四轮驱动电动车辆的牵引控制装置和方法

文档序号:709693 发布日期:2021-04-16 浏览:3次 >En<

阅读说明:本技术 四轮驱动电动车辆的牵引控制装置和方法 (Traction control apparatus and method for four-wheel drive electric vehicle ) 是由 金贵哲 于 2020-09-29 设计创作,主要内容包括:本申请公开一种四轮驱动电动车辆的牵引控制装置和方法。当驱动轮打转时,控制驱动力以遏制驱动轮打转并确保启动性能和加速性能。该装置包括:第一马达,将驱动扭矩供应到四轮驱动电动车辆的主驱动轮;第二马达,将驱动扭矩供应到四轮驱动电动车辆的辅助驱动轮;分离器,设置在辅助驱动轮的车轴上,分离器选择性地将辅助驱动轮连接到第二马达,以控制辅助驱动轮和第二马达之间的动力传递;以及牵引控制器,控制第一马达和第二马达,其中在辅助驱动轮和第二马达通过分离器彼此连接的状态下,当在四轮驱动电动车辆行驶期间主驱动轮打转时,牵引控制器减小主驱动轮的驱动扭矩,并且与主驱动轮的驱动扭矩的减小量成比例地增加辅助驱动轮的驱动扭矩。(The application discloses a traction control device and method for a four-wheel drive electric vehicle. When the drive wheels spin, the drive force is controlled to suppress the spin of the drive wheels and ensure startability and acceleration performance. The device includes: a first motor supplying a driving torque to a main driving wheel of a four-wheel drive electric vehicle; a second motor supplying a driving torque to an auxiliary driving wheel of the four-wheel drive electric vehicle; a decoupler, disposed on the axle of the auxiliary drive wheel, selectively coupling the auxiliary drive wheel to the second motor to control power transfer between the auxiliary drive wheel and the second motor; and a traction controller controlling the first motor and the second motor, wherein the traction controller reduces a driving torque of the main driving wheels when the main driving wheels spin during running of the four-wheel drive electric vehicle in a state where the auxiliary driving wheels and the second motor are connected to each other through the decoupler, and increases the driving torque of the auxiliary driving wheels in proportion to an amount of reduction of the driving torque of the main driving wheels.)

四轮驱动电动车辆的牵引控制装置和方法

技术领域

本公开涉及一种四轮驱动电动车辆的牵引控制装置和方法。更具体地,本公开涉及一种用于控制车辆的驱动轮的驱动力的牵引控制装置和方法。

背景技术

本部分中的陈述仅提供与本公开有关的背景信息,并且可能不构成现有技术。

通常,作为用于提高车辆行驶时的稳定性的系统中的一种,存在牵引控制系统(Traction Control System,TCS),TCS在车辆暴冲或突然加速时控制驱动力,从而防止车辆的车轮打滑或打转(spinning)。

具体地,TCS是一种防止车辆起步或加速时驱动轮打滑或打转,从而防止车辆的牵引不良并提高车辆的启动性能和加速性能的系统。

当在车辆起步或加速时车辆的驱动轮由于车辆的过度驱动力而打滑或打转时,传统的TCS通过减小车辆的驱动力(驱动扭矩)来控制驱动轮的速度。

然而,已经发现,当在车辆行驶期间TCS操作时,车辆的驱动力可能会减小,因此车辆的启动性能和加速性能可能会劣化。特别地,当车辆在上坡行驶时,由于TCS的操作而导致的车辆驱动力的减小以及所导致的车辆的启动性能和加速性能的劣化可能会引起严重的问题,例如事故。

