Signal modulation transmission method and device

文档序号:814917 发布日期:2021-03-26 浏览:18次 中文

阅读说明:本技术 一种信号调制传输方法及装置 (Signal modulation transmission method and device ) 是由 孟令恒 曾韬 李婕 江风 张旭 刘紫青 于 2020-12-11 设计创作,主要内容包括:本申请涉及一种信号调制传输方法及装置,涉及信号调制传输技术领域,该方法包括以下步骤:生成一初始信号,初始信号包括一同步序列;对预设的SP-BPSK信号进行X偏振以及Y偏振,分别获得两路伪QPSK信号;基于两路伪QPSK信号对初始信号进行调制,获得发送信号,并进行传输。本申请通过X偏振以及Y偏振处理,获得伪QPSK信号,再进行信号调制传输,从而实现高效的信号传输工作,满足通信系统的性能需求。(The application relates to a signal modulation transmission method and a device, relating to the technical field of signal modulation transmission, wherein the method comprises the following steps: generating an initial signal, wherein the initial signal comprises a synchronization sequence; carrying out X polarization and Y polarization on a preset SP-BPSK signal to respectively obtain two paths of pseudo QPSK signals; and modulating the initial signal based on the two pseudo QPSK signals to obtain a sending signal and transmitting the sending signal. According to the method and the device, the pseudo QPSK signal is obtained through X polarization and Y polarization processing, and then signal modulation transmission is carried out, so that efficient signal transmission work is achieved, and performance requirements of a communication system are met.)

1. A signal modulation transmission method, characterized in that the method comprises the steps of:

generating an initial signal, wherein the initial signal comprises a synchronization sequence;

carrying out X polarization and Y polarization on a preset SP-BPSK signal to respectively obtain two paths of pseudo QPSK signals;

and modulating the initial signal based on the two paths of pseudo QPSK signals to obtain a sending signal and transmitting the sending signal.

2. The signal modulation transmission method according to claim 1, wherein said performing X polarization and Y polarization on a preset SP-BPSK signal to obtain two pseudo QPSK signals respectively comprises the following steps:

and carrying out X polarization and Y polarization on the SP-BPSK signal by using two rotation control sequences with the same length to respectively obtain two paths of pseudo QPSK signals.

3. The signal modulation transmission method according to claim 1, wherein the preset SP-BPSK signal is subjected to X polarization and Y polarization to obtain two pseudo QPSK signals, respectively:

the SP-BPSK signal is denoted as DnThe phase of the SP-BPSK signal is 0 or pi;

the rotation control sequence for X-polarization is denoted CxnThe pseudo QPSK signal obtained by X-polarization is denoted as DxnWhen Cx isnWhen 0, Dxn=DnWhen Cx isnWhen the number of the carbon atoms is 1,

4. the signal modulation transmission method according to claim 1, wherein the preset SP-BPSK signal is subjected to X polarization and Y polarization to obtain two pseudo QPSK signals, respectively:

the SP-BPSK signal is denoted as DnThe phase of the SP-BPSK signal is 0 or pi;

the rotation control sequence for Y polarization is denoted CynThe pseudo QPSK signal obtained by Y polarization is denoted as DynWhen Cy isnWhen 0 is present, Dyn=DnWhen Cy isnWhen the number of the carbon atoms is 1,

5. the signal modulation transmission method according to claim 1, characterized in that:

the length of the rotation control sequence and the length of the SP-BPSK signal are both the difference between the length of the initial signal and the length of the synchronization sequence.

6. The signal modulation transmission method according to claim 1, wherein the method further comprises the steps of:

receiving the sending signal, performing dispersion compensation and constant reply, and performing adaptive equalization to obtain an intermediate processing signal;

according to the correlation of the synchronous sequence, carrying out frame synchronization on the intermediate processing signal, and positioning a frame head;

and carrying out reverse rotation on the intermediate processing signal, and further carrying out carrier recovery and code element judgment on a result obtained by the reverse rotation to finish signal demodulation.

