一种氟磺酸锂盐的制备方法

文档序号:689431 发布日期:2021-04-30 浏览:190次 >En<

阅读说明:本技术 一种氟磺酸锂盐的制备方法 (Preparation method of lithium fluorosulfonate ) 是由 梁海波 辛伟贤 谢文健 陈志强 陈新滋 于 2020-06-05 设计创作,主要内容包括:本发明公开了一种氟磺酸锂盐的制备方法,包括以下步骤:(1)以纯度≥98.5%的氟磺酸金属盐(MFSO-3)为原料,在酯类、醇类、腈类或酰胺类溶剂中,与有机锂盐复分解交换反应。(2)产生不溶解的有机金属盐沉淀;经真空抽干、采用有机金属盐的不良溶剂进行萃取、过滤分离、减压浓缩、向浓缩液中加入低极性非质子溶剂静止结晶、真空干燥得到高纯氟磺酸锂盐的产物。本发明的一种高纯氟磺酸锂盐的制备方法反应后处理方法简单,产品收率高,纯度高,还能有效降低产品中钾离子、钠离子、钙离子、氯离子和水分等杂质含量。本发明提供的制备方法具有操作步骤简单、生产成本合理、安全性高,底物选择广泛、成本低以及产物纯度高的特点。(The invention discloses a preparation method of lithium fluorosulfonate, which comprises the following steps: (1) with a purity of not less than 98.5% of Metal Fluorosulfonate (MFSO) 3 ) The raw materials are subjected to double decomposition exchange reaction with organic lithium salt in ester, alcohol, nitrile or amide solvents. (2) Precipitation of insoluble organometallic salts; vacuum drying, extracting with organic metal salt poor solvent, filtering, separating, vacuum concentrating, adding low-polarity aprotic solvent into the concentrated solution, standing for crystallization, and vacuum drying to obtain the product of high-purity lithium fluorosulfonate. The preparation method of the high-purity lithium fluorosulfonate has the advantages of simple post-reaction treatment method, high product yield and high purity, and can effectively reduce the content of impurities such as potassium ions, sodium ions, calcium ions, chloride ions, moisture and the like in the product. The preparation method provided by the invention has the advantages of simple operation steps and productionReasonable cost, high safety, wide substrate selection, low cost and high product purity.)

一种氟磺酸锂盐的制备方法

技术领域

本发明涉及一种氟磺酸锂的制备方法,属于化学合成技术领域。

背景技术

1.氟磺酸锂简写LiFSO3,分子量为106.1。纯净的氟磺酸锂是一种白色固体。是一个可以广泛应用电子电池领域的化学物质,应用较广泛,纯度高的氟磺酸锂适合用于二次锂离子电池的非水电解液添加剂。其在电解液中具有的电化学稳定性及热稳定的特质,能提高二次锂离子电池的循环性能及高温存储性能,使用过程能抑制电解液的气体量产生,从而提高二次锂离子电池的总体性能,在一些领域中显示出会取代对环境有严重污染的电解添加剂(例如二氟磷酸锂、高氯酸锂、六氟合砷酸锂等)。

2.以下是现有技术中关于对氟磺酸锂的技术简介。

3.文章(J.Chem.SOC.(A),1967,(3),355-358)报道了在乙酸溶剂中采用氟磺酸与有机物乙酸钾发生反应方法制备氟磺酸钾。

4.专利EP2698350(A1)、CN 103492319B针对氟磺酸锂的电性特质深入研究,发现其特性能提高二次锂离子电池的高温电容量,使用过程能抑制电解液的气体量产生,从而提高电池总体性能,因此合成高纯的氟磺酸锂对于提升锂离子电池工艺将有莫大的帮助。但专利中提出以氟磺酸与各种各样的锂盐反应生成氟磺酸锂,然后通过后处理纯化得到氟磺酸锂成品,产品纯度较高。尽管氟磺酸与各种锂盐能反应制备出氟磺酸锂,但是原料氟磺酸是一种高危化学品,有强烈的刺激性和腐蚀性,露置空气中冒出白烟,与空气中水气反应放出氟化氢气体,危害极大。如果反应采用的是有机锂盐为原料,反应生产的有机物会立刻被氟磺酸氟化产生副反应,有大量杂质产生,不利于后一步的后处理纯化,故只能限制于采用无机锂为原料。因此此方法存在一定的原料限制。

