Room-temperature intrinsic self-repairing glassy polymer material and preparation method thereof

文档序号:695250 发布日期:2021-05-04 浏览:9次 中文

阅读说明:本技术 室温本征自修复玻璃态聚合物材料及其制备方法 (Room-temperature intrinsic self-repairing glassy polymer material and preparation method thereof ) 是由 傅佳骏 徐建华 陈骄阳 于 2020-12-29 设计创作,主要内容包括:本发明公开了一种室温本征自修复玻璃态聚合物材料及其制备方法。所述的玻璃态聚合物材料是由甘醇和二异氰酸酯按比例混合后缩聚而得,具体为先将二异氰酸酯溶解于有机溶剂中,而后在氮气气氛下将甘醇和月桂酸二异丁基锡混合后直接加入到二异氰酸酯溶液中,加热反应后干燥得到具有室温本征自修复功能的玻璃态聚合物材料。本发明的玻璃态聚合物材料其不仅强度模量大,还具有优异的室温自修复功能,且制备工艺简单,制备效率高,适合工业化大批量生产。(The invention discloses a room temperature intrinsic self-repairing glassy polymer material and a preparation method thereof. The glassy polymer material is prepared by mixing glycol and diisocyanate in proportion and then carrying out polycondensation, and specifically, dissolving the diisocyanate in an organic solvent, then mixing the glycol and diisobutyltin laurate in a nitrogen atmosphere, directly adding the mixture into a diisocyanate solution, heating for reaction, and drying to obtain the glassy polymer material with the room-temperature intrinsic self-repairing function. The glassy polymer material disclosed by the invention is high in strength modulus, excellent in room-temperature self-repairing function, simple in preparation process, high in preparation efficiency and suitable for industrial mass production.)

1. The room temperature intrinsic self-repairing glassy polymer material is characterized by having a structural formula as follows:

2. the preparation method of the room temperature intrinsic self-repairing glassy polymer material of claim 1, comprising the following steps:

step 1: under the atmosphere of nitrogen, stirring and dissolving diisocyanate in an organic solvent to obtain a diisocyanate solution, wherein the diisocyanate is isophorone diisocyanate or toluene diisocyanate, and the organic solvent is dimethylformamide, trichloromethane, acetone or tetrahydrofuran;

step 2: uniformly mixing glycol and a diisobutyl tin dilaurate catalyst, then dropwise adding the mixture into a diisocyanate solution in a nitrogen atmosphere, stirring the mixture until the mixture is uniformly mixed, and reacting the mixture for 6-12 hours at 50-80 ℃ to generate a polymer solution, wherein the glycol is triethylene glycol or pentaethylene glycol;

and step 3: adding methanol into the polymer solution, continuing stirring, stopping the reaction, pouring the polymer solution into a mould for forming, and finally drying to obtain the glassy polymer material with the room-temperature self-repairing function.

3. The chamber preparation method according to claim 1, wherein the concentration of the diisocyanate solution in step 1 is 1 to 2 mmol/mL.

4. The chamber preparation method of claim 1, wherein the molar amounts of the glycol and the diisocyanate in step 2 are the same.

5. The chamber preparation method of claim 1, wherein the stirring time in step 3 is 30 to 60 min.

6. The chamber preparation method of claim 1, wherein the drying temperature is 70 to 120 ℃ and the drying time is 20 to 60 hours in step 3.

Technical Field

The invention belongs to the field of high polymer materials, and relates to a room-temperature intrinsic self-repairing glassy polymer material and a preparation method thereof.

Background

Glass has excellent optical transparency, hardness and durability, but is also brittle; broken glass cannot be re-bonded because the interface at which the glass breaks is not tacky. Supramolecular Polymer Glass (SPG) is a room temperature glassy polymer material assembled from polymer chains through a large number of non-covalent interactions such as hydrogen bonding, metal ion coordination, ionic bonding, and the like. The glass has strong mechanical property and repair property, has transparency almost the same as that of glass, and is a good glass substitute. However, SPGs reported so far have substantial drawbacks in self-healing, requiring external energy input (such as light, heat or solvent assistance) to achieve the self-healing process (nat. commun.2018,7,10995), or having a long self-healing time (typically over 6 hours) (Science 2018,359,72-76), which severely limits the performance and practical application of the material. Therefore, it is still a great challenge to develop and industrialize fast room temperature self-healing SPGs of high colorlessness, high transparency, high hardness.

Disclosure of Invention

The invention aims to provide a room-temperature intrinsic self-repairing glassy polymer material and a preparation method thereof. The method adopts an oligomer supermolecule self-assembly strategy to prepare the supermolecule polymer with high-density dynamic hydrogen bonds, the flexural modulus of the material exceeds 3GPa, and simultaneously, the material can lift 1kg of weight after being repaired for 1min at room temperature.

