一种无碳钢包下水口及其制备方法

文档序号:609160 发布日期:2021-05-07 浏览:27次 >En<

阅读说明:本技术 一种无碳钢包下水口及其制备方法 (Carbon-free ladle down nozzle and preparation method thereof ) 是由 方岩震 余西平 赵锋 于 2020-12-31 设计创作,主要内容包括:本发明公开了一种无碳钢包下水口及其制备方法,属于耐火材料技术领域,其组成成分及重量百分比为:MAS-76铝镁尖晶石60%-64%和共磨粉36%-40%,总百分比为100%;外加占总重量百分比为4%~5%的热固酚醛树脂结合剂,其中共磨粉包括10%~18%MAS-76铝镁尖晶石细粉、7%~13%α-Al-2O-3微粉、8%~10%锆英石细粉和5%金属硅粉。本发明引入MAS-76铝镁尖晶石作为颗粒骨料,通过无碳化,提高钢水洁净度质量,改善产品性能,降低生产成本;无碳钢包下水口具有耐高温性能、抗渣性能、抗剥落性能,且下水口表面分布有更多的MAS-76铝镁尖晶石颗粒和细粉,具有很好的抗冲刷性能。(The invention discloses a carbon-free ladle down nozzle and a preparation method thereof, belonging to the technical field of refractory materials, and comprising the following components in percentage by weight: 60% -64% of MAS-76 aluminum magnesium spinel and 36% -40% of co-milled powder, wherein the total percentage is 100%; the thermosetting phenolic resin binder accounts for 4 to 5 percent of the total weight, wherein the cofiller powder comprises 10 to 18 percent of MAS-76 aluminum magnesium spinel fine powder and 7 to 13 percent of alpha-Al 2 O 3 Micro powder, 8-10% of zircon fine powder and 5% of metal silicon powder. The invention introduces MAS-76 aluminum magnesium spinel as particle aggregate, and improves steel through non-carbonizationThe water cleanliness quality improves the product performance and reduces the production cost; the carbon-free ladle down nozzle has high temperature resistance, slag resistance and spalling resistance, and the surface of the down nozzle is distributed with more MAS-76 aluminum magnesium spinel particles and fine powder, so the carbon-free ladle down nozzle has good scour resistance.)

一种无碳钢包下水口及其制备方法

技术领域

本发明属于耐火材料技术领域,更具体地说,涉及一种无碳钢包下水口及其制备方法。

背景技术

在钢包和转炉冶炼钢水的过程中,目前普遍采用的是铝碳材质钢包下水口,使用铝碳会因碳的引入对钢水冶炼纯度产生影响,另外成本也比较高,本产品通过下水口的无碳化更有利于提高钢水的洁净度,同时MAS-76铝镁尖晶石经过多级均化工艺,在超高温隧道窑中经1800℃以上高温烧结而成,体积密度大,矿物相含量高晶粒发育良好,结构均匀,质量稳定,提供一种抗侵蚀、抗剥落、抗渣蚀性能和热震稳定性好的高性能的无碳钢包下水口。耐火材料包括耐火砖、耐火棉、滑板等,根据应用环境,其要求的性能有所区别。

经检索,专利公开号为CN111018496A,公开日为2020年04月17日,专利名称为一种无碳镁白云石质滑板及其制备方法与应用。该发明公开了一种无碳镁白云石质滑板及其制备方法与应用,属于耐火材料技术领域。该滑板的原料组成为:以镁白云石砂为主的颗粒料60~64wt%以及共磨粉36~40wt%,总百分比为100%,外加占总重量4~5wt%的无水树脂结合剂;其中所述的共磨粉包括10~18wt%镁白云石细粉、3~7wt%a-Al2O3微粉、4~6wt%氧化锆细粉、8~10wt%锆英石细粉和5wt%金属硅粉。该滑板引入的镁白云石砂和细粉为工业高温煅烧稳定性镁白云石,通过无碳化,提高了冶炼时钢水洁净度和钢水质量,同时改善了产品性能,还降低了生产成本。其不足之处在于,镁白云石砂含有CaO,易水化,制备过程中需要采用无水或含水量尽可能少的液态结合剂,且产品必须经过浸油或浸腊表面处理后再采用真空包装,增加了储存成本,且镁白云石砂应用于滑板,对原料及泥料的生产工艺控制要求较高,换句话说,镁白云石砂原料活性要求高,一般采用电熔镁白云石砂,而电熔镁白云石砂是由氧化镁和氧化铝反应制得,其过程需要精确控制温度和反应条件,且对反应器要求较高,而铝镁尖晶石结构均匀,质量更加稳定。