发明内容

1.本发明所要解决的技术问题是,提供一种高安全性、高收率、高纯以及杂质含量低的高纯氟磺酸锂盐的制备方法。

2.为解决上述技术问题,本发明采用的技术方案为:

3.一种氟磺酸锂盐的制备方法,包括以下步骤:

(1)以纯度≥98.5%的氟磺酸金属盐(MFSO3)为原料,在酯类、醇类、腈类或酰胺类有机溶剂中,与有机锂盐复分解交换反应。

(2)产生不溶解的有机金属盐沉淀;经真空抽干、采用有机金属盐的不良溶剂进行萃取、过滤分离、减压浓缩、向浓缩液中加入低极性非质子溶剂静止结晶、真空干燥得到高纯氟磺酸锂盐的产物。

4.步骤(1)中的氟磺酸金属盐(MFSO3)的M为一价金属离子钾、钠、铯的一种。

5.步骤(1)中的酯类选自乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、乙酸异丁酯或乙酸乙烯酯的一种或多种组合,醇类选自甲醇、乙醇、丙醇、丁醇或异丙醇的一种或多种组合,醚类选自乙二醇单甲醚、乙二醇单乙醚、乙二醇二甲醚、二乙二醇二甲醚的一种或多种组合,腈类选自乙腈、丙腈或异丙腈的一种或多种组合,酰胺类选自N,N-二甲基甲酰胺。

6.步骤(1)中的有机锂盐为六氟磷酸锂、甲基磺酸锂、四氟硼酸锂、对甲苯磺酸锂、全氟丁基磺酸锂、糖精锂、乙酰磺胺锂、乙酰丙酮锂、丙二酸二乙酯锂、邻苯二甲酰亚胺锂、马来酰亚胺锂、琥珀酰亚胺锂、三氟甲磺酸锂的一种或多种组合。

7.步骤(1)中的氟磺酸金属盐与有机锂盐复分解交换反应摩尔比为1.0~4.0:1.0。

优选比例为1.0~2.0:1.0

8.步骤(1)中的复分解交换反应温度在20~60℃,优选温度为30~45℃。反应时间为1~24小时,优选时间为8~12小时。

9.步骤(2)中的真空抽干真空度为真空度为3~4torr,温度为0~40℃。优选温度为20~40℃。

10.步骤(2)中的有机金属盐的不良溶剂选自碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯中的一种或多种的组合。

11.步骤(2)中的减压浓缩时真空度为8~10torr,温度为10~60℃。温度优选为30~45℃。浓缩至原体积的1/8~1/5。

12.步骤(2)中的低极性非质子溶剂选自正己烷、环己烷、环戊烷、二氯甲烷、氯仿、二氯乙烷、溴乙烷、二溴乙烷、甲苯、邻二甲苯、对二甲苯的一种或多种组合。

13.步骤(2)中的结晶时间为12~48小时。优选时间为16~24小时。结晶温度为-20℃。

14.步骤(2)中的真空干燥真空度为3~4torr,温度为10~60℃。温度优选为20~40℃。

15.本发明所达到的有益效果:16.(1)本发明利用有机锂盐作为一个复分解交换反应的平台,能把较大范围的MFSO3置换成LiFSO3,从而使合成LiFSO3的反应从氟磺酸路线扩张,增加了合成路线的可选择性。更安全容易得到高纯的氟磺酸锂。

17.(2)复分解交换反应得到的有机金属盐不溶于碳酸酯类溶剂,可以直接过滤除去,操作安全简单。

18.(3)本发明制备的氟磺酸锂的纯度≥99.5%,钠离子≤50ppm,钾离子≤50ppm,钙离子≤10ppm,氟离子≤50ppm,氯离子≤50ppm,能够应用于制备二次锂离子电池电解液。

19.本发明应用有机锂盐与有机金属盐在有机溶剂溶解度的极大差异性质来与氟磺酸金属盐进行复分解交换反应,透过有机锂盐与氟磺酸金属盐的均相反应提高收率,有别于CN 103492319B提出的运用强酸氟磺酸与无机锂盐反应制备出弱酸和氟磺酸锂的特性。