发明内容

本公开提供一种四轮驱动电动车辆的牵引控制装置和方法,在车辆的驱动轮打转的情况下控制驱动力,从而遏制驱动轮打转并确保车辆的启动性能和加速性能。

在本公开的一方面中,一种四轮驱动电动车辆的牵引控制装置包括:第一马达,被配置为将驱动扭矩供应到四轮驱动电动车辆的主驱动轮;第二马达,被配置为将驱动扭矩供应到电动车辆的辅助驱动轮;分离器(disconnector),设置在辅助驱动轮的车轴上,该分离器被配置为将辅助驱动轮和第二马达彼此连接,以允许辅助驱动轮和第二马达之间的动力传递,或者将辅助驱动轮和第二马达彼此断开,以中断辅助驱动轮和第二马达之间的动力传递;以及牵引控制器,被配置为控制第一马达和第二马达。特别地,在辅助驱动轮和第二马达通过分离器彼此连接的状态下,当在电动车辆行驶期间主驱动轮打转时,牵引控制器减小主驱动轮的驱动扭矩,并且与主驱动轮的驱动扭矩的减小量成比例地增加辅助驱动轮的驱动扭矩。

在一种形式中,在分离器分离的状态下,当在电动车辆行驶期间主驱动轮打转时,牵引控制器可以减小主驱动轮的驱动扭矩,并且可以接合分离器,使得驱动扭矩被供应到辅助驱动轮。

在另一种形式中,当分离器接合之后主驱动轮的打转量等于或大于预定的第一阈值水平并且辅助驱动轮的打转量等于或大于预定的第二阈值水平时,牵引控制器可以控制第一马达减小主驱动轮的驱动扭矩,并且可以控制第二马达减小辅助驱动轮的驱动扭矩。

在另一种形式中,牵引控制器可以包括:制动控制器,被配置为确定第一马达的所需扭矩(第一所需扭矩)和第二马达的所需扭矩(第二所需扭矩);以及马达控制器,被配置为控制第一马达的扭矩以实现第一所需扭矩,并且控制第二马达的扭矩以实现第二所需扭矩。

在另一种形式中,当分离器接合之后主驱动轮的打转量小于第一阈值水平并且辅助驱动轮的打转量小于第二阈值水平时,制动控制器可以向马达控制器通知包括关于第一所需扭矩和第二所需扭矩的信息的命令将不被发送到马达控制器。

在本公开的另一方面中,一种四轮驱动电动车辆的牵引控制方法包括:在四轮驱动电动车辆行驶期间,通过制动控制器判断由第一马达驱动的主驱动轮是否打转;在判断主驱动轮打转时,通过制动控制器减小第一马达的扭矩,并且判断电动车辆是否在两轮驱动模式下行驶;在判断电动车辆在两轮驱动模式下行驶时,接合设置在辅助驱动轮的车轴上的分离器,使得辅助驱动轮连接到第二马达以从第二马达接收扭矩;以及在判断主驱动轮和辅助驱动轮中的主驱动轮打转时,通过制动控制器减小第一马达的扭矩,并且与第一马达的扭矩的减小量成比例地增加第二马达的扭矩。

在一种形式中,牵引控制方法可以进一步包括:在判断分离器接合之后主驱动轮的打转量等于或大于预定的第一阈值水平并且辅助驱动轮的打转量等于或大于预定的第二阈值水平时,通过制动控制器控制第一马达减小主驱动轮的驱动扭矩,并且控制第二马达减小辅助驱动轮的驱动扭矩。在这种情况下,马达控制器可以控制第一马达,以实现由制动控制器确定的第一所需扭矩,并且马达控制器可以控制第二马达,以实现由制动控制器确定的第二所需扭矩。

理解的是,本文所使用的术语“车辆”或“车辆的”或其它类似术语通常包括机动车辆,例如包括运动型多用途车(SUV)、公共汽车、卡车、各种商用车辆的乘用车,包括各种船艇和船舶的水运工具,飞机等,并包括混合动力车辆、电动车辆、插电式混合动力车辆、氢动力车辆和其它替代燃料(例如,除石油以外的资源衍生的燃料)车辆。如本文所指,混合动力车辆是具有两种或更多种动力源的车辆,例如汽油和电双动力车辆。

下文讨论了本公开的以上和其它特征。

通过本文提供的描述,其它应用领域将变得显而易见。应理解的是,描述和特定示例仅出于说明的目的,并不旨在限制本公开的范围。

附图说明

为了可以很好地理解本公开,现在将参照附图,通过示例的方式描述本公开的各种形式,其中:

图1是示出四轮驱动电动车辆的分离器的图;

图2是示出基于后轮驱动的四轮驱动电动车辆的图;