7. The signal modulation transmission method according to claim 1, wherein in said inversely rotating the intermediate processed signal:

the output of the rotation control sequence with X polarization in the intermediate processed signal is denoted as ExnThe signal obtained by the reverse rotation is denoted as Rxn

The output of said rotation control sequence with Y polarization is denoted EynThe signal obtained by the reverse rotation is denoted Ryn

The rotation control sequence for X-polarization is denoted CxnSaid rotation control sequence for Y polarization is denoted Cyn

When Cx isnWhen it is 0, Rxn=ExnWhen Cx isnWhen the number of the carbon atoms is 1,

when Cy is substituted by a group of substituentsnWhen it is 0, Ryn=EynWhen Cy isnWhen the number of the carbon atoms is 1,

8. the signal modulation transmission method according to claim 1, wherein in said inversely rotating the intermediate processed signal:

the result of the intermediate processing signal after the inverse rotation is denoted as Rxyn,Rxyn=Rxn+Ryn

9. A signal modulation transmission apparatus, characterized in that the apparatus comprises:

the device comprises an initial signal generating module, a synchronization sequence generating module and a synchronization sequence generating module, wherein the initial signal generating module is used for generating an initial signal which comprises the synchronization sequence;

the pseudo QPSK signal generating module is used for carrying out X polarization and Y polarization on a preset SP-BPSK signal to respectively obtain two paths of pseudo QPSK signals;

and the modulation transmission module is used for modulating the initial signal based on the two paths of pseudo QPSK signals to obtain a sending signal and transmitting the sending signal.

10. The signal modulation transmission apparatus according to claim 9, wherein the apparatus further comprises:

the receiving processing module is used for receiving the sending signal, performing dispersion compensation and constant recovery, and performing adaptive equalization to obtain an intermediate processing signal;

a signal positioning module, configured to perform frame synchronization on the intermediate processing signal according to the correlation of the synchronization sequence, and position a frame header;

and the signal demodulation module is used for carrying out reverse rotation on the intermediate processing signal, and further carrying out carrier recovery and code element judgment on a result obtained by the reverse rotation to finish signal demodulation.

Technical Field

The present application relates to the field of signal modulation transmission technologies, and in particular, to a signal modulation transmission method and apparatus.

Background

The PM-QPSK modulation format is widely used in commercial communication systems, and the corresponding PM-QPSK modulator is also widely used in communication systems.

Single polarization BPSK signal (SP-BPSK) has half the transmission rate of polarization multiplexed PM-BPSK signal at the same baud rate, but has better performance than PM-BPSK signal at the same bit rate.

How to use single polarization BPSK signal to modulate and transmit signal is critical in the current communication system, which can greatly improve the transmission efficiency of the communication system. A signal modulation transmission technique is now provided to achieve the above-described effects.

Disclosure of Invention

The application provides a signal modulation transmission method and a signal modulation transmission device, wherein a pseudo QPSK signal is obtained through X polarization and Y polarization processing, and then signal modulation transmission is carried out, so that efficient signal transmission work is achieved, and performance requirements of a communication system are met.

In a first aspect, the present application provides a signal modulation transmission method, including the following steps: generating an initial signal, wherein the initial signal comprises a synchronization sequence;

carrying out X polarization and Y polarization on a preset SP-BPSK signal to respectively obtain two paths of pseudo QPSK signals;

and modulating the initial signal based on the two paths of pseudo QPSK signals to obtain a sending signal and transmitting the sending signal.

Specifically, the method for respectively obtaining two paths of pseudo QPSK signals by performing X polarization and Y polarization on a preset SP-BPSK signal includes the following steps:

and carrying out X polarization and Y polarization on the SP-BPSK signal by using two rotation control sequences with the same length to respectively obtain two paths of pseudo QPSK signals.

Specifically, the preset SP-BPSK signal is subjected to X polarization and Y polarization, and two pseudo QPSK signals are respectively obtained:

the SP-BPSK signal is denoted as DnThe phase of the SP-BPSK signal is 0 or pi;

the rotation control sequence for X-polarization is denoted CxnThe pseudo QPSK signal obtained by X-polarization is denoted as DxnWhen Cx isnIs 0 at,Dxn=DnWhen Cx isnWhen the number of the carbon atoms is 1,

specifically, the preset SP-BPSK signal is subjected to X polarization and Y polarization, and two pseudo QPSK signals are respectively obtained:

the SP-BPSK signal is denoted as DnThe phase of the SP-BPSK signal is 0 or pi;

the rotation control sequence for Y polarization is denoted CynThe pseudo QPSK signal obtained by Y polarization is denoted as DynWhen Cy isnWhen 0 is present, Dyn=DnWhen Cy isnWhen the number of the carbon atoms is 1,

specifically, the lengths of the rotation control sequence and the SP-BPSK signal are both the difference between the length of the initial signal and the length of the synchronization sequence.