又如专利公开号为CN106946550B,公开日为2019年08月12日,专利名称为一种抗剥落性能优良的镁尖晶石砖及其制备方法。该发明公开了一种抗剥落性能优良的镁尖晶石砖及其制备方法,其中制备方法包含以下步骤:1)将不同粒度的镁砂颗粒和尖晶石结合镁砂颗粒与炭黑共混,使炭黑均匀吸附在颗粒表面;2)以经过炭黑吸附改性处理的镁砂和尖晶石结合镁砂颗粒为骨料,以镁砂细粉、尖晶石微粉为基质,并添加金属Al、单质Si、B4C等抗氧化剂和高温烧结剂,以木质素溶液、酚醛树脂或铝酸镁胶结剂为结合剂,混合均匀后压制成型,并经低温烘烤而制备。该发明利用炭黑对骨料进行表面改性,并引入尖晶石结合镁砂,在不影响抗渣性能的前提下显著降低了镁尖晶石砖的热膨胀系数,同时优化了产品的显微组织结构,应用于RH炉内衬,可明显改善产品的抗剥落性能,延长使用寿命。其不足之处在于,该发明以镁砂为主要原料,镁砂在潮湿环境下易水化,且镁砂的主要原料为MgO,MgO热膨胀率大,制得的产品容易产生裂纹。

发明内容

1.要解决的问题

针对现有技术中以镁砂为主要原料造成材料热膨胀率较大,容易产生裂纹的问题,本发明提供一种无碳钢包下水口,以高温烧结得到的MAS-76铝镁尖晶石和MAS-76铝镁尖晶石细粉为主要原材料,体积密度大,矿物相含量高晶粒发育良好,结构均匀,质量稳定,抗侵蚀、抗剥落、抗渣蚀性能和热震稳定性好,通过无碳化,有效的提高了钢水的洁净度,且下水口表面分布有更多的MAS-76铝镁尖晶石颗粒和MAS-76铝镁尖晶石细粉,具有很好的抗冲刷性能。

2.技术方案

为了解决上述问题,本发明所采用的技术方案如下:

一种无碳钢包下水口,包括MAS-76铝镁尖晶石60%-64%,其原料组成成分及重量百分比为:粒径为5~3mm的MAS-76铝镁尖晶石15%、粒径为3~1mm的MAS-76铝镁尖晶石30%、粒径为1~0mm的MAS-76铝镁尖晶石15%~19%。

其中,MAS-76为Al2O3的含量为76%的铝镁尖晶石,MAS是英文Magnesia-AluminaSpinel的简称,MAS-76铝镁尖晶石是指以MgO和Al2O3为原料,经人工合成的尖晶石质耐火原料,其中Al2O3的含量为75-77%,MgO的含量为22-24%,CaO的含量为≤0.4%,SiO2的含量≤0.3%,Fe2O3的含量为≤0.3%。

更进一步地,所述MAS-76铝镁尖晶石细粉的粒径为325目,所述MAS-76铝镁尖晶石的化学组分及含量为:Al2O3的含量为75.58%,MgO的含量为23.54%,CaO的含量为0.3%,SiO2的含量0.25%,Fe2O3的含量为0.23%。

更进一步地,所述无碳钢包下水口原料还包括重量百分比为36%-40%的共磨粉,与MAS-76铝镁尖晶石重量百分比之和为100%;外加占总重量百分比为4%~5%的热固酚醛树脂结合剂。

