一种台风移动的预测方法和装置

文档序号:632568 发布日期:2021-05-11 浏览:6次 >En<

阅读说明:本技术 一种台风移动的预测方法和装置 (Typhoon movement prediction method and device ) 是由 郑丽娜 张子涵 于 2020-12-25 设计创作,主要内容包括:本发明实施例提供了一种台风移动的预测方法和装置,所述台风移动的预测方法,包括:步骤1,获取台风的路径数据;步骤2,根据所述台风的路径数据,生成台风数据;步骤3,获取与所述台风的时间序列一致的环境场格点数据;步骤4,根据所述环境场格点数据,生成距离所述台风中心的不同纬距、整个对流层的不同层次的环境风数据;步骤5,对所述台风数据和所述环境风数据进行相关性计算,生成所述台风数据和所述环境风数据之间的相关系数;步骤6,根据所述相关系数,选择影响所述台风移动的环境风;步骤7,根据选择的所述环境风,预测台风的移动趋势。(The embodiment of the invention provides a method and a device for predicting typhoon movement, wherein the method for predicting typhoon movement comprises the following steps: step 1, obtaining path data of typhoon; step 2, generating typhoon data according to the path data of the typhoon; step 3, obtaining environmental field lattice point data consistent with the typhoon time sequence; step 4, generating environmental wind data of different weft distances from the center of the typhoon and different levels of the whole troposphere according to the environmental field lattice point data; step 5, carrying out correlation calculation on the typhoon data and the environmental wind data to generate a correlation coefficient between the typhoon data and the environmental wind data; step 6, selecting environmental wind influencing the movement of the typhoon according to the correlation coefficient; and 7, predicting the moving trend of the typhoon according to the selected environmental wind.)

一种台风移动的预测方法和装置

技术领域

本发明涉及台风预测领域,尤其涉及一种台风移动的预测方法装置。

背景技术

目前,台风预测对生产和生活有重要的影响,因此,如何提高台风预测的准确率成为关注的一个课题。

发明内容

本发明的实施例提供了一种台风移动的预测方法和装置,能够提高台风预测的准确性。

一种台风移动的预测方法,包括:

步骤1,获取台风的路径数据;

步骤2,根据所述台风的路径数据,生成台风数据;

步骤3,获取与所述台风的时间序列一致的环境场格点数据;

步骤4,根据所述环境场格点数据,生成距离所述台风中心的不同纬距、整个对流层的不同层次的环境风数据;

步骤5,对所述台风数据和所述环境风数据进行相关性计算,生成所述台风数据和所述环境风数据之间的相关系数;

步骤6,根据所述相关系数,选择影响所述台风移动的环境风;

步骤7,根据选择的所述环境风,预测台风的移动趋势。

所述台风数据包括:台风的移速(dx、dy)和台风的移向(dr);

所述环境风数据包括:环境风全风速(U、V)、环境风全风向(rad)、不同时间周期的环境风高通风速(Uh、Vh)、不同时间周期的环境风高通风向(radh)、不同时间周期的环境风低通风速(Ul、Vl)、不同时间周期的环境风低通风向(radl);

其中,U为东西方向的环境风全风速分量,V为南北方向的环境风全风速分量;

Uh为东西方向的环境风高通风速分量,Vh为南北方向的环境风高通风速分量;

Ul为东西方向的环境风低通风速分量,Vl为南北方向的环境风低通风速分量。

所述步骤2包括:

假设台风在T{ti,i=1,2,3,···,n}时刻的位置为 L{(loni,lati),i=1,2,3,···,n},则tx时刻台风的速度向量为 Dx(dxx,dyx);

即台风的移速为D{(dxi,dyi),i=1,2,3,···,n-1};

所述台风的移向通过方向角来描述:

dxi>=0时,

dxi<0时,

所述步骤4包括:

在距离所述台风的中心0-10纬距的圆上等弧度取点;

假设台风中心坐标为(X,Y),半径为r,则圆上等弧度的n个取点的坐标为 D{(xi,yi),i=1,2,3,···,n},第x个点的坐标为Qx(xx,yx),其中xx=X+rsin(x*360/n),yx=Y+rcos(x*360/n);

若所述取点与所述环境场格点数据重叠,则将所述环境场格点数据作为所取点的环境风全风速数据;若所述取点与所述环境场格点数据不重叠,则以三维双线性插值方法确定所取点的环境风全风速(U、V);