图3是示出当前分离器处于接合状态时基于后轮驱动的四轮驱动电动车辆的图;

图4是示出牵引控制装置的图;

图5是示出后马达和后轮之间的连接结构的图;以及

图6是示出牵引控制方法的流程图。

本文描述的附图仅出于说明的目的,并不旨在以任何方式限制本公开的范围。

具体实施方式

以下描述本质上仅是示例性的,并不旨在限制本公开、应用或用途。应理解的是,在整个附图中,相应的附图标记表示相同或相应的部件和特征。

在下文中,现在将详细参照本公开的示例性形式,附图中示出了本公开的示例性形式的示例。

应理解的是,附图不一定按比例绘制,呈现了示出本公开的基本原理的各种特征的某种程度的简化表示。本文所公开的包括诸如具体尺寸、方向、位置和形状的本公开的具体设计特征将部分地由特定的预期应用和使用环境来确定。

通常,当四轮驱动电动车辆在主驱动轮被驱动而辅助驱动轮未被驱动的两轮驱动模式下行驶时,反向驱动力通过辅助驱动轮传递到减速器,因此发生阻力损失。

参照图1和图2,四轮驱动电动车辆被配置为分离器7设置在前车轴82上,以防止反向驱动力通过前轮2传递到前减速器52,从而抑制或防止发生阻力损失。

分离器7可以使用爪式离合器式分离器。前减速器52可以通过前差速齿轮62连接到前车轴82。

如图2所示,四轮驱动电动车辆可以包括用于驱动前轮2的前马达4和用于驱动后轮1的后马达3。当四轮驱动电动车辆采用基于后轮驱动的四轮驱动系统时,分离器7可以安装在前车轴82上。

当分离器7处于接合状态时,车辆在四轮驱动模式下行驶,当分离器7处于分离状态时,车辆在两轮驱动模式下行驶。分离器7的接合状态是允许动力传递的状态,分离器7的分离状态是中断动力传递的状态。

在本公开的一种形式中,当在基于后轮驱动的四轮驱动电动车辆行驶时驱动轮打转时,牵引控制装置控制驱动轮的驱动扭矩,从而遏制驱动轮打转,因此确保车辆的启动性能和加速性能。

为此,在用于遏制车轮打转的牵引控制系统(TCS)的操作期间,牵引控制装置在不引发总驱动扭矩减小的情况下执行牵引控制,或者在最小化总驱动扭矩的减小的同时执行牵引控制,其中总驱动扭矩为前轮的驱动扭矩和后轮的驱动扭矩的总和。

结合本文所公开的形式描述的方法或算法的操作可以直接以硬件(例如,处理器)或由处理器运行的软件模块或硬件和软件模块的组合实现。软件模块可以驻留在诸如RAM、闪速存储器、ROM、EPROM、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM的存储介质(即,存储器和/或存储装置)上。

在TCS的操作期间,在车辆起步或加速时可以执行牵引控制以控制车辆的驱动力(驱动扭矩),从而抑制或防止驱动轮打滑或打转。

如图2和图3所示,在基于后轮驱动的四轮驱动电动车辆的情况下,后轮1是主驱动轮,前轮2是辅助驱动轮。

四轮驱动电动车辆包括用于驱动前轮2的前马达4和用于驱动后轮1的后马达3。后马达3可以被称为第一马达,前马达4可以被称为第二马达。

参照图4,在制动控制器91的命令下,前马达4和后马达3操作以实现所需扭矩。当在车辆行驶期间驱动轮打转时,制动控制器91计算并确定用于遏制车轮打转的最佳所需扭矩,并将包括关于所需扭矩的信息的命令发送到马达控制器92。

制动控制器91可以分别确定前马达4的所需扭矩和后马达3的所需扭矩,并且可以将包括关于前马达4的所需扭矩的信息的命令和包括关于后马达3的所需扭矩的信息的命令发送到马达控制器92。

制动控制器91是控制设置在车辆中的集成式电制动器(Integrated ElectricBrake,IEB)的整体操作的控制器,并且IEB是被配置为产生制动力以制动驱动轮的制动装置。