20.本发明采用氟磺酸金属盐与有机锂盐进行复分解交换反应制备氟磺酸锂盐,反应后处理方法简单,产品收率高,纯度高,还能有效降低产品中钾离子、钠离子、钙离子、氯离子和水分等杂质含量,本发明提供的制备方法具有操作步骤简单、生产成本合理、安全性高,底物选择广泛、成本低以及产物纯度高的特点。

具体实施方式

1.下面对本发明作进一步描述,以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。

2.实施例1

(1)氟磺酸钾的提纯:

在惰性气体保护下,在1000mL瓶中加入100g(0.724mol)市场购买的氟磺酸钾盐KFSO3(M=138.16)(CAS:13455-22-6),先加入400mL乙二醇单甲醚作为溶剂搅拌完全溶解,然后加入400mL乙酸乙酯继续搅拌,产生部分不溶物,过滤掉不溶物,将滤液减压率浓缩至有少量固体出现,恢复到常压,然后再加入500ml二氯甲烷并将溶液降温到-15℃,静置24小時得到晶体,分离后晶体用二氯甲烷洗涤,最后将固体抽真空干燥,即可以得到纯度≥98.5%的氟磺酸钾盐白色粉末。

(2)氟磺酸钠的提纯:

在惰性气体保护下,在1000mL瓶中加入100g(0.819mol)市场购买的氟磺酸钠盐NaFSO3(M=122.05)(CAS:14483-63-7),先加入400mL甲醇作为溶剂搅拌完全溶解,然后加入500mL乙酸乙酯继续搅拌,产生部分不溶物,过滤掉不溶物,将滤液减压率浓缩至有少量固体出现,恢复到常压,然后再加入400ml二氯甲烷并将溶液降温到-15℃,静置24小時得到晶体,分离后晶体用二氯甲烷洗涤,最后将固体抽真空干燥,即可以得到纯度≥98.5%的氟磺酸钠盐白色粉末。

3.实施例2

在惰性气体保护下,500mL反应烧瓶中,放置六氟磷酸锂(M=151.91)30.38g(0.2mol)溶解于150mL甲醇,控制温度至40℃,搅拌下滴加溶于200mL甲醇的30.40g(0.22mol)氟磺酸钾盐(KFSO3),滴加过程生成六氟磷酸钾沉淀,滴加完毕后继续搅拌8小时,然后采用减压真空抽干反应溶剂。得到固体后,再加入250mL碳酸二甲酯溶解并过滤去除六氟磷酸钾,得到的滤液浓缩至浆状之后,加入300mL二氯甲烷静止结晶,白色固体产品析出,经过滤、真空干燥后得18.59g氟磺酸锂盐,产率87.6%。(检测结果:ICP-OES(ppm):Na+=21.2ppm,K+=44.8ppm,Fe2+=1.5ppm,Ca2+=9.1ppm;IC:F=31.5ppm,Cl=11.4ppm。KF:H2O=21.9ppm。19FNMR(400MHz,DMSO-d6):40.22ppm

4.实施例3

在惰性气体保护下,500mL反应烧瓶中,放置糖精锂37.80g(0.2mol)溶解于100mL乙腈,控制温度至30℃,搅拌下滴加溶于250mL乙腈的26.85g(0.22mol)氟磺酸钠盐(NaFSO3),滴加过程生成糖精钠沉淀,滴加完毕后继续搅拌16小时,然后采用减压真空抽干反应溶剂。得到固体后,再加入250mL碳酸二甲酯溶解并过滤去除糖精钠,得到的滤液浓缩至浆状之后,加入300mL二氯乙烷静止结晶,白色固体产品析出,经过滤、真空干燥后得18.95g氟磺酸锂盐,产率89.3%。(检测结果:ICP-OES(ppm):Na+=48.6ppm,K+=8.9ppm,Fe2 +=2.1ppm,Ca2+=15.8ppm;IC:F=43.2ppm,Cl=18.6ppm。KF:H2O=25.6ppm。19FNMR(400MHz,DMSO-d6):40.22ppm