Further, the method comprises the following steps:

receiving the sending signal, performing dispersion compensation and constant reply, and performing adaptive equalization to obtain an intermediate processing signal;

according to the correlation of the synchronous sequence, carrying out frame synchronization on the intermediate processing signal, and positioning a frame head;

and carrying out reverse rotation on the intermediate processing signal, and further carrying out carrier recovery and code element judgment on a result obtained by the reverse rotation to finish signal demodulation.

Specifically, in the process of performing inverse rotation on the intermediate processing signal:

the output of the rotation control sequence with X polarization in the intermediate processed signal is denoted as ExnThe signal obtained by the reverse rotation is denoted as Rxn

The output of said rotation control sequence with Y polarization is denoted EynThe signal obtained by the reverse rotation is denoted Ryn

The rotation control sequence for X-polarization is denoted CxnSaid rotation control sequence for Y polarization is denoted Cyn

When Cx isnWhen it is 0, Rxn=ExnWhen Cx isnWhen the number of the carbon atoms is 1,

when Cy is substituted by a group of substituentsnWhen it is 0, Ryn=EynWhen Cy isnWhen the number of the carbon atoms is 1,

specifically, in the process of performing inverse rotation on the intermediate processing signal:

the result of the intermediate processing signal after the inverse rotation is denoted as Rxyn,Rxyn=Rxn+Ryn

In a second aspect, the present application provides a signal modulation transmission apparatus, the apparatus comprising:

the device comprises an initial signal generating module, a synchronization sequence generating module and a synchronization sequence generating module, wherein the initial signal generating module is used for generating an initial signal which comprises the synchronization sequence;

the pseudo QPSK signal generating module is used for carrying out X polarization and Y polarization on a preset SP-BPSK signal to respectively obtain two paths of pseudo QPSK signals;

and the modulation transmission module is used for modulating the initial signal based on the two paths of pseudo QPSK signals to obtain a sending signal and transmitting the sending signal.

Further, the apparatus further comprises:

the receiving processing module is used for receiving the sending signal, performing dispersion compensation and constant recovery, and performing adaptive equalization to obtain an intermediate processing signal;

a signal positioning module, configured to perform frame synchronization on the intermediate processing signal according to the correlation of the synchronization sequence, and position a frame header;

and the signal demodulation module is used for carrying out reverse rotation on the intermediate processing signal, and further carrying out carrier recovery and code element judgment on a result obtained by the reverse rotation to finish signal demodulation.

The beneficial effect that technical scheme that this application provided brought includes:

1. according to the method and the device, the pseudo QPSK signal is obtained through X polarization and Y polarization processing, then signal modulation transmission is carried out, and the receiving end demodulates according to the modulation flow, so that efficient signal transmission work is achieved, and the performance requirement of a communication system is met.

Drawings

In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings needed to be used in the description of the embodiments are briefly introduced below, and it is obvious that the drawings in the following description are only some embodiments of the present application, and it is obvious for those skilled in the art to obtain other drawings based on these drawings without creative efforts.

Fig. 1 is a flowchart illustrating steps of a signal modulation transmission method provided in an embodiment of the present application;

FIG. 2 is a schematic diagram of a signal modulation transmission method provided in an embodiment of the present application;

fig. 3 is a block diagram of a signal modulation transmission apparatus provided in an embodiment of the present application.

Detailed Description

Interpretation of terms:

QPSK, Quadrature Phase Shift Keying;

PM-QPSK, Polarization-Multiplexed Quadrature Phase Shift Keying;

BPSK, Binary Phase Shift Keying;

SP-BPSK, Single-polarization Binary Phase Shift Keying, Single polarization Binary Phase Shift Keying;

PM-BPSK, Polarization-multiplexed Binary Phase Shift Keying;

MR-SP-BPSK, modulated Rotating Single-polarization Binary Phase Shift Keying controlled Rotating Single polarization Binary Phase Shift Keying;

CMA, Constant modules Algorithm.

In order to make the objects, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application, and it is obvious that the described embodiments are some embodiments of the present application, but not all embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present application.

Embodiments of the present application will be described in further detail below with reference to the accompanying drawings.