马达控制器92是控制前马达4和后马达3的整体操作的控制器。马达控制器92可以被称为控制车辆的驱动源的车辆控制单元(VCU)。

马达控制器92控制前马达4和后马达3以实现前马达4和后马达3各自的所需扭矩。

前马达4被配置为产生被供应到前轮2的驱动扭矩。也就是说,前马达4产生用于驱动前轮2的扭矩并将该扭矩供应到前轮2。为此,前马达4通过前减速器52和前差速齿轮62连接到前车轴82,并通过前车轴81连接到前轮2。

如图1至图3所示,分离器7安装在前车轴82上,以控制前马达4和前轮2之间的动力传递。当分离器7处于接合状态时,前马达4的扭矩被传递到前轮2,但是当分离器7处于分离状态时,前马达4的扭矩向前轮2的传递被中断。换句话说,分离器7可以将前轮2和前马达4彼此连接以允许前轮2和前马达4之间的动力传递,或者可以将前轮2和前马达4彼此断开以中断前轮2和前马达4之间的动力传递。

如图3和图5所示,后马达3被配置为产生被供应到后轮1的驱动扭矩。也就是说,后马达3产生用于驱动后轮1的扭矩并将该扭矩供应到后轮1。为此,后马达3通过后减速器51和后差速齿轮61连接到后车轴81,并通过后车轴81连接到后轮1。后车轴81上没有安装分离器。

当发生车轮打转时,可以根据制动控制器91的命令控制后轮1的驱动扭矩和前轮2的驱动扭矩。

例如,制动控制器91可以基于后轮1的打转量来请求减小从后马达3供应到后轮1的驱动扭矩,并且可以基于后马达3的驱动扭矩的减小量来请求增加从前马达4供应到前轮2的驱动扭矩。另外,制动控制器91可以基于前轮2的打转量来请求减小从前马达4供应到前轮2的驱动扭矩。

制动控制器91可以通过马达控制器92来控制前马达4的扭矩和后马达3的扭矩。换句话说,制动控制器91可以请求马达控制器92控制前马达4的扭矩和后马达3的扭矩。

当在车辆行驶期间前轮2和后轮1中仅后轮1以预定的阈值速度或比预定的阈值速度更高的速度打转时,制动控制器91请求马达控制器92减小后轮1的驱动扭矩并与后轮1的驱动扭矩的减小量成比例地增加前轮2的驱动扭矩。阈值速度可以通过实验来预先设置。

换句话说,当仅后轮1以阈值速度或更高的速度打转时,马达控制器92根据制动控制器91的请求减小后马达3的当前扭矩,并与后马达3的扭矩的减小量成比例地增加前马达4的当前扭矩。在这种情况下,后马达3的扭矩的减小量可以基于后轮1的打转量来确定。

这样,由于前轮2的驱动扭矩与后轮1的驱动扭矩的减小量成比例地增加,因此可以防止或最小化总驱动扭矩的减小,其中总驱动扭矩为后轮1的驱动扭矩和前轮2的驱动扭矩的总和。因此,在驱动轮打滑或打转的情况下,可以确保车辆的行驶稳定性并防止或最小化车辆的启动性能和加速性能的劣化。

前轮2的驱动扭矩的增加量可以被设置为等于后轮1的驱动扭矩的减小量,或者可以被设置为小于后轮1的驱动扭矩的减小量。也就是说,前轮2的驱动扭矩的增加量可以等于或小于后轮1的驱动扭矩的减小量。

前轮2的驱动扭矩的增加量可以相对于后轮1的驱动扭矩的减小量具有预定比率。在这种情况下,前轮2的驱动扭矩的增加量与后轮1的驱动扭矩的减小量的比率可以通过实验来预先设置。

制动控制器91可以基于后轮1的打转量来确定后轮1的驱动扭矩的减小量。也就是说,制动控制器91可以基于后轮1的打转量、车速等来确定后马达3的所需扭矩。制动控制器91可以将后马达3的所需扭矩确定为通过从后轮1的当前驱动扭矩中减去后轮1的驱动扭矩的减小量而获得的值。也就是说,当后轮1打转时,可以将后马达3的所需扭矩确定为通过从后轮1的当前驱动扭矩中减去基于后轮1的打转量确定的后轮1的驱动扭矩的减小量而获得的值。当前驱动扭矩可以基于当前车速等来确定。

