利用联合网络和云资源管理的服务递送

文档序号:91099 发布日期:2021-10-08 浏览:18次 >En<

阅读说明:本技术 利用联合网络和云资源管理的服务递送 (Service delivery with federated network and cloud resource management ) 是由 S·索伦蒂诺 M·孔多卢奇 B·斯库比奇 孙琬璐 于 2019-06-25 设计创作,主要内容包括:公开了方法和设备,在一个示例中,包括一种用于调度与通信网络的多个组件相关联的资源以用于向用户设备(UE)提供网络服务的方法。该方法包括:接收提供网络服务的服务请求,其中服务请求包括一个或多个服务约束。该方法还包括:对于所述多个网络组件中的每个网络组件,根据服务约束确定履行服务请求所需的组件资源;向与特定组件相关联的管理器功能发送包含确定的组件资源的标识和与服务约束有关的信息的资源请求;以及从管理器功能接收与特定组件相关联的服务信息。该方法还包括:基于服务信息和成本函数,为履行服务请求的所述多个网络组件确定资源调度。(Methods and apparatus are disclosed, in one example, including a method for scheduling resources associated with a plurality of components of a communication network for providing network services to a User Equipment (UE). The method comprises the following steps: a service request is received to provide a network service, wherein the service request includes one or more service constraints. The method further comprises the following steps: for each of the plurality of network components, determining component resources required to fulfill the service request in accordance with the service constraints; sending a resource request containing an identification of the determined component resource and information relating to the service constraints to a manager function associated with the particular component; and receiving service information associated with the particular component from the manager function. The method further comprises the following steps: determining a resource schedule for the plurality of network components fulfilling the service request based on the service information and the cost function.)

利用联合网络和云资源管理的服务递送

技术领域

一般来说,本申请涉及通信网络领域,并且更具体地,涉及用于联合优化在通信网络中处置服务请求所需的所有类型的网络资源的技术。

背景技术

一般来说,除非在使用它的上下文中明确给出和/或隐含不同的含义,否则本文中所使用的所有术语都将根据它们在相关

技术领域

中的普通含义进行解释。除非另外明确地陈述,否则对一(a/an)/该元件、设备、组件、部件、步骤等的提及都开放地解释为指元件、设备、组件、部件、步骤等的至少一个实例。除非将步骤明确地描述为在另一个步骤之后或之前,和/或在暗示步骤必须在另一个步骤之后或之前的情况下,本文中公开的任何方法和/或过程的步骤不一定按照公开的确切顺序执行。在合适的情况下,本文中公开的任何实施例的任何特征可应用于任何其它实施例。同样地,任何实施例的任何优点可应用于任何其它实施例,并且反之亦然。所附实施例的其它目的、特征和优点将从以下描述中显而易见。

长期演进(LTE)是在第三代合作伙伴计划(3GPP)中开发并且最初在第8版和第9版中标准化的所谓的第四代(4G)无线电接入技术的涵盖性术语,它又称为演进型UTRAN(E-UTRAN)。LTE针对各种许可频段,并且伴随有对通常称为系统体系结构演进(SAE)的非无线电方面的改进,SAE包括演进型分组核心(EPC)网络。LTE继续演进到后续版本。版本11的特征之一是增强型物理下行链路控制信道(ePDCCH),其目标是增加容量和改善控制信道资源的空间再利用,改善小区间干扰协调(ICIC),并支持控制信道的天线波束成形和/或传送分集。

图1中示出了包括LTE和SAE的网络的总体示例性体系结构。E-UTRAN 100包括一个或多个演进Node B(eNB)(诸如eNB 105、110和115)和一个或多个用户设备(UE)(诸如UE120)。如在3GPP标准中所使用,“用户设备”或“UE”表示能够与符合3GPP标准的网络设备(包括E-UTRAN以及UTRAN和/或GERAN)通信的任何无线通信装置(例如,智能电话或计算装置),3GPP无线电接入网络通常称为第三代(“3G”)和第二代(“2G”)。