The embodiment of the application provides a signal modulation transmission method and a signal modulation transmission device, wherein a pseudo QPSK signal is obtained through X polarization and Y polarization processing, then signal modulation transmission is carried out, and a receiving end demodulates according to a modulation process, so that high-efficiency signal transmission work is realized, and the performance requirement of a communication system is met.

In order to achieve the technical effects, the general idea of the application is as follows:

a method of signal modulation transmission, the method comprising the steps of:

s1, generating an initial signal, wherein the initial signal comprises a synchronization sequence;

s2, carrying out X polarization and Y polarization on the preset SP-BPSK signal to respectively obtain two paths of pseudo QPSK signals;

and S3, modulating the initial signal based on the two pseudo QPSK signals to obtain a sending signal, and transmitting the sending signal.

Embodiments of the present application will be described in further detail below with reference to the accompanying drawings.

In a first aspect, referring to fig. 1 to 2, an embodiment of the present application provides a signal modulation transmission method, including the following steps:

s1, generating an initial signal, wherein the initial signal comprises a synchronization sequence;

s2, carrying out X polarization and Y polarization on the preset SP-BPSK signal to respectively obtain two paths of pseudo QPSK signals;

and S3, modulating the initial signal based on the two pseudo QPSK signals to obtain a sending signal, and transmitting the sending signal.

It should be noted that the PM-QPSK modulation format is widely applied in commercial communication systems, and the corresponding PM-QPSK modulator is also widely applied in communication systems,

single polarization BPSK signal (SP-BPSK), which has a transmission rate of only half that of polarization multiplexed PM-BPSK signal at the same baud rate, but has a performance superior to that of PM-BPSK signal at the same bit rate;

the embodiment of the application provides a method for converting an SP-BPSK signal into an MR-SP-BPSK signal by adopting phase controlled rotation, so that the MR-SP-BPSK signal can be modulated onto signal light by a PM-QPSK modulator to be transmitted, and a receiving end can also use a classical Constant Modulus Algorithm (CMA) to perform adaptive equalization on the signal.

According to the method and the device, the pseudo QPSK signal is obtained through X polarization and Y polarization processing, then signal modulation transmission is carried out, and the receiving end demodulates according to the modulation flow, so that efficient signal transmission work is achieved, and the performance requirement of a communication system is met.

It should be noted that in the present embodiment, a single polarization BPSK is modulated by polarization rotation, i.e., a synchronization sequence is inserted into a pseudo QPSK signal to determine the starting point of each frame.

Specifically, the method for respectively obtaining two paths of pseudo QPSK signals by performing X polarization and Y polarization on a preset SP-BPSK signal includes the following steps:

and performing X polarization and Y polarization on the SP-BPSK signal by using two rotation control sequences with the same length to respectively obtain two paths of pseudo QPSK signals.

Specifically, X polarization and Y polarization are performed on a preset SP-BPSK signal to obtain two paths of pseudo QPSK signals:

SP-BPSK signal denoted DnThe phase of the SP-BPSK signal is 0 or pi;

the rotation control sequence for X-polarization is denoted CxnObtained by X polarizationThe resulting pseudo QPSK signal is denoted as DxnWhen Cx isnWhen 0, Dxn=DnWhen Cx isnWhen the number of the carbon atoms is 1,

specifically, X polarization and Y polarization are performed on a preset SP-BPSK signal to obtain two paths of pseudo QPSK signals:

SP-BPSK signal denoted DnThe phase of the SP-BPSK signal is 0 or pi;

the rotation control sequence for Y polarization is denoted CynThe pseudo QPSK signal obtained by Y polarization is denoted as DynWhen Cy isnWhen 0 is present, Dyn=DnWhen Cy isnWhen the number of the carbon atoms is 1,

it should be noted that the lengths of the rotation control sequence and the SP-BPSK signal are the difference between the length of the initial signal and the length of the synchronization sequence;

that is, the initial signal adopts frame structure, each frame has equal length, and is marked as N1

The frame header of the initial signal is a synchronization sequence, the length of which is denoted by N2

Then, the length of the rotation control sequence and the SP-BPSK signal are both N1-N2

Further, the method comprises the following steps:

s4, receiving the transmitted signal, performing dispersion compensation and constant recovery, and performing adaptive equalization to obtain an intermediate processed signal;

s5, according to the correlation of the synchronous sequence, carrying out frame synchronization on the intermediate processing signal and positioning the frame head;

and S6, carrying out reverse rotation on the intermediate processing signal, and further carrying out carrier recovery and code element judgment on a result obtained by the reverse rotation to complete signal demodulation.

