一种纳米甲壳素复合气凝胶及其制备方法和应用

文档序号:796019 发布日期:2021-04-13 浏览:10次 >En<

阅读说明:本技术 一种纳米甲壳素复合气凝胶及其制备方法和应用 (Nano chitin composite aerogel and preparation method and application thereof ) 是由 黄瑶 刘慧� 孙云芳 于 2020-12-10 设计创作,主要内容包括:本发明公开了一种纳米甲壳素复合气凝胶及其制备方法和应用。本发明利用纳米甲壳素与聚二甲基硅氧烷(PDMS)形成皮克林乳液,然后以皮克林乳液为模板,交联固化后,经干燥得到纳米甲壳素复合气凝胶。本发明制备方法相对简单,未引入任何有毒有害物质作为助剂,且本发明所得的纳米甲壳素复合气凝胶具有结构均匀可控的特点,PDMS疏水位点均匀分布在材料内部,不易被侵蚀剥落,具有更好的使用稳定性,通过控制乳化时的油水相比例,也可对疏水组分含量进行控制,同时该纳米甲壳素复合气凝胶具有良好的力学性能,可在吸附饱和后通过简单的机械挤压进行吸附剂脱附并实现有机溶剂回收,并且在油水分离和水体净化等方面有良好的应用前景。(The invention discloses a nano chitin composite aerogel and a preparation method and application thereof. The invention utilizes nano chitin and Polydimethylsiloxane (PDMS) to form Pickering emulsion, then the Pickering emulsion is taken as a template, and after cross-linking and curing, the nano chitin composite aerogel is obtained by drying. The preparation method is relatively simple, no toxic and harmful substance is introduced as an auxiliary agent, the obtained nano chitin composite aerogel has the characteristic of uniform and controllable structure, PDMS hydrophobic sites are uniformly distributed in the material and are not easy to be corroded and peeled off, the nano chitin composite aerogel has better use stability, the content of hydrophobic components can be controlled by controlling the proportion of oil to water in emulsification, meanwhile, the nano chitin composite aerogel has good mechanical property, can be used for desorbing an adsorbent by simple mechanical extrusion after adsorption saturation and realizing organic solvent recovery, and has good application prospect in the aspects of oil-water separation, water body purification and the like.)

一种纳米甲壳素复合气凝胶及其制备方法和应用

技术领域

本发明涉及材料制备的技术领域,尤其涉及一种纳米甲壳素复合气凝胶及其制备方法和应用。

背景技术

高分子气凝胶作为一类新兴的环境友好型三维多孔网络材料,因其低密度、高比表面积、大孔隙率、等特性在吸附剂材料和水处理领域受到关注。

甲壳素是一种天然多糖高分子,广泛存在于昆虫、甲壳类动物及真菌细胞壁中。每年地球上由生物合成的甲壳素可达几百亿吨,是自然界中仅次于纤维素的第二大类可再生天然高分子。甲壳素具有无毒性、良好的生物相容性和生物可降解性等性能,还具有止血、抗菌、调节植物生长等特殊性能,是构建绿色环保型气凝胶吸附剂的理想原材料之一。通过纳米纤维自组装的方法和溶解再生的方法均可获得甲壳素气凝胶。然而,由于甲壳素分子表面含大量亲水基团,所制备的气凝胶具有较强的亲水性,对非极性和弱极性的有机污染物亲和力及选择性较差,限制了在水污染处理中的应用。但相对亲水的甲壳素与疏水分子很难直接混溶,因此目前常用的气凝胶疏水改性方法是利用气相沉积或液相沉积法在气凝胶表面形成疏水涂层,然而表面修饰所得材料缺乏结构上的均匀性和可控性。另一方面,表面疏水涂层被有机溶剂浸润后易剥落,会导致使用过程中疏水性下降。

发明内容

本发明的目的在于,针对现有技术的上述不足,提出一种结构均匀可控、稳定性好和具有良好的力学性能的纳米甲壳素复合气凝胶及其制备方法和应用。

本发明的一种纳米甲壳素复合气凝胶的制备方法,利用纳米甲壳素与聚二甲基硅氧烷形成皮克林乳液,然后以所述皮克林乳液为模板,交联固化后,经干燥得到纳米甲壳素复合气凝胶。

一种纳米甲壳素复合气凝胶的制备方法,具体步骤如下:

S1:制备纳米甲壳素悬浮液:将甲壳素原料用20wt~40wt%NaOH进行脱乙酰处理后,经超声处理分散在0~0.1M醋酸溶液中,得到浓度为0.2~2.0wt%的纳米甲壳素悬浮液;

S2:制备复合乳液:将2-20%v/v的聚二甲基硅氧烷预聚物加入步骤S1所得纳米甲壳素悬浮液后,用高速匀浆机在10000~20000rpm转速进行乳化2~10min,得到水包油型复合乳液;