如3GPP规定的,E-UTRAN 100负责网络中所有无线电相关的功能,包括无线电承载控制、无线电准入控制、无线电移动控制、调度、在上行链路和下行链路中对UE的动态资源分配、以及与UE通信的安全性。这些功能存在于eNB(诸如eNB 105、110和115)中。E-UTRAN中的eNB经由X1接口彼此通信,如图1所示。eNB还负责到EPC 130的E-UTRAN接口,特别是到移动性管理实体(MME)和服务网关(SGW)(它们在图1中共同示为MME/S-GW 134和138)的S1接口。一般来说,MME/S-GW处置UE的总体控制以及UE和EPC的其余部分之间的数据流两者。更具体来说,MME处理UE和EPC之间的信令(例如,控制平面)协议,这些信令协议称为非接入层(NAS)协议。S-GW处置UE和EPC之间的所有互联网协议(IP)数据分组(例如,数据或用户平面),并在UE在eNB(诸如eNB 105、110和115)之间移动时充当数据承载的本地移动性锚。

EPC 130还可包括归属订户服务器(HSS)131,它管理用户和订户相关的信息。HSS131还可在移动性管理、呼叫和会话设立、用户认证和访问授权中提供支持功能。HSS 131的功能可以与传统归属位置寄存器(HLR)和认证中心(AuC)功能或操作相关。

在一些实施例中,HSS 131可经由Ud接口与用户数据存储库(UDR)(在图1中标记为EPC-UDR 135)通信。EPC-UDR 135可在已经通过AuC算法对用户凭证加密之后存储它们。这些算法不是标准化的(即,供应商特定的),以使得除了HSS 131的供应商以外的任何其它供应商都无法访问存储在EPC-UDR 135中的加密凭证。

在3GPP中,最近已经完成了一项关于第五代(5G)蜂窝(例如,无线)网络的新空口接口的研究项目。3GPP现在正在标准化该新空口接口,它通常缩写为NR(新空口)。图2示出由下一代RAN(NG-RAN)299和5G核心(5GC)298组成的5G网络体系结构的高级视图。NG-RAN299可包括经由一个或多个NG接口连接到5GC的一组gNodeB(gNB),诸如分别经由接口202、252连接的gNB 200、250。另外,gNB可经由一个或多个Xn接口(诸如gNB 200和250之间的Xn接口240)彼此连接。关于到UE的NR接口,每个gNB都可支持频分双工(FDD)、时分双工(TDD)或其组合。

NG-RAN 299分层为无线电网络层(RNL)和传输网络层(TNL)。将NG-RAN体系结构(即,NG-RAN逻辑节点以及它们之间的接口)定义为RNL的部分。对于每个NG-RAN接口(NG、Xn、F1),指定相关TNL协议和功能性。TNL为用户平面传输和信令传输提供服务。在一些示例性配置中,每个gNB连接到在3GPP TS 23.501中定义的“AMF区域”内的所有5GC节点。如果支持NG-RAN接口的TNL上的CP和UP数据的安全保护,则应当应用NDS/IP(3GPP TS 33.401)。

如图2所示(并且在TS 38.401和TR 38.801中进行了描述)的NG RAN逻辑节点包括中央(或集中式)单元(CU或gNB-CU)和一个或多个分布式(或分散式)单元(DU或gNB-DU)。例如,gNB200包括gNB-CU 210以及gNB-DU 220和230。CU(例如,gNB-CU 210)是逻辑节点,其托管较高层协议并执行各种gNB功能,诸如控制DU的操作。每个DU都是逻辑节点,其托管较低层协议,并且取决于功能拆分,可包括gNB功能的各种子集。因此,CU和DU中的每一个都可包括执行它们的相应功能所需的各种电路,包括处理电路、收发器电路(例如,用于通信)和电源电路。此外,术语“中央单元”和“集中式单元”在本文中可互换使用,如术语“分布式单元”和“分散式单元”也可互换使用。

gNB-CU通过相应的F1逻辑接口(诸如图3所示的接口222和232)连接到gNB-DU。gNB-CU和连接的gNB-DU只对于其它gNB可见,并且对于5GC视为是gNB。换句话说,F1接口在gNB-CU之外是不可见的。

图3示出包括下一代无线电接入网络(NG-RAN)399和5G核心(5GC)398的示例性5G网络体系结构的高级视图。如图所示,NG-RAN 399可包括经由相应的Xn接口彼此互连的gNB310(例如,310a、b)和ng-eNB 320(例如,320a、b)。gNB和ng-eNB也经由NG接口连接到5GC398,更具体来说,经由相应的NG-C接口连接到AMF(访问和移动性管理功能)330(例如,AMF330a、b),并经由相应的NG-U接口连接到UPF(用户平面功能)340(例如,UPF 340a、b)。

