一种改进积分滑模的感应电机模型预测电流控制方法

文档序号:651753 发布日期:2021-04-23 浏览:13次 >En<

阅读说明:本技术 一种改进积分滑模的感应电机模型预测电流控制方法 (Induction machine model prediction current control method for improving integral sliding mode ) 是由 尹忠刚 侯倩茹 张延庆 张瑞峰 于 2020-12-24 设计创作,主要内容包括:本发明公开了一种改进积分滑模的感应电机模型预测电流控制方法,具体包括如下步骤:步骤1,步骤1,在d-q坐标系下,得到感应电机定子电流微分方程,根据d-q轴定子电流微分方程得到相应的电压方程;步骤2,基于步骤1所得的电压方程,定义各参数误差和嵌入给定电压的误差矢量;步骤3,基于电压误差矢量公式确定积分滑模面的构成;步骤4,将参考电压矢量视为传统模型所得的电压分量和扰动分量之和,进而重构代价函数为电压矢量误差的绝对值。本发明解决了目前感应电机在不同工况下运行时发生电机参数不匹配的问题。(The invention discloses a method for controlling the prediction current of an induction machine model with an improved integral sliding mode, which specifically comprises the following steps: step 1, obtaining a stator current differential equation of the induction motor in a d-q coordinate system, and obtaining a corresponding voltage equation according to the stator current differential equation of a d-q axis; step 2, defining error vectors of each parameter and embedded given voltage based on the voltage equation obtained in the step 1; step 3, determining the composition of an integral sliding mode surface based on a voltage error vector formula; and 4, regarding the reference voltage vector as the sum of the voltage component and the disturbance component obtained by the traditional model, and further reconstructing the cost function as the absolute value of the voltage vector error. The invention solves the problem that the parameters of the existing induction motor are not matched when the induction motor operates under different working conditions.)

一种改进积分滑模的感应电机模型预测电流控制方法

技术领域

本发明属于感应电机模型预测控制技术领域,涉及一种改进积分滑模的感应电机模型预测电流控制方法。

背景技术

感应电机由于其结构简单、制造容易、价格低廉、运行可靠、坚固耐用等特性,被广泛应用于农业生产、工业生产、交通运输等行业。为使电机满足动态响应快、速度跟踪准、稳定性能优的驱动控制技术需求,转子磁场定向的矢量控制技术得到应用。但是,近年来工业自动化的发展迅速,对驱动控制技术提出新要求,目的是系统呈现出“更快、更小、更智能”的发展趋势。电流环的动态响应速度是影响系统的快速性的关键因素,从而提出了模型预测控制。

感应电机矢量控制的电流内环是以PI调节器控制,存在积分饱和、系统约束难以处理以及运动耦合引起的电流控制相互影响等问题,限制了电流环动态响应能力的进一步提升。而模型预测控制是基于被控对象模型的新型控制算法,此算法依靠系统数学模型在控制周期内对变量进行预测,然后通过代价函数表示预期的系统输出,最后利用最小化代价函数寻找最佳开关状态。相较于矢量控制,其电流环响应速度更快,同时无需调制器环节,即简化了电流环结构。根据预测量的不同可分为转矩预测控制和电流预测控制,后者优势在于代价函数中无需权重系数,系统的设计更加得简洁明了。从设计过程中可看出,模型预测控制的设计依赖于电机参数的设计,若电机运行时外界及自身因素改变,使得电机参数不匹配,预测结果会存在误差,从而导致代价函数中滚动优化得到的电压矢量不是最优值,进而影响感应电机的运行性能,因此将积分滑模嵌入到模型预测电流控制系统中,通过积分滑模对电机参数失配产生的预测误差进行补偿,同时对代价函数进行重构,由此提高感应电机运行过程中的鲁棒性能。

发明内容

本发明的目的是提供一种改进积分滑模的感应电机模型预测电流控制方法,解决了目前感应电机在不同工况下运行时发生电机参数不匹配的问题。

本发明所采用的技术方案是,一种改进积分滑模的感应电机模型预测电流控制方法,具体包括如下步骤:

步骤1,在d-q坐标系下,得到感应电机定子电流微分方程,然后对感应电机定子电流微分方程进行前向欧拉离散化,假定感应电机运行至稳定状态,根据d-q轴定子电流微分方程得到相应的电压方程;

步骤2,基于步骤1所得的电压方程,定义各参数误差和嵌入给定电压的误差矢量,从而将d-q轴电压矢量改写成传统模型所得分量和扰动分量之和;

步骤3,基于电压误差矢量公式确定积分滑模面的构成;

步骤4,将参考电压矢量视为传统模型所得的电压分量和扰动分量之和,进而重构代价函数为电压矢量误差的绝对值。

本发明的特点还在于,

步骤1的具体过程为:

步骤1.1,感应电机定子电流微分方程如下所示:

其中,usd、usq、isd、isq、ψr分别是在d-q坐标系下的定子电压、电流和转子磁链;ω为感应电机的转速;ω1为感应电机的同步转速;Rs、Rr为定转子电阻;Ls、Lr为定转子电感,Lm为互感;σ为电机漏磁系数;为d-q坐标系下的定子电流的导数;

步骤1.2,将感应电机定子电流微分方程离散化,公式如下所示:

其中,isd(k)、isq(k)为k时刻d-q轴定子电流值;usd、usq为定子电压矢量的d-q轴分量;ω1(k)为k时刻感应电机的同步转速;isd(k+1)、isq(k+1)为k+1时刻d-q轴定子电流值;Ts为采样时间;

假设感应电机运行至稳定状态,将k+1时刻定子电流视为给定值,可得到给定电压方程:

其中,为d-q轴给定定子电流;为d-q轴理想给定定子电压值。

步骤2的具体过程如下:

针对感应电机参数不匹配条件,将感应电机定子电流微分方程改写成:

其中,ΔRs、ΔRr、ΔLr、ΔLs、ΔLm分别为定子电阻误差值、转子电阻误差值、转子磁链误差值、定子磁链误差值、互感误差值;

为抑制参数的不确定性,电压矢量重构成如下公式(5):

其中,ud0、uq0为理想模型下d-q轴电压矢量;ud1,uq1为d-q轴扰动量;ud、uq为d-q轴实际电压矢量。

步骤3的具体过程为:

步骤3.1,依据改进积分滑模设计原理,d-q轴滑模面表示为:

其中,sd、sq为d-q轴滑模面;ed、eq为d-q轴电流误差量,即zd、zq为d-q轴已知扰动量,定义如下:

其中,为d-q轴已知扰动量的导数;t0为初始时刻;zd(t0)、zq(t0)为t0时刻,d-q轴已知扰动量的值;isd(t0)、isd(t0)为t0时刻,d-q轴定子电流值;为t0时刻,d-q轴给定定子电流值;

步骤3.2,在改进积分滑模控制中,补偿量ud1eq,uq1eq由滑模面计算可得,定义如下式:

其中,ε1、ε2、α1、α2、δ1、δ2为正增益;

为解决滑模控制高频抖振,引入低通滤波器改进,将补偿量用经低通滤波器后的平均值代替,定义如下:

其中,时间常数μ需保证开关函数的缓变分量ud1eq、uq1eq不被低通滤波器衰减,为扰动量的导数;时间常数μ要保证开关函数的扰动量ud1、uq1不被低通滤波器衰减;u′d1、u′q1为控制系统中的等效扰动量;

步骤3.3,基于步骤3.2所得结果,将公式(5)改写为如下公式(11):

其中,为给定电压矢量;u′d1、u′q1为控制系统中的等效扰动量。

步骤4的具体过程为:

传统模型预测电流控制的代价函数为d-q轴电流误差的绝对值之和,由于步骤3中控制目标变为电压矢量,因而将代价函数进行重构,如下式所示:

其中,为给定电压矢量;ud,i、uq,i为逆变器直接输出的8种基本电压矢量在d-q轴的分量,i=0,1,2,...,7。

本发明的有益效果是,本发明提供的一种基于积分滑模的感应电机模型预测电流控制方法,此方法主要解决了当电机的参数在不同运行工况下发生显著变化时,控制器可将误差实时估计出并对给定进行修正,以确保系统具有较强的鲁棒性能。进一步为解决滑模中的抖振问题,对控制律进行改进,并引入低通滤波器,同时也保证了控制器的鲁棒性和精度。

附图说明

图1是本发明一种改进积分滑模的感应电机模型预测电流控制方法采用的基于积分滑模的感应电机模型预测电流控制系统的控制框图。

具体实施方式

下面结合附图和具体实施方式对本发明进行详细说明。

本发明一种改进积分滑模的感应电机模型预测电流控制方法,采用基于积分滑模的感应电机模型预测电流控制系统,如图1所示:主要包括两个环节。其一是由编码器得到的转速值ωr与给定转速做差输入到速度调节器PI,速度调节器的输出作为给定电流相电流ia、ib、ic由电流传感器测得后经Clarke变换得到两相静止坐标系下的定子电流分量iα、iβ,iα、iβ再经Park变换得到两相旋转坐标系下的定子电流分量id、iq为积分滑模输入量,给定电流经过电压方程得到电流电压给定值作为积分滑模的输入量,从而得到其二是根据所得电压矢量,在代价函数中进行寻优控制,得到最佳电压矢量Ui(i=0,1,2,...,7)对应的最佳开关矢量Sa,Sb,Sc控制逆变器工作,从而控制电机的稳定运行。

具体包括如下步骤:

步骤1,在d-q坐标系下,得到感应电机定子电流微分方程,然后对感应电机定子电流微分方程进行前向欧拉离散化,假定感应电机运行至稳定状态,根据d-q轴定子电流微分方程得到相应的电压方程;

步骤1的具体过程为:

步骤1.1,感应电机定子电流微分方程如下所示:

其中,usd、usq、isd、isq、ψr分别是在d-q坐标系下的定子电压、电流和转子磁链;ω为感应电机的转速;ω1为感应电机的同步转速;Rs、Rr为定转子电阻;Ls、Lr为定转子电感,Lm为互感;σ为电机漏磁系数;为d-q坐标系下的定子电流的导数;

步骤1.2,将感应电机定子电流微分方程离散化,公式如下所示:

其中,isd(k)、isq(k)为k时刻d-q轴定子电流值;usd、usq为定子电压矢量的d-q轴分量;ω1(k)为k时刻感应电机的同步转速;isd(k+1)、isq(k+1)为k+1时刻d-q轴定子电流值;Ts为采样时间;

假设感应电机运行至稳定状态,将k+1时刻定子电流视为给定值,可得到给定电压方程:

其中,为d-q轴给定定子电流;为d-q轴理想给定定子电压值。

步骤2,基于步骤1所得的电压方程,定义各参数误差和嵌入给定电压的误差矢量,从而将d-q轴电压矢量改写成传统模型所得分量和扰动分量之和;

步骤2的具体过程如下:

针对感应电机参数不匹配条件,将感应电机定子电流微分方程改写成:

其中,ΔRs、ΔRr、ΔLr、ΔLs、ΔLm分别为定子电阻误差值、转子电阻误差值、转子磁链误差值、定子磁链误差值、互感误差值;

对于不确定系统,为了得到相应的控制电压,以便系统能快速跟随至理想系统模型。为抑制参数的不确定性,电压矢量可重构成如下公式(5):

其中,ud0、uq0为理想模型下d-q轴电压矢量;ud1,uq1为d-q轴扰动量;ud、uq为d-q轴实际电压矢量。

步骤3,积分滑模的思想集中于实现全局状态空间的鲁棒运动,设计步骤为在已知非线性系统和合理设计的反馈控制基础上,在控制律中加入不连续控制项以抵消未知动态和外部扰动。然而,控制中开关切换不可避免会在实际实现中引入高频抖振。为解决滑模控制高频抖振的主要缺陷,可利用积分滑模原理对控制律重新构造,即引入低通滤波器进行改进。

步骤3的具体过程为:

步骤3.1,依据改进积分滑模设计原理,d-q轴滑模面表示为:

其中,sd、sq为d-q轴滑模面;ed、eq为d-q轴电流误差量,即zd、zq为d-q轴已知扰动量,定义如下:

其中,为d-q轴已知扰动量的导数;t0为初始时刻;zd(t0)、zq(t0)为t0时刻,d-q轴已知扰动量的值;isd(t0)、isd(t0)为t0时刻,d-q轴定子电流值;为t0时刻,d-q轴给定定子电流值;

步骤3.2,在滑模控制中开关切换不可避免会在实际实现中引入高频抖振,削弱抖振最直接的方式是利用具有连续特性的饱和函数代替开关函数,但是饱和函数边界内的开关增益受限,边界层越厚开关增益越小,这就会导致鲁棒性和精度降低。为解决滑模控制引入高频抖振的主要缺陷,可利用积分滑模原理对控制律重新构造:

在改进积分滑模控制中,补偿量ud1eq,uq1eq由滑模面计算可得,定义如下式:

其中,ε1、ε2、α1、α2、δ1、δ2为正增益。

为解决滑模控制高频抖振的主要缺陷,引入低通滤波器改进,将补偿量用经低通滤波器后的平均值代替,定义如下:

其中,时间常数μ需保证开关函数的缓变分量ud1eq、uq1eq不被低通滤波器衰减,为扰动量的导数;时间常数μ要保证开关函数的扰动量ud1、uq1不被低通滤波器衰减;u′d1、u′q1为控制系统中的等效扰动量。

步骤3.3,基于步骤3.2所得结果,将公式(5)改写为如下公式(11):

其中,为给定电压矢量;u′d1、u′q1为控制系统中的等效扰动量。

步骤4,将参考电压矢量视为传统模型所得的电压分量和扰动分量之和,进而重构代价函数为电压矢量误差的绝对值。

步骤4的具体过程为:

传统模型预测电流控制的代价函数为d-q轴电流误差的绝对值之和,由于步骤3中控制目标变为电压矢量,因而将代价函数进行重构,如下式所示:

其中,为给定电压矢量;ud,i、uq,i为逆变器直接输出的8种基本电压矢量在d-q轴的分量,i=0,1,2,...,7。

本发明一种改进积分滑模的感应电机模型预测电流控制方法,此方法主要解决了当电机的参数在不同运行工况下发生显著变化时,控制器可将误差实时估计出并对给定进行修正,以确保系统具有较强的鲁棒性能。进一步为解决滑模中的抖振问题,对控制律进行改进,并引入低通滤波器,同时也保证了控制器的鲁棒性和精度。

本发明在满足电流环更快地响应速度条件下,提出积分滑模控制器主要作用是提高系统在参数不匹配工况下的鲁棒性能。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种双惯量伺服系统的自适应齿隙振荡抑制方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!