S3:交联:在步骤S2得到的水包油型复合乳液中加入0~1wt%交联剂,搅拌均匀得交联乳液;

S4:固化:将交联乳液分装到模具,于50~80℃加热1-4h固化,水洗去除多余交联剂;

S5:干燥:干燥后得到纳米甲壳素复合气凝胶。

进一步的,所述聚二甲基硅氧烷预聚物包括DowCorning Sylgard184硅橡胶,所述DowCorning Sylgard184硅橡胶由主剂和固化剂按10:1的重量比进行混合得到。

进一步的,所述交联剂包括戊二醛、环氧氯丙烷或京尼平。

进一步的,所述步骤S1中所述甲壳素原料为经漂白处理后的节肢动物外壳、软体动物骨骼、菌类和藻类提取物。

进一步的,所述步骤S5中的干燥方式为超临界干燥或冷冻干燥。

一种纳米甲壳素复合气凝胶,通过上述的制备方法制备得到。

一种纳米甲壳素复合气凝胶,所述纳米甲壳素复合气凝胶的性能为:密度:25~250mg/cm3;孔隙率80~98%,对非极性有机溶剂吸附量可达到自身质量的5~55倍。

一种纳米甲壳素复合气凝胶的应用,所述纳米甲壳素复合气凝胶作为油水分离材料和非极性或弱极性有机溶剂吸附材料。

本发明的有益效果:本发明以聚二甲基硅氧烷作为疏水组分,利用皮克林乳液的方法解决其与亲水的甲壳素之间的相容性问题,制备出具有一定疏水性的甲壳素气凝胶,用于从水体中选择性吸附非极性有机溶剂或油类;与常规表面疏水修饰的生物质气凝胶相比,本发明制备方法相对简单,未引入任何有毒有害物质作为助剂,且本发明所得的纳米甲壳素复合气凝胶具有结构均匀可控的特点,由于形成稳定的水包油型乳液,PDMS作为油相被水相的甲壳素进行包裹,PDMS疏水位点均匀分布在材料内部,不易被侵蚀剥落,具有更好的使用稳定性,通过控制乳化时的油水相比例,也可对疏水组分含量进行控制,同时该纳米甲壳素复合气凝胶具有良好的力学性能,可在吸附饱和后通过简单的机械挤压进行吸附剂脱附并实现有机溶剂回收,并且在油水分离和水体净化等方面有良好的应用前景。

附图说明

图1为实施例1-4制备的纳米甲壳素\PDMS乳液照片;

图2为实施例2制备的纳米甲壳素复合气凝胶的接触角测试图;

图3为实施例2制备的纳米甲壳素复合气凝胶表面滴加水滴(液滴1)和油红染色的四氯化碳液滴(液滴2)的照片;

图4为实施例3制备的纳米甲壳素复合气凝胶循环使用1次、2次和5次的力学性能测试结果图;

图5为实施例3制备的纳米甲壳素复合气凝胶循环利用次数和四氯化碳的吸附容量变化图。

具体实施方式

以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。

实施例1

(1)甲壳素纳米纤维分散液制备:蟹壳甲壳素原料分散于33wt%NaOH溶液中,于60℃加热搅拌3h,冷却后水洗至中性,烘干得到表面脱乙酰的甲壳素粉末,脱乙酰度21%。取上述粉末2g分散于400mL纯水中,室温下搅拌6h,加入冰醋酸至终浓度为0.025M,室温下持续搅拌120h。混合液在冰浴条件下通过经超声处理(600W,20min/次ⅹ3次);所得悬浮液于10000g下离心15min,去除沉淀物后所得上清液经旋转蒸发浓缩至固含量1wt%。

(2)甲壳素-PDMS乳液制备:将PDMS预聚物按2.5%的体积比加入到实施例1所述的甲壳素纳米纤维悬浮液中,用高速匀浆机于10000rpm进行乳化处理5min,得到甲壳素纳米纤维稳定的皮克林乳液。

(3)交联:步骤(2)所得乳液中加入0.5wt%戊二醛作为交联剂,室温下搅拌30min。

(4)固化:步骤(3)所得交联乳液分装到模具,于60℃烘箱中加热2h,使其中的PDMS固化,得到复合水凝胶。

(5)干燥:步骤(4)得到的水凝胶经水洗后通过冷冻干燥得到力学性能良好的复合气凝胶,密度为42mg/cm3,孔隙率为97.1%,水接触角为126.3°。材料对水和四氯化碳的饱和吸附量分别为QW=15.84g/g,QO=26.19g/g,吸附选择系数QO/QW=1.65。压缩至50%时力学强度为48kPa。