根据所述环境风全风速(U、V),计算所述环境风全风速风向(rad);

对所述环境场格点数据进行滤波处理,得到环境风场的不同时间周期的环境风低通风速(Ul、Vl)与环境风高通风速(Uh、Vh)与环境风低通风向 (radl)、环境风高通风向(radh);不同时间周期为滤波时不同频率对应的周期。

所述根据所述环境风全风速数据(U、V),计算所述环境风全风向数据 (rad)的步骤包括:

U>=0时,

U<0时,

所述步骤5包括:

对相同时间序列的所述dx与不同纬距、不同层次的U、Uh、Ul,分别进行相关系数计算,生成第一相关系数,以表示不同纬距、不同层次的U、不同纬距、不同层次、不同时间周期的Ul和Uh对台风东西方向移动的影响度;

对相同时间序列的所述dy与不同纬距、不同层次的V、Vh、Vl,分别进行相关系数计算,生成第二相关系数,以生成不同纬距、不同层次的V、不同纬距、不同层次、不同时间周期的Vl和Vh对台风南北方向移动的影响;

对相同时间序列的dr与不同纬距、不同层次的rad、radh、radl,分别进行相关系数计算,生成第三相关系数,以表示不同纬距、不同层次的环境风全风向、环境风高通风向、环境风低通风向对台风整体方向移动的影响度。

所述步骤6具体为:

根据所述第一相关系数、第二相关系数、第三相关系数的值大小,确定影响台风移动的对流层内的高度、距离台风中心的纬距、以及类型是全风速还是低通分量或高通分量。

一种台风移动的预测装置,包括:

第一获取单元,获取台风的路径数据;

第一生成单元,根据所述台风的路径数据,生成台风数据;

第二获取单元,获取与所述台风的时间序列一致的环境场格点数据;

第二生成单元,根据所述环境场格点数据,生成距离所述台风中心的不同纬距、整个对流层的不同层次的环境风数据;

第三生成单元,对所述台风数据和所述环境风数据进行相关性计算,生成所述台风数据和所述环境风数据之间的相关系数;

选择单元,根据所述相关系数,选择影响所述台风移动的环境风;

预测单元,根据选择的所述环境风,预测台风的移动趋势。

由上述本发明的实施例提供的技术方案可以看出,本发明实施例中,根据台风的路径数据生成台风数据;根据与所述台风的时间序列一致的环境场格点数据,生成距离所述台风中心的不同纬距、整个对流层的不同层次的环境风数据;根据所述台风数据和所述环境风数据之间的相关系数,选择影响所述台风移动的环境风,从而预测台风的移动趋势,从而提高了预测的准确度。

本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明的台风移动的预测方法的示意图;

图2为本发明应用场景所述的台风移动的预测方法中数据处理的示意图;

图3为本发明应用场景所述的台风移动的预测方法中相关性处理以及比较的示意图;

图4为本发明应用场景所述的台风移动的预测方法中“桃芝”的示意图;

图5为本发明应用场景所述的台风移动的预测方法中Qx(xx,yx)的示意图;

图6为本发明应用场景所述的台风移动的预测方法中三维双线性插值方法的示意图;

图7为本发明应用场景所述的台风移动的预测方法中巴特沃斯滤波方法的示意图。

具体实施方式

下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。

为便于对本发明实施例的理解,下面将结合附图以几个具体实施例为例做进一步的解释说明,且各个实施例并不构成对本发明实施例的限定。

如图1所示,为本发明所述的一种台风移动的预测方法,包括:

步骤1,获取台风的路径数据;

步骤2,根据所述台风的路径数据,生成台风数据;

所述台风数据包括:台风的移速(dx、dy)和台风的移向(dr);

所述环境风数据包括:环境风全风速(U、V)、环境风全风向(rad)、不同时间周期的环境风高通风速(Uh、Vh)、不同时间周期的环境风高通风向(radh)、不同时间周期的环境风低通风速(Ul、Vl)、不同时间周期的环境风低通风向(radl);

其中,U为东西方向的环境风全风速分量,V为南北方向的环境风全风速分量;

Uh为东西方向的环境风高通风速分量,Vh为南北方向的环境风高通风速分量;

Ul为东西方向的环境风低通风速分量,Vl为南北方向的环境风低通风速分量。

所述步骤2包括:

假设台风在T{ti,i=1,2,3,···,n}时刻的位置为 L{(loni,lati),i=1,2,3,···,n},则tx时刻台风的速度向量为 Dx(dxx,dyx);

即台风的移速为D{(dxi,dyi),i=1,2,3,···,n-1};

所述台风的移向通过方向角来描述:

dxi>=0时,

dxi<0时,

步骤3,获取与所述台风的时间序列一致的环境场格点数据;

步骤4,根据所述环境场格点数据,生成距离所述台风中心的不同纬距、整个对流层的不同层次的环境风数据;

所述步骤4包括:

步骤41,在距离所述台风的中心0-10纬距的圆上等弧度取点;

步骤42,假设台风中心坐标为(X,Y),半径为r,则圆上等弧度的n个取点的坐标为D{(xi,yi),i=1,2,3,···,n},第x个点的坐标为Qx(xx,yx),其中 xx=X+rsin(x*360/n),yx=Y+rcos(x*360/n);

步骤43,若所述取点与所述环境场格点数据重叠,则将所述环境场格点数据作为所取点的环境风全风速数据;若所述取点与所述环境场格点数据不重叠,则以三维双线性插值方法确定所取点的环境风全风速(U、V);

所述以三维双线性插值方法确定所取点的环境风的全风速的步骤包括:

以三维双线性插值方法确定所取点P的风速(up、vp):三维双线性插值方法中的已知格点Q11(x1,y1)、Q12(x1,y2)、Q21(x2,y1)、Q22(x2,y2)处风速为W11(u11,v11)、W12(u12,v12)、W21(u21,v21)、W22(u22,v22),则P点风速为(up,vp),其中

不同时间周期:指滤波时不同频率对应的周期,以高通滤波为例,不同时间周期指10天以下,9天以下,8天以下……直到2天以下的若干周期。

步骤44,根据所述环境风全风速(U、V),计算所述环境风全风速风向 (rad);

步骤45,对所述环境场格点数据进行滤波处理,得到环境风场的不同时间周期的环境风低通风速(Ul、Vl)与环境风高通风速(Uh、Vh)与环境风低通风向(radl)、环境风高通风向(radh);不同时间周期为滤波时不同频率对应的周期。

步骤44包括:

U>=0时,

U<0时,

步骤5,对所述台风数据和所述环境风数据进行相关性计算,生成所述台风数据和所述环境风数据之间的相关系数;

所述步骤5包括:

步骤51,对相同时间序列的所述dx与不同纬距、不同层次的U、Uh、Ul,分别进行相关系数计算,生成第一相关系数,以表示不同纬距、不同层次的 U、不同纬距、不同层次、不同时间周期的Ul和Uh对台风东西方向移动的影响度;

步骤52,对相同时间序列的所述dy与不同纬距、不同层次的V、Vh、Vl,分别进行相关系数计算,生成第二相关系数,以生成不同纬距、不同层次的 V、不同纬距、不同层次、不同时间周期的Vl和Vh对台风南北方向移动的影响;

步骤53,对相同时间序列的dr与不同纬距、不同层次的rad、radh、 radl,分别进行相关系数计算,生成第三相关系数,以表示不同纬距、不同层次的环境风全风向、环境风高通风向、环境风低通风向对台风整体方向移动的影响度。

步骤6,根据所述相关系数,选择影响所述台风移动的环境风;所述步骤 6具体为:根据所述第一相关系数、第二相关系数、第三相关系数的值大小,确定影响台风移动的对流层内的高度、距离台风中心的纬距、以及类型是全风速还是低通分量或高通分量。即,选择相关系数最大对应的参数。

步骤7,根据选择的所述环境风,预测台风的移动趋势。

本发明实施例中,根据台风的路径数据生成台风数据;根据与所述台风的时间序列一致的环境场格点数据,生成距离所述台风中心的不同纬距、整个对流层的不同层次的环境风数据;根据所述台风数据和所述环境风数据之间的相关系数,选择影响所述台风移动的环境风,从而预测台风的移动趋势,从而提高了预测的准确度。

以下描述本发明的应用场景。图2为本发明应用场景所述的台风移动的预测方法中数据处理的示意图;图3为本发明应用场景所述的台风移动的预测方法中相关性处理以及比较的示意图;图4为本发明应用场景所述的台风移动的预测方法中“桃芝”的示意图;图5为本发明应用场景所述的台风移动的预测方法中Qx(xx,yx)的示意图;图6为本发明应用场景所述的台风移动的预测方法中三维双线性插值方法的示意图;图7为本发明应用场景所述的台风移动的预测方法中巴特沃斯滤波方法的示意图。以下结合各图进行描述。