每个gNB 310都可支持NR无线电接口,包括频分双工(FDD)、时分双工(TDD)或其组合。相比之下,每个ng-eNB 320支持LTE无线电接口,但是与常规的LTE eNB(诸如如图1所示)不同,它们经由NG接口连接到5GC。

基于不同的3GPP体系结构选项(例如,基于EPC或基于5GC)的部署和具有不同能力(例如,EPC NAS和5GC NAS)的UE可在一个网络内(例如,PLMN)同时共存。一般假设,可支持5GC NAS过程的UE也可支持EPC NAS过程(例如,如在3GPP TS 24.301中定义),以便在诸如漫游时在传统网络中操作。因此,取决于为其服务的核心网络(CN),UE将使用EPC NAS或5GCNAS过程。

5G网络(例如,5GC)中的另一个变化是,通过所谓的基于服务的体系结构(SBA)来修改传统的点对点接口和协议(例如,在LTE/EPC网络中发现的那些),其中网络功能(NF)向一个或多个服务消费者提供一种或多种服务。这可通过例如超文本传输协议/表述性状态转移(HTTP/REST)应用编程接口(API)来进行。一般来说,各种服务都是可以用隔离的方式进行更改和修改而不影响其它服务的自包含功能性。

此外,服务由各种“服务操作”组成,这些“服务操作”是整个服务功能性的更细粒度的划分。为了访问服务,必须指示服务名称和目标服务操作两者。服务消费者和产生者之间的交互可以是“请求/响应”或“订阅/通知”的类型。在5G SBA中,网络存储库功能(NRF)允许每个网络功能发现由其它网络功能提供的服务,并且数据存储功能(DSF)允许每个网络功能存储它的上下文。

如上文所论述,服务可作为网络功能(NF)的部分部署在5G SBA中。该SBA模型(其进一步采用像NF的模块化、可重用性和自包含的原理)可使得部署能够利用最新的虚拟化和软件技术。图4示出具有基于服务的接口和在控制平面(CP)内的各种3GPP定义的NF的示例性非漫游5G参考体系结构。这些包括:

具有Namf接口的访问和移动性管理功能(AMF);

具有Nsmf接口的会话管理功能(SMF);

具有Nupf接口的用户平面功能(UPF);

具有Npcf接口的政策控制功能(PCF);

具有Nnef接口的网络开放功能(NEF);

具有Nnrf接口的网络存储库功能(NRF);

具有Nnssf接口的网络切片选择功能(NSSF);

具有Nausf接口的认证服务器功能(AUSF);

具有Naf接口的应用功能(AF);

网络数据分析功能(NWDAF)(未示出);以及

具有Nudm接口的统一数据管理(UDM)。

UDM类似于上文论述的LTE/EPC网络中的HSS。UDM支持3GPP AKA认证凭证的生成、用户标识处置、基于订阅数据的访问授权和其它订户相关功能。为了提供该功能性,UDM使用存储在5GC统一数据存储库(UDR)中的订阅数据(包括认证数据)。除了UDM之外,UDR还支持通过PCF存储和检索政策数据以及通过NEF存储和检索应用数据。

包括5G SBA的5G网络旨在支持智能运输系统(ITS)应用,包括道路运输。预期车辆彼此(车辆对车辆或V2V)、车辆与基础设施(V2I)、以及车辆与弱势道路用户的通信将提高用户安全性和舒适度,并改善交通管理和/或减少拥堵,并减少车辆燃料消耗和排放。总的来说,这些通信模式通常称为车辆对一切事物(V2X)。已经开发了V2X的ITS相关用例的广泛集合,并且基于这些用例,已经开发了V2X通信要求。

在这些用例中,最终用户通信设备通常称为V2X UE,并且服务于与用户情况相关联的应用的实体通常称为应用服务器(更具体来说,称为V2X AS)。例如,图5示出如在3GPP技术标准(TS)23.285中所指定的V2X应用层的简化体系结构模型。在该图中,V2X UE1通过V1参考点与V2X应用服务器(AS)通信,并且V2X UE1和UE2通过V5参考点通信。另外,V2X UE1可充当UE到网络的中继站,从而使得V2X UE2能够通过V1参考点访问V2X应用服务器。