马达控制器92控制后马达3的输出扭矩以实现所需扭矩。马达控制器92可以以反馈控制的方式来控制后马达3的输出扭矩。

在车辆在两轮驱动模式下行驶期间检测到驱动轮打转时,制动控制器91请求马达控制器92接合分离器7。

当基于前轮2的轮速和后轮1的轮速而计算的驱动轮的轮速比车速大预定水平以上时,制动控制器91确定驱动轮打转。驱动轮的打转量可以基于车速和驱动轮的轮速之间的差来计算。每个车轮的轮速可以由轮速传感器10检测。

马达控制器92根据制动控制器91的请求控制分离器7转换为接合状态,然后将包括关于分离器7的接合状态的信息的信号发送到制动控制器91。当分离器7的接合完成时,车辆的驱动模式从两轮驱动模式转换为四轮驱动模式。

当分离器7的接合完成时,制动控制器91单独地计算前马达4的所需扭矩和后马达3的所需扭矩,并请求马达控制器92实现所需扭矩。在这种情况下,后马达3的所需扭矩可以被称为第一所需扭矩,前马达4的所需扭矩可以被称为第二所需扭矩。

另外,在判断前轮2和后轮1都打转时,制动控制器91可以请求马达控制器92单独地减小前马达4的扭矩和后马达3的扭矩。

换句话说,当前轮2的打转量等于或大于前轮阈值水平并且后轮1的打转量等于或大于后轮阈值水平时,制动控制器91可以请求马达控制器92单独地实现前马达4的所需扭矩和后马达3的所需扭矩。马达控制器92根据制动控制器91的请求控制前马达4的输出扭矩和后马达3的输出扭矩,以实现前马达4的所需扭矩和后马达3的所需扭矩。

在此,后轮阈值水平和前轮阈值水平可以通过实验等来预先设置。后轮阈值水平和前轮阈值水平可以被设置为彼此不同。后轮阈值水平可以被称为第一阈值水平,前轮阈值水平可以被称为第二阈值水平。

前马达4的所需扭矩和后马达3的所需扭矩可以彼此不同地设置。前马达4的扭矩的减小量和后马达3的扭矩的减小量可以通过独立地控制前马达4的输出扭矩和后马达3的输出扭矩来分别优化,因此,可以最小化车辆的启动性能和加速性能的劣化。

在分离器7接合之后,当后轮1的打转量变得小于后轮阈值水平并且前轮2的打转量变得小于前轮阈值水平时,制动控制器91终止用于遏制驱动轮打转的牵引控制。

当执行牵引控制时,马达控制器92根据制动控制器91的请求控制前马达4的扭矩和后马达3的扭矩。当牵引控制结束时,马达控制器92基于包括车速信息的车辆行驶状态信息来控制前马达4和后马达3。也就是说,当牵引控制结束时,车辆在正常驱动模式下行驶。

当终止牵引控制时,制动控制器91将指示终止牵引控制的信号发送到马达控制器92。也就是说,当终止牵引控制时,制动控制器91向马达控制器92通知包括关于马达的所需扭矩的信息的命令将不被发送到马达控制器92。在感知到不再从制动控制器91发送包括关于所需扭矩的信息的命令时,马达控制器92基于车辆行驶状态信息来控制前马达4和后马达3。

在此,制动控制器91和马达控制器92可以构成用于执行牵引控制的牵引控制器9。换句话说,牵引控制器9可以包括制动控制器91和马达控制器92。当在车辆行驶期间驱动轮打转时,牵引控制器9通过控制前马达4的操作和后马达3的操作来执行用于遏制车轮打转的牵引控制。

在下文中,将参照图6描述用于遏制四轮驱动电动车辆的车轮打转的牵引控制过程。

参照图6,在车辆正常行驶期间,通过实时监测来判断后轮1是否打转。当后轮1的打转量等于或大于预定的后轮阈值水平“X”时,制动控制器91判断后轮1打转,并且当后轮1的打转量小于后轮阈值水平“X”时,制动控制器91判断后轮1没有打转。在车辆正常行驶期间,不执行牵引控制。