更进一步地,所述共磨粉包括10%~18%MAS-76铝镁尖晶石细粉、7%~13%α-Al2O3微粉、8%~10%锆英石细粉和5%金属硅粉。

添加剂中所用α-Al2O3微粉加入量为7%-13%,在1480℃时形成9%-17%的液相量,提高致密度,进一步提高钢包下水口的抗渣蚀能力。

更进一步地,所述MAS-76铝镁尖晶石和MAS-76铝镁尖晶石细粉为工业MAS-76铝镁尖晶石经过多级均化工艺,在超高温隧道窑中经1800℃以上高温烧结而成,体积密度大,矿物相含量高晶粒发育良好,结构均匀,质量稳定,提供一种抗侵蚀、抗剥落、抗渣蚀性能和热震稳定性好。

更进一步地,所述α-Al2O3微粉的粒径为0~2μm;所述α-Al2O3微粉的化学组分及含量为:Al2O3的含量≥99.0%,SiO2的含量≤0.1%,Fe2O3的含量≤0.08%,Na2O+K2O的含量≤0.3%。

更进一步地,所述锆英石细粉的化学组分及含量为:ZrO2的含量66.25%,SiO2的含量32.50%,TiO2的含量0.33%,Al2O3的含量0.37%,Fe2O3的含量0.16%,CaO的含量为0.05%,MgO的含量0.02%,Na2O的含量0.01%,K2O的含量0.01%;所述锆英石细粉的粒径为325目。

钢水的出钢温度为1650~1700℃,利用出钢温度,锆英石细粉在高温下能与CaO形成CaZrO3和CS3,这些新物相的形成能够活化晶格,促进晶粒的长大。

更进一步地,所述金属硅粉的化学组分及含量为:Si的含量为98.6%,Fe的含量为0.54%,Al的含量为0.49%,Ca的含量为0.36%;所述金属硅粉的粒径为325目。

以热固酚醛树脂为结合剂,将金属硅粉均匀分散在下水口内,金属硅粉氧化生成二氧化硅,一方面通过二氧化硅凝胶体系增加下水口强度,同时高温下与α-Al2O3微粉反应生产热震稳定性优良的莫来石物质,进一步提高下水口高温强度及热震稳定性。

目前,普通钢包滑动机构所用下水口材质为铝碳,其体系主要成分为氧化铝、金属铝和碳黑、石墨等铝碳系材料,在冶炼普碳钢是能够满足使用要求的,但是满足不料快速增长的洁净钢、特种钢炼钢要求,抵抗碱性钢渣冲刷和侵蚀的能力较差。

另外铝碳材质下水口在冶炼洁净钢、不锈钢等对碳含量要求比较高的钢种时,普通铝碳下水口因为石墨碳、沥青碳的引入无法满足钢厂钢种碳含量的技术需求。本发明从去减铝、去碳入手,改用体积密度大,矿物相含量高晶粒发育良好,结构均匀,抗侵蚀、抗剥落、抗渣蚀性能和热震稳定性好的MAS-76铝镁尖晶石原料、形成一种全新的钢包用洁净钢下水口材质体系,来满足炼钢洁净度、优质钢种的需求。

本发明的另一目的是提供一种无碳钢包下水口的制备方法,它包括以下步骤:

步骤一、共磨粉制备:按重量百分比将MAS-76铝镁尖晶石细粉、α-Al2O3微粉、锆英石细粉和金属硅粉混合均匀制得共磨粉;

步骤二、颗粒料配料:按重量百分比将粒径为5~3mm的MAS-76铝镁尖晶石、粒径为3~1mm的MAS-76铝镁尖晶石、粒径为1~0mm的MAS-76铝镁尖晶石均匀混合得到颗粒配料;

步骤三、混料:将颗粒骨料干混2~3分钟,然后缓慢加入热固酚醛树脂结合剂湿混5~8分钟,最后加入共磨粉,混合50~60分钟后出碾得到混合料;

步骤四、成型:将混合料压制成型为半成品坯体;