服务的供应需要网络资源的管理,网络资源通常是在服务在运行中时由服务请求的。然而,一些服务的供应可通过网络资源的预先管理和/或调度来优化。一个这样的服务是“后台数据传输(background data transfer)”(在3GPP TS 23.503第6.1.2.4条中所描述),它是通常与具有对时间不敏感的低业务优先级(例如,软件更新)的非常大(或“巨大”)的数据量的传输相关联的服务。如上文所论述,预先调度的此类后台数据传输服务又称为“未来数据传输”。未来数据传输服务对于V2X场景、特别是对于车辆收集大量数据(例如,经由车载摄像头)并且需要将此类数据上传到(一个或多个)车辆制造商云的应用非常感兴趣。然而,在一些应用中,数据传输可具有一定程度的时间约束(例如,截止期限)和/或空间约束(例如,UE的地理区域)。

通常,网络资源调度集中在RAN和CN中的“经典”网络资源上。即使如此,具有时间或空间约束的大量数据的传输也可需要云资源来支持在边缘处进行一些数据处理、部署本地疏导(local breakout)解决方案等。例如,可需要这些云资源来保证从/至(一个或多个)涉及的UE的通信。在现有的解决方案中,在RAN/CN资源和云资源之间有清晰的分隔。换句话说,通常在对在服务中所涉及的(一个或多个)云的资源能力没有任何了解的情况下执行RAN/CN调度。这可能会造成各种问题、困难和/或难题。

发明内容

因此,本公开的示例性实施例解决了在跨越包括RAN、CN和云组件的通信网络调度资源中的这些和其它困难。

本公开的示例性实施例包括用于调度与通信网络的多个组件相关联的资源以用于向用户设备(UE)提供网络服务的方法和/或过程。示例性方法和/或过程可由通信网络中的服务的服务处置器执行。

示例性方法和/或过程可包括接收向UE提供网络服务的服务请求。服务请求可包括一个或多个服务约束。在一些实施例中,一个或多个服务约束可包括应当在其期间履行请求的未来时间间隔。在一些实施例中,服务请求还可包括在未来时间间隔期间UE的轨迹。在一些实施例中,UE可与车辆相关联,请求的网络服务可以是传输大量数据,并且一个或多个服务约束可包括用于传输数据的时间间隔或地理区域。

示例性方法和/或过程还可包括:对于多个网络组件中的每个网络组件,根据服务约束确定履行服务请求所需的组件资源。在一些实施例中,多个网络组件可包括无线电接入网络(RAN)、核心网络(CN)和云基础设施。在一些实施例中,对于包括未来时间间隔的多个子间隔中的每个子间隔,确定的组件资源可包括在该特定子间隔期间在该特定组件中所需的组件资源。在此类实施例中,可基于UE的轨迹确定在特定子间隔期间在特定组件中所需的组件资源。

示例性方法和/或过程还可包括:对于多个网络组件中的每个网络组件,向与特定组件相关联的管理器功能发送资源请求。资源请求可包括确定的组件资源的标识以及与服务约束有关的信息。在一些实施例中,特定组件的资源请求还可包括特定组件的请求的服务信息的指示。

示例性方法和/或过程还可包括:对于多个网络组件中的每个网络组件,接收与特定组件相关联的服务信息。在一些实施例中,对于包括未来时间间隔的多个子间隔中的每个子间隔,接收的服务信息可包括在该特定子间隔期间该特定组件的辅助成本函数和预期服务履行百分比。

示例性方法和/或过程还可包括为履行服务请求的多个网络组件确定资源调度。可基于服务信息和成本函数确定资源调度。在一些实施例中,成本函数可涉及以下一个或多个因素:请求的网络服务对其它网络服务和/或用户的影响;以及网络资源的可用性。在一些实施例中,确定资源调度可包括选择所述多个子间隔中包含在其期间提供请求的网络服务的时间间隔的一个子间隔。在一些实施例中,选择的子间隔可对应于成本函数在例如相应子间隔内的最小值。

本公开的其它示例性实施例包括用于在通信网络的组件中调度资源以用于向用户设备(UE)提供网络服务的其它方法和/或过程。这些示例性方法和/或过程可由通信网络组件(例如,RAN、CN、云等)的组件管理器执行。

示例性方法和/或过程可包括从与网络服务相关联的管理器功能接收资源请求。资源请求可包括履行服务请求所需的组件的资源的标识。资源请求还可包括与同服务请求相关联的一个或多个服务约束有关的信息。在一些实施例中,一个或多个服务约束可包括应当在其期间履行服务请求的未来时间间隔。在一些实施例中,标识的组件资源可包括:对于包含未来时间间隔的多个子间隔中的每个子间隔,在该特定子间隔期间所需的组件资源。