在判断后轮1打转时,制动控制器91请求马达控制器92减小后马达3的扭矩。也就是说,在判断后轮1的打转量等于或大于后轮阈值水平“X”时,制动控制器91将包括关于后马达3的所需扭矩的信息和牵引控制开始信息的命令发送到马达控制器92,以首先减小后轮1的驱动扭矩。

随后,制动控制器91判断车辆是否在两轮驱动模式下行驶。制动控制器91可以基于从马达控制器92接收的关于分离器7的状态的信息来判断车辆的驱动模式。当分离器7处于分离状态时,制动控制器91判断车辆的驱动模式为两轮驱动模式。当车辆在两轮驱动模式下行驶时,制动控制器91请求马达控制器92接合分离器7。

马达控制器92根据制动控制器91的请求控制分离器7转换为接合状态。当分离器7的接合完成时,马达控制器92将包括关于分离器7的接合状态的信息的信号发送到制动控制器91。当分离器7的接合完成时,车辆的驱动模式从两轮驱动模式转换为四轮驱动模式。

当分离器7的接合完成时,制动控制器91请求马达控制器92基于后轮1的打转量和前轮2的打转量来单独地控制前马达4和后马达3。

当分离器7接合之后后轮1的打转量仍然等于或大于后轮阈值水平“X”时,制动控制器91再次通过马达控制器92来减小后轮1的驱动扭矩。在这种情况下,当前轮2的打转量小于预定的前轮阈值水平“Y”时,制动控制器91基于后轮1的驱动扭矩的减小量来增加前轮2的驱动扭矩。

换句话说,在分离器7接合之后,当后轮1的打转量等于或大于后轮阈值水平“X”并且前轮2的打转量小于前轮阈值水平“Y”时,制动控制器91请求马达控制器92减小后轮1的驱动扭矩并增加前轮2的驱动扭矩。为此,制动控制器91将包括关于前马达4的所需扭矩和后马达3的所需扭矩的信息的命令发送到马达控制器92。

在这种情况下,前轮2的驱动扭矩的增加量可以与后轮1的驱动扭矩的减小量成比例地设置。也就是说,前轮2的驱动扭矩的增加量可以相对于后轮1的驱动扭矩的减小量具有预定比率。前轮2的驱动扭矩的增加量可以被设置为等于或小于后轮1的驱动扭矩的减小量的水平。

另外,在分离器7接合之后,当后轮1的打转量等于或大于后轮阈值水平“X”并且前轮2的打转量等于或大于前轮阈值水平“Y”时,制动控制器91请求马达控制器92减小后轮1的驱动扭矩和前轮2的驱动扭矩。

在这种情况下,后轮1的驱动扭矩的减小量和前轮2的驱动扭矩的减小量可以基于后轮1的打转量和前轮2的打转量来单独地确定。

另外,在分离器7接合之后,当后轮1的打转量小于后轮阈值水平“X”并且前轮2的打转量小于前轮阈值水平“Y”时,制动控制器91终止牵引控制,并将包括牵引控制终止信息的信号发送到马达控制器92。

当牵引控制终止时,车辆在正常驱动模式下行驶。

从以上描述显而易见的是,根据本公开的示例性形式的牵引控制装置具有以下效果。

第一,当在车辆行驶期间发生车轮打转时,单独地控制前马达的扭矩和后马达的扭矩,从而确保车辆在低摩擦道路或斜坡上的启动性能和加速性能。

第二,当仅主驱动轮打转时,辅助驱动轮的驱动扭矩与主驱动轮的驱动扭矩的减小量成比例地增加,从而防止或最小化车辆的总驱动扭矩的减小,并因此确保车辆的启动性能和加速性能。

第三,当在两轮驱动模式下主驱动轮打转时,接合分离器,使得车辆的驱动模式转换为四轮驱动模式,从而遏制主驱动轮打转并提高车辆的行驶稳定性。

已经参照本公开的示例性形式详细描述了本公开。然而,本领域技术人员将理解的是,在不脱离本公开的原理和思想的情况下,可以对这些形式进行改变。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:纯电动汽车平稳停车控制方法及装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!