步骤五、干燥:将坯体自然晾放8小时后,置于隧道天然气干燥窑内按设定好的曲线干燥,其进窑初始温度为30℃,在第0~4小时内,温度由30℃升高到80℃;在第4~7小时内,温度由80℃升高到120℃;在第7~9小时内,温度由120℃升高到150℃;在第9~11小时内,温度由150℃升高到180℃;在第11~13小时内,温度由180℃升高到210℃,保温16小时;总干燥时间为37小时;出窑后对产品进行检查,挑选尺寸和外观合格产品进入下一道工序;

步骤六、套壳:将干燥后检查合格产品套壳,将下水口外壁旋转抹适当火泥,以下水口受压后上下均能够被挤出火泥为准,把钢壳套在上面后将下水口倒扣在工装内,压制至设定位置,取出下水口,保证压壳后滑板上下均挤出火泥,使用工具将下水口朝上部位溢出火泥进行清理后将水口取出工装,取出下水口后将上口朝下放置清理另一口火泥,清理时注意保证下水口清洁,对产品进行首检,检验合格后将下水口以大头向下放置在车架上,检验不合格操作工需调整限位块或使用工具轻敲铁壳使其合格;

步骤七、套壳干燥:套完壳下水口在室温条件下自然养护4-8小时后进行干燥,制品目前采用天然气隧道干燥窑进行干燥,干燥温度曲线如下:在第0~1小时内,温度由30℃升高到80℃;在第2~3小时内,温度由80℃升高到120℃;在第4~5小时内,温度由120℃升高到150℃,保温8小时;总干燥时间为13小时;

步骤八、包装:干燥完成后,出窑晾放至室温,根据图纸要求和外观标准,对尺寸、外观进行检查合格后装箱打包。

进一步地,步骤三中将颗粒料加入湿碾机干混,步骤四中所述混合料在630t电动螺旋压砖机上压制成型。

本发明无碳钢包下水口生产工艺一共有8个工序,制品生产的每道工序都制定了详细的操作规程和工艺参数要求,特别是在干燥工序,明确了自然干燥时间为8小时,使水分先自然排出一部分,防止直接进窑干燥的,导致制品开裂;以及干燥温度曲线要求,特别是低温阶段升温速度的控制,防止过快升温,制品的裂纹产生;使生产过程处于可控状态之下,保证了技术方案的有效实施。

3.有益效果

相比于现有技术,本发明的有益效果为:

(1)本发明从去减铝、去碳入手,改用体积密度大,矿物相含量高晶粒发育良好、结构均匀、抗侵蚀、抗剥落、抗渣蚀性能和热震稳定性好的MAS-76铝镁尖晶石原料,形成一种全新的钢包用洁净钢下水口材质体系,来满足炼钢洁净度、优质钢种的需求,需要说明的是:MAS-76铝镁尖晶石体积密度大,矿物相含量高晶粒发育良好,结构均匀,质量稳定,与现有技术的采用镁砂或者刚玉相比,使得下水口的性能更加稳定;发明人通过大量的试验和分析,认为可能的原因为:MAS-76铝镁尖晶石主要是以颗粒骨料的方式在下水口中起作用,其中小部分的MAS-76铝镁尖晶石细粉可以填充于粘接剂所形成的孔隙中,从而填充孔隙使得质地密实;此外,MAS-76铝镁尖晶石密度大,在混料过程中,在纵向压力作用下可以分散于混合物的外围,成型后,下水口表面分布有更多的MAS-76铝镁尖晶石颗粒和细粉,下水口表面与钢水直接接触,具有很好的抗冲刷性能;

(2)本发明MAS-76铝镁尖晶石经过多级均化工艺,在超高温隧道窑中经1800℃以上高温烧结而成,体积密度大,矿物相含量高晶粒发育良好,结构均匀,质量稳定,提供一种抗侵蚀、抗剥落、抗渣蚀性能和热震稳定性好;无碳钢包下水口在使用过程中与炉渣接触时,对炉渣的化学侵蚀和渗透的有很强的抵抗能力;