Specifically, in the reverse rotation of the intermediate processing signal:

the output of the rotation control sequence with the X polarization in the intermediate processed signal is denoted as ExnThe signal obtained by the reverse rotation is denoted as Rxn

The output of the rotation control sequence with Y polarization is denoted EynThe signal obtained by the reverse rotation is denoted Ryn

The rotation control sequence for X-polarization is denoted CxnThe rotation control sequence for Y polarization is denoted by Cyn

When Cx isnWhen it is 0, Rxn=ExnWhen Cx isnWhen the number of the carbon atoms is 1,

when Cy is substituted by a group of substituentsnWhen it is 0, Ryn=EynWhen Cy isnWhen the number of the carbon atoms is 1,

specifically, in the reverse rotation of the intermediate processing signal:

the result of the intermediate processing signal after the inverse rotation is denoted Rxyn,Rxyn=Rxn+Ryn

In the signal modulation transmission method, steps S1 to S3 are a signal modulation flow in the method, and steps S4 to S6 are a signal demodulation flow.

In specific implementation, firstly, a signal modulation process is performed:

the initial signal of the sending end adopts a framing structure, the frame length of each frame is equal, and is marked as N1At the beginning of each frame, the length is denoted N2Of the synchronization sequence SnThe synchronization sequence takes the form of a QPSK signal.

Using two different rotation control sequences CxnAnd CynTo control the rotation of the signal in two polarization directions, the length of the control sequence being N1-N2

In the initial signal of each frame, take the length N1-N2Original SP-BPSK signal, denoted as DnSimultaneously in the rotation control sequence CxnAnd CynTo obtain two paths of pseudo QPSK signals DxnAnd DynThe remaining positions of the data frames of the XY two polarizations are filled in, respectively.

The phase-controlled rotation method comprises the following steps: original BPSK signal DnThe phase is 0 or pi;

when Cx isnWhen 0, Dxn=DnWhen Cx isnWhen the number of the carbon atoms is 1,

wherein, the polarization of the two directions adopts the same processing method.

Finally, Dxn、DynAnd SnThe data frames are combined into data frames, namely, the data frames are sent, and the data frames are modulated onto signal light through a PM-QPSK modulator to be transmitted;

then, in the signal demodulation process:

at the receiving end, firstly, the sending signal is received, dispersion compensation and clock recovery are carried out, then adaptive equalization is carried out by adopting a constant modulus algorithm, and then frame synchronization is carried out on the digital signal output by the equalizer according to the correlation of the synchronization sequence, so as to find the position of the frame header.

Further, the output of the equalizer for both XY polarizations is denoted ExnAnd EynAccording to the rotation control sequence CxnAnd CynFor example to ExnAnd EynReverse rotation is performed to obtain RxnAnd Ryn

The reverse rotation method comprises the following steps: when Cx isnWhen it is 0, Rxn=ExnWhen Cx isnWhen the number of the carbon atoms is 1,

the same processing method is used for both polarizations.

Further, Rx is adjustednAnd RynAddition, i.e. Rxyn=Rxn+RynAnd obtaining the result obtained by the reverse rotation.

Finally, Rxy is processed according to the method for processing the common BPSK signalnAnd carrying out carrier recovery and code element judgment to finish the demodulation process.

In a second aspect, referring to fig. 3, an embodiment of the present application provides a signal modulation transmission apparatus, which implements the signal modulation transmission method provided in the first aspect, and the apparatus includes:

the device comprises an initial signal generating module, a synchronization sequence generating module and a synchronization sequence generating module, wherein the initial signal generating module is used for generating an initial signal which comprises the synchronization sequence;

the pseudo QPSK signal generating module is used for carrying out X polarization and Y polarization on a preset SP-BPSK signal to respectively obtain two paths of pseudo QPSK signals;

and the modulation transmission module is used for modulating the initial signal based on the two paths of pseudo QPSK signals to obtain a sending signal and transmitting the sending signal.

