使用超音速空气火焰喷涂(HVAF)设备,喷砂时的空气压力为80PSI,丙烷压力为70PSI,喷砂距离为200mm,喷砂速率为200g/min。

2)在步骤1)的钛基体的外壁制备铝/不锈钢复合涂层,形成钛-铝/不锈钢复合管基体;步骤2)制备铝/不锈钢复合涂层时采用铝/不锈钢复合粉末喷涂的方式,具体是采用等离子喷涂设备,铝/Cr25不锈钢复合粉末装入等离子送粉罐中,不锈钢为Cr25双相不锈钢,铝/不锈钢复合粉末中双相不锈钢的质量百分数比为5%,双相不锈钢粉末粒度为70~150μm,铝/不锈钢复合涂层的厚度0.2mm。在步骤2)中,铝/不锈钢复合涂层的制备方法也可以采用氧乙炔喷焊、超音速火焰喷涂、冷喷涂中的任一种。

3)将目标涂层对应的金属粉末混匀,采用喷涂设备在步骤2)得到的钛-铝/不锈钢复合管基体的外壁上喷涂金属粉末来增材制造目标涂层,得到钛-铝/不锈钢-目标涂层复合管;

在步骤3)中,目标涂层对应的金属粉末为钽粉末;步骤3)中目标涂层对应的金属粉末的松装密度为10g/cm3,目标涂层的厚度大于0.2mm。步骤3)中的喷涂是保护气氛冷喷涂,首先将喷涂腔室抽真空至600Pa,然后往喷涂腔室通入纯度不低于99%的氮气或氩气至0.1MPa,并在喷涂过程中不断将氮气或氩气通入喷涂腔室,以维持喷涂腔室内的压力;对应地,步骤3)采用的喷涂设置包括保护气氛冷喷涂系统,也可以替换为无保护气氛冷喷涂系统、氦气循环冷喷涂系统、激光辅助冷喷涂系统中的任一种。

4)将步骤3)中的钛-铝/不锈钢-目标涂层复合管浸泡入加热的氢氧化钠水溶液中,利用不耐腐蚀的铝与耐腐蚀的不锈钢构成电偶腐蚀,加快中间位置的铝/不锈钢复合涂层的腐蚀,进而去除位于中间位置的铝/不锈钢复合涂层,从而管状钛基体脱落,得到目标涂层对应的管状构件,厚度大于0.2mm;

步骤4)中氢氧化钠水溶液的质量百分比浓度为60%,温度为100℃,浸泡时间为10h。

5)将步骤4)得到的目标涂层对应的管状构件进行热处理;步骤5)中热处理的温度为1500℃,热处理的时间为2h,热处理的环境采用真空热处理,热处理结束后随炉冷却到室温,真空热处理也可以替换为氩气热处理或者氮气热处理。

6)对步骤5)热处理后的管状构件进行线切割及磨粒流内孔抛光加工,最终获得所需的薄壁管状构件,即钽管。步骤6)中最终获得的管状构件的内径为30mm,壁厚大于0.2mm。

从图2、图3可知,得到的钽管状构件比较致密,管状构件内部结合比较紧密,因此强度较高。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于材料调控的电磁能装备设计与增材制造方法及系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!