1数据处理

1.1台风路径数据

(1)台风移动速度的估算。

台风矢量移动速度(后文中简称为台风速度)的估算方法:假设台风在 T{ti,i=1,2,3,···,n}时刻的位置为L{(loni,lati),i=1,2,3,···,n},则 tx时刻台风的速度向量可以近似为Dx(dxx,dyx),考虑经度距离随着纬度升高而变小,其中即台风速度可以近似估算为D{(dxi,dyi),i=1,2,3,···,n-1}。以如图4所示的2001年8号台风“桃芝”为例。

(2)台风移动方向(dr)的估算:

假设台风通过上述方法估算的速度为D{(dxi,dyi),i=1,2,3,···,n- 1},则台风移动方向可通过方向角来描述:

dxi>=0时,

dxi<0时,

1.2环境场格点(U、V)数据

需要准备台风出现时段前后共3个月的1000hPa-100hPa环境风风场资料 (U、V格式)。

(1)在距离台风中心0-10纬距(间隔1纬距)圆上等弧度取点(代表台风附近的环境风)

环境风场的取点方法:如图5所示,假设台风中心坐标为(X,Y),半径为 r,则圆上等弧度的n个点的坐标为D{(xi,yi),i=1,2,3,···,n},第x个点的坐标为Qx(xx,yx),其中xx=X+rsin(x*360/n),yx=Y+rcos(x*360/n)。

如图6所示,三维双线性插值方法确定所取点的风速(格点风速up、 vp):已知格点Q11(x1,y1)、Q12(x1,y2)、Q21(x2,y1)、Q22(x2,y2)处风速为 W11(u11,v11)、W12(u12,v12)、W21(u21,v21)、W22(u22,v22),则P(x,y)点风速为 Wp(up,vp),其中

环境风全风向数据(rad):其计算方法同台风移向的计算。

(2)将该环境风场数据进行滤波处理

巴特沃斯滤波方法如图7所示。

经过处理之后可以得到环境风场的不同时间周期的环境风低通分量数据 (Ul、Vl)与高通分量数据(Uh、Vh),与环境风低通分量角度(radl)、环境风高通分量角度(radh)。

第二步:

台风移动速度与环境风场的相关系数计算方法:

相关系数:X{xi,i=1,2,3,····,n}和Y{yi,i=1,2,3,····,n}的相关系数其中,Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差。

3移速相关系数计算

相同时间序列的dx与U(不同纬距、不同层次的U、Uh、Ul)的相关系数计算,通过挑取相关系数最大的值来判定影响台风东西方向移动的是全风速还是低通或者高通风速,以及不同纬距、不同层次的U风对dx的影响相同时间序列的dy与V(不同纬距、不同层次的V、Vh、Vl)的相关系数计算,通过挑取相关系数最大的值来判定影响台风南北移动的是全风速还是低通或者高通风速,以及不同纬距、不同层次的V风对dy的影响。

4移向相关系数计算

相同时间序列的dr与rad(不同纬距、不同层次的rad、radh、radl)的相关系数计算。

通过挑取相关系数最大值来判定影响台风整体方向移动的是全风速还是低通或者高通风速,以及不同纬距、不同层次的风向对台风移向的影响

5结论

(1)影响台风移动的环境风是全风速还是低通风速或高通风速;

(2)距离台风中心哪个纬距的环境风影响更大;

(3)对流层内哪个层次的环境风影响更大。

6、按照这个算法可以确定台风未来移向、移速主要受环境场中哪层风场的影响,以此结果可以预测台风的移动

本发明还提供一种台风移动的预测装置,包括:

第一获取单元,获取台风的路径数据;

第一生成单元,根据所述台风的路径数据,生成台风数据;

第二获取单元,获取与所述台风的时间序列一致的环境场格点数据;

第二生成单元,根据所述环境场格点数据,生成距离所述台风中心的不同纬距、整个对流层的不同层次的环境风数据;

第三生成单元,对所述台风数据和所述环境风数据进行相关性计算,生成所述台风数据和所述环境风数据之间的相关系数;

选择单元,根据所述相关系数,选择影响所述台风移动的环境风;

预测单元,根据选择的所述环境风,预测台风的移动趋势。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高温灾害评估预测方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!