(3)本发明的无碳钢包下水口中所用α-Al2O3微粉加入量为7%-13%,在1480℃时形成9%-17%的液相量,提高致密度,进一步提高钢包下水口砖的抗渣蚀能力;

(4)本发明以热固酚醛树脂为结合剂,将金属硅粉均匀分散在下水口内,所述金属硅粉氧化生成二氧化硅,一方面通过二氧化硅凝胶体系增加下水口强度,同时高温下与α-Al2O3微粉反应生产热震稳定性优良的莫来石物质,进一步提高下水口高温强度及热震稳定性。

具体实施方式

下面结合具体实施例对本发明进一步进行描述。尽管这些示例性实施例被充分详细地描述以使得本领域技术人员能够实施本发明,但应当理解可实现其他实施例且可在不脱离本发明的精神和范围的情况下对本发明作各种改变。下文对本发明的实施例的更详细的描述并不用于限制所要求的本发明的范围,而仅仅为了进行举例说明且不限制对本发明的特点和特征的描述,以提出执行本发明的最佳方式,并足以使得本领域技术人员能够实施本发明。因此,本发明的范围仅由所附权利要求来限定。

其中表1为本发明各实施例所采用配料的粒型及百分比;表2为上述实施例1~4所得无碳钢包下水口与现有的铝碳质钢包下水口的理化性能及平均使用寿命参数。

实施例1

一种无碳钢包下水口,其组成成分及重量百分比为:MAS-76铝镁尖晶石64%,共磨粉36%,重量总百分比之和为100%;外加占总重量百分比为5%加热固酚醛树脂结合剂,其中所述的共磨粉由10%MAS-76铝镁尖晶石细粉、13%α-Al2O3微粉、8%锆英石细粉和5%金属硅粉混合均匀制得。

所述MAS-76铝镁尖晶石和MAS-76铝镁尖晶石细粉为MAS-76铝镁尖晶石经过多级均化工艺,在超高温隧道窑中经1800℃以上高温烧结而成,体积密度大,矿物相含量高晶粒发育良好,结构均匀,质量稳定,提供一种抗侵蚀、抗剥落、抗渣蚀性能和热震稳定性好。

所述MAS-76铝镁尖晶石的粒径为5~3mm、3~1mm和1~0mm,各粒径重量百分比为:粒径为5~3mm的MAS-76铝镁尖晶石15%、粒径为3~1mm的MAS-76铝镁尖晶石30%、粒径为1~0mm的MAS-76铝镁尖晶石19%;所述的MAS-76铝镁尖晶石的化学组分及含量为:Al2O3的含量为75.58%,MgO的含量为23.54%,CaO的含量为0.3%,SiO2的含量0.25%,Fe2O3的含量为0.23%。

所述的MAS-76铝镁尖晶石细粉的粒径为325目,重量百分比为10%,所述的MAS-76铝镁尖晶石细粉的化学组分及含量为:Al2O3的含量为75.58%,MgO的含量为23.54%,CaO的含量为0.3%,SiO2的含量0.25%,Fe2O3的含量为0.23%。

所述α-Al2O3微粉的粒径为0~2μm;所述α-Al2O3微粉的化学组分及含量为:Al2O3的含量≥99.0%,SiO2的含量≤0.1%,Fe2O3的含量≤0.08%,Na2O+K2O的含量≤0.3%。

所述锆英石细粉的化学组分及含量为:ZrO2的含量66.25%,SiO2的含量32.50%,TiO2的含量0.33%,Al2O3的含量0.37%,Fe2O3的含量0.16%,CaO的含量为0.05%,MgO的含量0.02%,Na2O的含量0.01%,K2O的含量0.01%;所述锆英石细粉的粒径为325目。

所述金属硅粉的化学组分及含量为:Si的含量为98.6%,Fe的含量为0.54%,Al的含量为0.49%,Ca的含量为0.36%;所述金属硅粉为98金属硅,粒径为325目,Si含量为98%。

上述无碳钢包下水口的制备方法,它包括以下步骤:

步骤一、共磨粉制备:按重量百分比将MAS-76铝镁尖晶石细粉、α-Al2O3微粉、锆英石细粉和金属硅粉混合均匀制得共磨粉;

步骤二、颗粒料配料:按重量百分比将粒径为5~3mm的MAS-76铝镁尖晶石、粒径为3~1mm的MAS-76铝镁尖晶石、粒径为1~0mm的MAS-76铝镁尖晶石均匀混合得到颗粒配料;

步骤三、混料:将颗粒骨料用湿碾机干混2~3分钟,然后缓慢加入热固酚醛树脂结合剂湿混5-8分钟,最后加入共磨粉,混合50~60分钟后出碾得到混合料;

步骤四、成型:将混合料在630t电动螺旋压砖机上压制成型为半成品坯体;

步骤五、干燥:将坯体自然晾放8小时后,置于隧道天然气干燥窑内按设定好的曲线干燥,其进窑初始温度为30℃,在第0~4小时内,温度由30℃升高到80℃;在第4~7小时内,温度由80℃升高到120℃;在第7~9小时内,温度由120℃升高到150℃;在第9~11小时内,温度由150℃升高到180℃;在第11~13小时内,温度由180℃升高到210℃,保温16小时;总干燥时间为37小时;出窑后对产品进行检查,挑选尺寸和外观合格产品进入下一道工序;

步骤六、套壳:将步骤五所得坯体套壳,将水口外壁旋转抹适当火泥,以水口受压后上下均能够被挤出火泥为准,把钢壳套在上面后将水口倒扣在工装内,压制至设定位置,取出水口,保证压壳后滑板上下均挤出火泥,使用工具将水口朝上部位溢出火泥进行清理后将水口取出工装,取出水口后将上口朝下放置清理另一口火泥,清理时注意保证水口清洁,对产品进行首检,检验合格后将水口以大头向下放置在车架上,检验不合格操作工需调整限位块或使用工具轻敲铁壳使其合格;

步骤七、套壳干燥:套完壳下水口在室温条件下自然养护4-8小时后进行干燥,制品目前采用天然气隧道干燥窑进行干燥,干燥温度曲线如下:在第0~1小时内,温度由30℃升高到80℃;在第2~3小时内,温度由80℃升高到120℃;在第4~5小时内,温度由120℃升高到150℃,保温8小时;总干燥时间为13小时;

步骤八、包装:干燥完成后,出窑晾放至室温,根据图纸要求和外观标准,对尺寸、外观进行检查合格后装箱打包。

实施例2

本实施例无碳钢包下水口,其组成成分及重量百分比按照表1所示的配方,制备方法同实施例1。

实施例3

本实施例无碳钢包下水口,其组成成分及重量百分比按照表1所示的配方,制备方法同实施例1。

实施例4

本实施例无碳钢包下水口,其组成成分及重量百分比按照表1所示的配方,制备方法同实施例1。

表1本发明各实施例所采用配料的粒型及百分比

将上述实施例制备得到无碳钢包下水口。

表2实施例1~4所得无碳钢包下水口与现有的铝碳质钢包下水口的理化性能及平均使用寿命参数

从表2中可以得知,本发明无碳钢包下水口在大型钢包上试用,试验结束后对无碳钢包下水口与现有产品进行了扩孔、裂纹情况等分析,平均使用寿命3~4次/块,扩孔速率为:平均5mm/块;平均侵蚀速率1.25mm/次。通过批量使用,对结果进行统计与现有产品进行比对,本发明无碳钢包下水口的平均侵蚀速率为≤2mm/次,低于现有铝碳产品的侵蚀速率≥3.5mm/次;使用过拆卸下来的下线下水口的扩孔及孔内状况较好,未出现漏钢、断裂、裂纹现象,因此本发明无碳钢包下水口具有优良的耐高温性能、优良的热震性能和抗渣蚀性能。

以上说明是结合具体的优选实施方式对本发明所做的进一步详细说明,不能确定本发明具体实施只局限于以上说明。在本发明所述技术领域的普通技术员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应属于本发明的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种微波介质陶瓷及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!