5.实施例4

在惰性气体保护下,500mL反应烧瓶中,放置对甲苯磺酸锂(M=178.2)17.82g(0.1mol)溶解于150mL乙醇,控制温度至45℃,搅拌下滴加溶于80mL乙醇的16.58g(0.12mol)氟磺酸钾盐(KFSO3),滴加过程生成对甲苯磺酸钾沉淀,滴加完毕后继续搅拌8小时,然后采用减压真空抽干反应溶剂。得到固体后,再加入100mL碳酸二乙酯溶解并过滤去除对甲苯磺酸钾,得到的滤液浓缩至浆状之后,加入150mL甲苯静止结晶,白色固体产品析出,经过滤、真空干燥后得9.41g氟磺酸锂盐LiFSO3,产率88.7%。(检测结果:ICP-OES(ppm):Na+=14.9ppm,K+=40.4ppm,Fe2+=1.8ppm,Ca2+=5.2ppm;IC:F=39.1ppm,Cl=14.2ppm。KF:H2O=28.1ppm。19FNMR(400MHz,DMSO-d6):40.23ppm

6.实施例5

在惰性气体保护下,250mL反应烧瓶中,放置四氟硼酸锂(M=93.75)9.38g(0.1mol)溶解于100mL乙二醇单甲醚,控制温度至45℃,搅拌下滴加溶于80mL乙二醇单甲醚的16.58g(0.12mol)氟磺酸钾盐(KFSO3),滴加过程生成四氟硼酸钾沉淀,滴加完毕后继续搅拌8小时,然后采用减压真空抽干反应溶剂。得到固体后,再加入100mL碳酸甲乙酯溶解并过滤去除四氟硼酸钾,得到的滤液浓缩至浆状之后,加入150mL氯仿静止结晶,白色固体产品析出,经过滤、真空干燥后得9.83g氟磺酸锂盐,产率92.6%。(检测结果:ICP-OES(ppm):Na+=14.9ppm,K+=39.1ppm,Fe2+=1.2ppm,Ca2+=8.3ppm;IC:F=45.8ppm,Cl=21.2ppm。KF:H2O=24.3ppm。19FNMR(400MHz,DMSO-d6):40.23ppm

7.实施例6

在惰性气体保护下,250mL反应烧瓶中,放置全氟丁基磺酸锂(M=306.03)15.3g(0.05mol)溶解于100mL乙二醇二甲醚,控制温度至45℃,搅拌下滴加溶于80mL乙二醇二甲醚的8.98g(0.065mol)氟磺酸钾盐(KFSO3),滴加过程生成全氟丁基磺酸钾沉淀,滴加完毕后继续搅拌18小时,然后采用减压真空抽干反应溶剂。得到固体后,再加入100mL碳酸二甲酯溶解并过滤去除全氟丁基磺酸钾,得到的滤液浓缩至浆状之后,加入200mL二氯甲烷静止结晶,白色固体产品析出,经过滤、真空干燥后得4.61g氟磺酸锂盐,产率86.9%。(检测结果:ICP-OES(ppm):Na+=18.7ppm,K+=46.6ppm,Fe2+=1.3ppm,Ca2+=7.4ppm;IC:F=47.2ppm,Cl=25.7ppm。KF:H2O=22.7ppm。19FNMR(400MHz,DMSO-d6):40.22ppm

8.实施例7

在惰性气体保护下,500mL反应烧瓶中,放置三氟甲磺酸锂(M=156.01)15.6g(0.1mol)溶解于150mL乙酸乙酯,控制温度至45℃,搅拌下滴加溶于150mL乙腈的14.65g(0.12mol)氟磺酸钠盐(NaFSO3),滴加过程生成三氟甲磺酸钠沉淀,滴加完毕后继续搅拌18小时,然后采用减压真空抽干反应溶剂。得到固体后,再加入200mL碳酸二甲酯溶解并过滤去除三氟甲磺酸钠,得到的滤液浓缩至浆状之后,加入250mL二溴乙烷静止结晶,白色固体产品析出,经过滤、真空干燥后得9.64g氟磺酸锂盐,产率90.9%。(检测结果:ICP-OES(ppm):Na+=42.5ppm,K+=17.6ppm,Fe2+=1.8ppm,Ca2+=6.9ppm;IC:F=41.5ppm,Cl=31.3ppm。KF:H2O=18.8ppm。19FNMR(400MHz,DMSO-d6):40.23ppm

9.以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:卤化物的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!