在一些实施例中,UE可与车辆相关联,请求的网络服务可以是传输大量数据,并且一个或多个服务约束可包括用于传输数据的时间间隔或地理区域。

在一些实施例中,示例性方法和/或过程还可包括对于每个子间隔确定与组件相关联的服务信息。在一些实施例中,确定的服务信息可包括辅助成本函数和预期服务履行百分比。在一些实施例中,辅助成本函数可涉及组件资源的可用性。

示例性方法和/或过程还可包括向管理器功能发送与组件相关联的服务信息。在一些实施例中,对于包括未来时间间隔的多个子间隔中的每个子间隔,发送到管理器的服务信息可包括在该特定子间隔期间该特定组件的辅助成本函数和预期服务履行百分比。在一些实施例中,示例性方法和/或过程还可包括从管理器功能接收与服务请求相关联的组件资源调度。

其它示例性实施例包括配置成执行与示例性方法和/或过程对应的操作的服务处置器、组件管理器或相关联的网络节点。其它示例性实施例包括存储计算机可执行指令的非暂时性、计算机可读介质,计算机可执行指令在由与此类服务处置器、组件管理器或网络节点相关联的处理电路执行时将所述处理电路配置成执行与示例性方法和/或过程对应的操作。

附图说明

图1是由3GPP标准化的长期演进(LTE)演进型UTRAN(E-UTRAN)和演进型分组核心(EPC)网络的示例性体系结构的高级框图。

图2-3示出5G网络体系结构的两种不同的高级视图。

图4示出如在3GPP TS 23.501中进一步描述的具有基于服务的接口和各种网络功能(NF)的示例性非漫游5G参考体系结构。

图5示出在3GPP TS 23.285中规定的车辆对一切事物(V2X)应用层的简化的体系结构模型。

图6示出在服务管理器、RAN管理器和CN管理器之间的示例性服务管理信令流。

图7示出根据本公开的各种示例性实施例涉及在截止期限内以低成本传递大量数据的示例性V2X服务场景。

图8示出根据本公开的各种示例性实施例在服务管理器、RAN管理器、CN管理器和云管理器之间的示例性服务管理信令流。

图9示出根据本公开的各种示例性实施例用于在RAN、CN和云实体之间确定资源的优化的示例性系统模型。

图10示出根据本公开的各种示例性实施例在服务、RAN、CN和云实体之间与为服务确定网络资源的优化相关联的示例性信令流。

图11示出根据本公开的各种示例性实施例在图7中的示例性V2X服务场景,其中已经执行了网络资源的优化。

图12示出根据本公开的各种示例性实施例用于调度与通信网络的多个组件相关联的资源以用于向用户设备(UE)提供网络服务的示例性方法和/或过程。

图13示出根据本公开的各种示例性实施例用于在通信网络的组件中调度资源以用于向用户设备(UE)提供网络服务的示例性方法和/或过程。

图14示出根据本文中描述的各种方面的无线网络的示例性实施例。

图15示出根据本文中描述的各种方面的UE的示例性实施例。

图16是示出可用于实现本文中描述的网络节点的各种实施例的示例性虚拟化环境的框图。

图17-18是根据本文中描述的各种方面的各种示例性通信系统和/或网络的框图。

图19-22是用于传输和/或接收用户数据的示例性方法和/或过程的流程图,所述示例性方法和/或过程可在例如如图17-18所示的示例性通信系统和/或网络中实现。

具体实施方式

现在将参考附图更全面地描述上文简要概述的一些实施例。举例提供这些描述以便向本领域技术人员解释主题,并且不应将这些描述理解为将主题的范围仅仅局限于本文中描述的实施例。更具体来说,下文提供了说明根据上文论述的优点的各种实施例的操作的示例。

如上文所简要提及,服务的供应需要网络资源的管理,网络资源通常是在服务在运行中时由服务请求的。然而,一些服务的供应可通过网络资源的预先管理和/或调度来优化。一个这样的服务是“后台数据传输”(在3GPP TS 23.503第6.1.2.4条中所描述),它是通常与具有对时间不敏感的低业务优先级(例如,软件更新)的非常大(或“巨大”)的数据量的传输相关联的服务。类似地,在汽车边缘计算联盟中,主要聚焦在增加容量上,以便借助于更有效的网络设计在车辆和云之间以合理的方式容纳汽车大数据。出于该原因,可在特定时间窗口中延迟和/或调度数据传输,这减少、减轻和/或最小化此类传输对其它网络业务的影响。例如,可在网络负载较轻时(例如,在夜间)的时间窗口期间调度此类传输。如上文所论述,预先调度的此类后台数据传输服务又称为“未来数据传输”。