It should be noted that the PM-QPSK modulation format is widely applied in commercial communication systems, and the corresponding PM-QPSK modulator is also widely applied in communication systems,

single polarization BPSK signal (SP-BPSK), which has a transmission rate of only half that of polarization multiplexed PM-BPSK signal at the same baud rate, but has a performance superior to that of PM-BPSK signal at the same bit rate;

the embodiment of the application provides a method for converting an SP-BPSK signal into an MR-SP-BPSK signal by adopting phase controlled rotation, so that the MR-SP-BPSK signal can be modulated onto signal light by a PM-QPSK modulator to be transmitted, and a receiving end can also use a classical Constant Modulus Algorithm (CMA) to perform adaptive equalization on the signal.

According to the method and the device, the pseudo QPSK signal is obtained through X polarization and Y polarization processing, then signal modulation transmission is carried out, and the receiving end demodulates according to the modulation flow, so that efficient signal transmission work is achieved, and the performance requirement of a communication system is met.

It should be noted that in the present embodiment, a single polarization BPSK is modulated by polarization rotation, i.e., a synchronization sequence is inserted into a pseudo QPSK signal to determine the starting point of each frame.

Specifically, X polarization and Y polarization are performed on a preset SP-BPSK signal to obtain two paths of pseudo QPSK signals:

and performing X polarization and Y polarization on the SP-BPSK signal by using two rotation control sequences with the same length to respectively obtain two paths of pseudo QPSK signals.

Specifically, X polarization and Y polarization are performed on a preset SP-BPSK signal to obtain two paths of pseudo QPSK signals:

SP-BPSK signal denoted DnThe phase of the SP-BPSK signal is 0 or pi;

the rotation control sequence for X-polarization is denoted CxnThe pseudo QPSK signal obtained by X-polarization is denoted as DxnWhen Cx isnWhen 0, Dxn=DnWhen Cx isnWhen the number of the carbon atoms is 1,

specifically, X polarization and Y polarization are performed on a preset SP-BPSK signal to obtain two paths of pseudo QPSK signals:

SP-BPSK signal denoted DnThe phase of the SP-BPSK signal is 0 or pi;

the rotation control sequence for Y polarization is denoted CynThe pseudo QPSK signal obtained by Y polarization is denoted as DynWhen Cy isnWhen 0 is present, Dyn=DnWhen Cy isnWhen the number of the carbon atoms is 1,

it should be noted that the lengths of the rotation control sequence and the SP-BPSK signal are the difference between the length of the initial signal and the length of the synchronization sequence;

that is, the initial signal adopts frame structure, each frame has equal length, and is marked as N1

The frame header of the initial signal is a synchronization sequence, the length of which is denoted by N2

Then, the length of the rotation control sequence and the SP-BPSK signal are bothN1-N2

Further, the apparatus further comprises:

the receiving processing module is used for receiving the sending signal, performing dispersion compensation and constant recovery, and performing self-adaptive equalization to obtain an intermediate processing signal;

a signal positioning module, which is used for carrying out frame synchronization on the intermediate processing signal according to the correlation of the synchronization sequence and positioning the frame head;

and the signal demodulation module is used for carrying out reverse rotation on the intermediate processing signal, further carrying out carrier recovery and code element judgment on a result obtained by the reverse rotation, and finishing signal demodulation.

Specifically, in the reverse rotation of the intermediate processing signal:

the output of the rotation control sequence with the X polarization in the intermediate processed signal is denoted as ExnThe signal obtained by the reverse rotation is denoted as Rxn

The output of the rotation control sequence with Y polarization is denoted EynThe signal obtained by the reverse rotation is denoted Ryn

The rotation control sequence for X-polarization is denoted CxnThe rotation control sequence for Y polarization is denoted by Cyn

When Cx isnWhen it is 0, Rxn=ExnWhen Cx isnWhen the number of the carbon atoms is 1,

when Cy is substituted by a group of substituentsnWhen it is 0, Ryn=EynWhen Cy isnWhen the number of the carbon atoms is 1,

specifically, in the reverse rotation of the intermediate processing signal:

the result of the intermediate processing signal after the inverse rotation is denoted Rxyn,Rxyn=Rxn+Ryn

It is noted that, in the present application, relational terms such as "first" and "second", and the like, are used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Without further limitation, an element defined by the phrase "comprising an … …" does not exclude the presence of other identical elements in a process, method, article, or apparatus that comprises the element.

The foregoing are merely exemplary embodiments of the present application and are presented to enable those skilled in the art to understand and practice the present application. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the application. Thus, the present application is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:BPSK信号的解调方法和解调装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!