实施例2

将实施例1步骤(2)中PDMS体积分数提高到5%,重复步骤(1)-(5)得到力学性能良好的复合气凝胶,材料密度为72mg/cm3,孔隙率为94.9%,接触角为138.1°。材料对水和四氯化碳的质量吸附量分别为QW=2.52g/g,QO=13.69g/g,吸附选择系数QO/QW=5.43。压缩至50%时力学强度为43kPa。

图2为本实施例制备的纳米甲壳素复合气凝胶的接触角测试图,从图2可以看出经PDMS复合后的纳米甲壳素气凝胶具有高度的疏水性。

图3为本实施例制备的纳米甲壳素复合气凝胶表面滴加水滴(液滴1)和油红染色的四氯化碳液滴(液滴2)的照片,从图3可以看出,本实施例制备的纳米甲壳素复合气凝胶具有良好的疏水性,对非极性有机溶剂油良好的吸附性。

实施例3

将实施例1步骤(2)中PDMS体积分数提高到10%,经步骤(1)-(5)得到力学性能良好的复合气凝胶,材料密度为142mg/cm3,孔隙率为90.0%,接触角为131.1°。材料对水和四氯化碳的质量吸附量分别为QW=0.52g/g,QO=6.10g/g,吸附选择系数QO/QW=11.7。压缩至50%时力学强度为49kPa。

图4为本实施例制备的纳米甲壳素复合气凝胶力学性能测试结果示意图,从图4可以看出,本实施例制备的纳米甲壳素复合气凝胶多次循环压缩后仍具有一定回弹性,具有优良的力学性能。

图5为本实施例制备的纳米甲壳素复合气凝胶循环利用次数和四氯化碳的吸附容量变化图,从图5可以看出纳米甲壳素复合气凝胶循环利用多次后,对四氯化碳的吸附容量依旧很好。

实施例4

将实施例1步骤(2)中PDMS体积分数提高到20%,经步骤(1)-(5)得到力学性能良好的复合气凝胶,密度为246mg/cm3,孔隙率为82.7%,接触角为130.6°。材料对水和四氯化碳的质量吸附量分别为QW=0.28g/g,QO=3.87g/g,吸附选择系数QO/QW=13.8。力学压缩强度为41kPa。

图1为实施例1-4制备的纳米甲壳素\PDMS乳液照片,乳液均匀稳定,未出现分层现象。

实施例5

将实施例1步骤(3)中交联剂戊二醛置换为0.5wt%环氧氯丙烷,经步骤(1)-(5)得到力学性能良好的复合气凝胶,密度为27.2mg/cm3,孔隙率为98.1%,接触角为132.6°。材料对水和四氯化碳的质量吸附量分别为QW=9.52g/g,QO=42.5g/g,吸附选择系数QO/QW=4.46。

实施例6

将实施例1步骤(1)中甲壳素纳米纤维分散液浓度稀释至0.2wt%,步骤(2)中PDMS体积分数减小至0.1%,步骤(3)中交联剂戊二醛置换为0.2wt%京尼平,步骤(5)中冷冻干燥改为乙醇和叔丁醇置换后进行超临界干燥,经步骤(1)-(5)得到力学性能良好的复合气凝胶,密度为22.1mg/cm3,孔隙率为98.4%,接触角为39.5°。材料对水和四氯化碳的质量吸附量分别为QW=39.9g/g,QO=55.6g/g,吸附选择系数QO/QW=1.39。

实施例7

将实施例1步骤(1)中33wt%NaOH溶液换成20wt%NaOH,得到部分脱乙酰的甲壳素粉末,脱乙酰度17%,经步骤(1)-(5)得到力学性能良好的复合气凝胶,密度为43mg/cm3,孔隙率为96.9%,水接触角为129.3°。材料对水和四氯化碳的饱和吸附量分别为QW=14.95g/g,QO=28.29g/g,吸附选择系数QO/QW=1.89。

实施例8

将实施例1步骤(1)中33wt%NaOH溶液换成40wt%NaOH,温度提高到90℃,得到部分脱乙酰的甲壳素粉末,脱乙酰度28%,步骤(2)中PDMS体积分数提高至5%,经步骤(1)-(5)得到力学性能良好的复合气凝胶,密度为69mg/cm3,孔隙率为95.2%,接触角为126.1°。材料对水和四氯化碳的质量吸附量分别为QW=3.92g/g,QO=14.12g/g,吸附选择系数QO/QW=3.60。

实施例9

将实施例4步骤(2)中乳化转速降提高至20000rpm,经步骤(1)-(5)得到力学性能良好的复合气凝胶,材料密度为139mg/cm3,孔隙率为90.2%,接触角为131.1°。材料对水和四氯化碳的质量吸附量分别为QW=0.46g/g,QO=6.38g/g,吸附选择系数QO/QW=13.9。

以上未涉及之处,适用于现有技术。

虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于橡胶粘性测试的标准样本制备方法及橡胶样品测试方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!