The technical scheme for realizing the purpose of the invention is as follows:

the room-temperature intrinsic self-repairing glassy polymer material is prepared by mixing glycol (triethylene glycol or pentaethylene glycol) and diisocyanate (isophorone diisocyanate or toluene diisocyanate) in proportion, polycondensing and drying; the polymer matrix has high-density supermolecule dynamic hydrogen bonds, the acting force not only can endow the material with ultrahigh hardness and strength, but also can endow the material with rapid room temperature self-repairing performance, and the structural formula of the polymer is as follows:

the preparation method of the room temperature intrinsic self-repairing glassy polymer material comprises the following steps:

step 1: under the atmosphere of nitrogen, stirring and dissolving diisocyanate in an organic solvent to obtain a diisocyanate solution, wherein the diisocyanate is isophorone diisocyanate or toluene diisocyanate, and the organic solvent is dimethylformamide, trichloromethane, acetone or tetrahydrofuran;

step 2: uniformly mixing glycol and a diisobutyl tin dilaurate catalyst, then dropwise adding the mixture into a diisocyanate solution in a nitrogen atmosphere, stirring the mixture until the mixture is uniformly mixed, and reacting the mixture for 6-12 hours at 50-80 ℃ to generate a polymer solution, wherein the glycol is triethylene glycol or pentaethylene glycol;

and step 3: adding methanol into the polymer solution, continuing stirring, stopping the reaction, pouring the polymer solution into a mould for forming, and finally drying to obtain the glassy polymer material with the room-temperature self-repairing function.

Preferably, in the step 1, the concentration of the diisocyanate solution is 1-2 mmol/mL.

Preferably, in step 2, the molar amounts of the glycol and the diisocyanate are the same.

Preferably, in the step 3, the stirring time is 30-60 min.

Preferably, in the step 3, the drying temperature is 70-120 ℃, and the drying time is 20-60 h.

Compared with the prior art, the invention has the following advantages:

(1) the room temperature intrinsic self-repairing glassy polymer material prepared by the invention has excellent mechanical properties (modulus of 3.11GPa), and the modulus is higher than that of common plastics, such as polyethylene, polypropylene, polyvinyl chloride and polycarbonate.

(2) Compared with the common glass state self-repairing material, the room temperature intrinsic self-repairing glass state polymer material prepared by the invention has the advantages that the repairing process does not need external light, heat or other external stimulation, and the repairing speed is high (the room temperature repairing time is 1 min).

(3) The preparation process is simple to operate, good in repeatability, easy to operate and suitable for market popularization;

drawings

FIG. 1 is a nuclear magnetic spectrum of the room temperature intrinsic self-repairing glassy polymer material prepared in example 1.

FIG. 2 is an infrared spectrum of the room temperature intrinsic self-repairing glassy polymer material prepared in example 1.

FIG. 3 is a hanging weight repair diagram of the room temperature intrinsic self-repairing glassy polymer material prepared in example 1.

FIG. 4 is a gel chromatogram of the room temperature intrinsic self-repairing glassy polymer material prepared in example 2.

FIG. 5 is an X-ray diffraction pattern of the room temperature intrinsic self-repairing glassy polymer material prepared in example 2.

FIG. 6 is a small angle X-ray scattering pattern of the room temperature intrinsic self-healing glassy polymer material prepared in example 2.

FIG. 7 is a repair stress-strain curve of the room temperature intrinsic self-repairing glassy polymer material prepared in example 2.

FIG. 8 is a differential scanning calorimeter spectrum of a room temperature intrinsic self-healing glassy polymer prepared in example 3.

FIG. 9 is an optical repair diagram of the room temperature intrinsic self-healing glassy polymer prepared in example 3.

FIG. 10 is an optical microscopy repair image of the room temperature intrinsic self-healing glassy polymer material prepared in example 4.

Detailed Description

The present invention will be described in more detail with reference to the following examples and the accompanying drawings.

The invention prepares the room temperature intrinsic self-repairing glassy polymer by an oligomer supermolecule self-assembly strategy. The high-density dynamic hydrogen bonds introduced by the invention can provide excellent mechanical strength and can endow the material with a rapid room-temperature self-repairing function.

Example 1

The preparation method of the room temperature intrinsic self-repairing glassy polymer comprises the following steps:

step 1: under the nitrogen atmosphere, 5mmol of isophorone diisocyanate is stirred and dissolved in 5mL of dimethylformamide;

step 2: 5mol of pentaethylene glycol and diisobutyltin dilaurate are uniformly mixed, then the mixture is dropwise added into the solution obtained in the step 1 under the nitrogen atmosphere, and after the mixture is uniformly mixed, the mixture reacts at 50 ℃ for 12 hours to form a polymer;

and step 3: adding 5mL of methanol into the polymer solution obtained in the step (2), continuously stirring for 30min, and then pouring the polymer solution into a mold for molding;

and 4, step 4: and (4) drying the product obtained in the step (3) at 70 ℃ for 48h to obtain the glassy polymer material with the room-temperature self-repairing function.

As shown in fig. 1 and 2, infrared spectroscopy and nuclear magnetic hydrogen spectroscopy confirmed the successful preparation of the desired room temperature intrinsic self-healing glassy polymer.

After the room-temperature intrinsic self-repairing glassy polymer material prepared in this embodiment is broken off, the material is quickly attached for 1min, as shown in fig. 3, and a weight of 1kg can be easily lifted.

Example 2

The preparation method of the room temperature intrinsic self-repairing glassy polymer comprises the following steps:

step 1: under the nitrogen atmosphere, 7mmol of toluene diisocyanate is stirred and dissolved in 10mL of trichloromethane;

step 2: uniformly mixing 7mol of triethylene glycol and diisobutyltin dilaurate, dropwise adding the mixture into the solution obtained in the step (1) in a nitrogen atmosphere, stirring the mixture until the mixture is uniformly mixed, and reacting the mixture for 6 hours at 80 ℃ to generate a polymer;

and step 3: adding 1mL of methanol into the polymer solution obtained in the step (2), continuously stirring for 60min, and then pouring the polymer solution into a mold for molding;

and 4, step 4: and (3) drying the product obtained in the step (3) at 120 ℃ for 48h to obtain the glassy polymer material with the room-temperature self-repairing function.

As shown in fig. 4, the number average molecular weight of the room temperature intrinsic self-repairing glassy polymer prepared in this example is 12393.

As shown in fig. 5 and fig. 6, the room temperature intrinsic self-repairing glassy polymer prepared in this example is an amorphous homogeneous polymer.

After the room-temperature intrinsic self-repairing glassy polymer material prepared in the embodiment is broken off in the middle, the material is quickly attached for 1min, as shown in fig. 7, and the mechanical strength and the elongation of the material after 1min of repair are 19.6MPa and 1.49%.

Example 3

The preparation method of the room temperature intrinsic self-repairing glassy polymer comprises the following steps:

step 1: under the nitrogen atmosphere, 6mmol of isophorone diisocyanate is stirred and dissolved in 8mL tetrahydrofuran;

step 2: uniformly mixing 6mol of pentaethylene glycol and diisobutyltin dilaurate, dropwise adding the mixture into the solution obtained in the step 1 in a nitrogen atmosphere, stirring the mixture until the mixture is uniformly mixed, and reacting the mixture for 9 hours at 70 ℃ to obtain a polymer;

and step 3: adding 3mL of methanol into the polymer solution obtained in the step (2), continuously stirring for 40min, and then pouring the polymer solution into a mold for molding;

and 4, step 4: and (4) drying the product obtained in the step (3) at 90 ℃ for 48h to obtain the glassy polymer material with the room-temperature self-repairing function.

As shown in FIG. 8, the glass transition temperature of the intrinsic self-repairing glassy polymer at room temperature prepared in this example is 35.1 ℃, which is a typical glassy polymer.

After the room-temperature intrinsic self-repairing glassy polymer material prepared in this embodiment is broken at different places, the glass is quickly attached for 1min, and as shown in fig. 9, the broken materials can be quickly bonded together.

Example 4

The preparation method of the room temperature intrinsic self-repairing glassy polymer comprises the following steps:

step 1: under the nitrogen atmosphere, 6mmol of toluene diisocyanate is stirred and dissolved in 10mL of solvent;

step 2: uniformly mixing 6mol of triethylene glycol and a diisobutyltin dilaurate catalyst, dropwise adding the mixture into the solution obtained in the step (1) in a nitrogen atmosphere, stirring the mixture until the mixture is uniformly mixed, and reacting the mixture for 9 hours at 60 ℃ to obtain a polymer;

and step 3: adding 2mL of methanol into the polymer solution obtained in the step (2), continuously stirring for 50min, and then pouring the polymer solution into a mold for molding;

and 4, step 4: and (3) drying the product obtained in the step (3) at 110 ℃ for 48h to obtain the glassy polymer material with the room-temperature self-repairing function.

The intrinsic self-repairing glassy polymer material at room temperature prepared in the present example was cut with a blade, and the repairing condition of the polymer material at 90 ℃ was observed with an optical microscope, and the result is shown in fig. 10, where the polymer material was completely repaired within 2 min.

The above description is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, several modifications and variations can be made without departing from the technical principle of the present invention, and these modifications and variations should also be regarded as the protection scope of the present invention.

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:交联度可被调节的抛光垫及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!