未来数据传输服务对于V2X场景、特别是对于其中车辆收集大量数据(例如,经由车载摄像头)并且需要在没有严格时间约束的情况下将此类数据上传到(一个或多个)车辆制造商云的应用非常感兴趣。然而,在一些应用中,数据传输可具有一定程度的时间约束(例如,截止期限)和/或空间约束(例如,UE的地理区域)。

3GPP TS 23.502第4.16.7条定义了用于支持未来后台数据传输的协商的过程,其中服务为网络提供关于(一个或多个)涉及的UE、要传输的数据量等的信息。然后,服务与网络协商即将用于传输的一些特定的时间窗口。然而,合适/优选的时间窗口的选择留给运营商实现,并且有效的解决方案基于涉及的网络组件(例如,RAN节点、CN节点和回程/运输网络)的若干个输入计算时间窗口。为了便于解释和理解,对于以下论述,回程/运输网络将包含在CN内。

例如,UE的位置信息可以与数据传输截止期限信息一起用于调整个别分组QoS设置,以便更好地利用可用的无线电资源。作为另一个示例,分层地图数据的地理区分可以与车辆位置和估计的到达时间一起用于优化文件递送。

图6示出示例性服务管理信令流。在该示例中,信令流位于特定服务、该服务的服务处置器与RAN和CN之间。更具体来说,服务处置器的服务协商实体从服务接收请求,并将资源请求发送到服务处置器的服务管理器实体,服务管理器实体负责联系具有处置服务请求所需的资源的RAN和CN网络组件。服务处置器从网络组件请求关于它们的相应的资源可用性的反馈,并使用此类反馈来执行服务的高级管理。例如,服务管理器可根据来自RAN管理器的RAN资源可用性信息来选择即将用于数据传输的(一个或多个)时间窗口,而在(一个或多个)时间窗口期间的资源的实际调度留给RAN本身。

对于V2X服务,由于在云中处理向/从车辆传送的数据,所以对于数据传输的调度,也可以考虑云资源的可用性。例如,可能有益的是还保证在需要处置某个服务或某个任务时将有足够的云资源(例如,输入/输出、计算、存储等)可用。取决于如何在云中实现资源调度,可作为服务管理器的输入提供未来时间点的资源可用性(或其投射),并且可相应地执行服务规划。

然而,在现有的解决方案中,在RAN/CN资源和云资源之间存在明显的分隔。换句话说,通常在对在服务中所涉及的(一个或多个)云的资源能力没有任何了解的下执行RAN/CN调度。图7示出根据本公开的各种示例性实施例涉及在截止期限内以低成本传送大量数据的示例性V2X服务场景。一般来说,“低成本”与存在减少的网络负载(例如,更多的可用网络资源)时的持续时间和/或时间窗口相关联。

图7示出,给定服务的时间截止期限tmax以及当前时间与tmax之间的UE的预期路径,当UE附连到不同的RAN资源BS1-3和/或由不同的RAN资源BS1-3提供服务时,可在不同的时间窗口t1-3中调度服务。图7还示出了在相应的时间周期t1-3期间RAN资源和云资源的负载。此外,图7示出,如果“最低成本”或“最佳”时间是所需资源负载最小,则RAN和云可具有不同的“最佳”时间。从RAN的角度来看,当与在其它时间周期期间所需的其它RAN资源(例如,BS1-2)的负载相比所需的RAN资源(即,BS3)的负载最小时,“最低成本”时间窗口是t3。然而,在t3期间,云的负载较重(例如,90%),并且可能会潜在地成为服务的瓶颈。相反,从云的角度来看,“最低成本”时间窗口是t1,此时云负载最小。然而,在t1期间,RAN将成为瓶颈,因为当BS1服务于UE时,预期它的负载是90%。

更一般地,当前的解决方案不允许联合优化云、RAN和CN资源。如图7中示出的示例所示,这可能会在RAN、CN和/或云资源的可用性有限的场景中造成各种资源调度问题、误用和/或低效率。此外,此类不联合的资源调度可能会阻碍和/或妨碍网络在此类场景中履行服务需求。

本公开的示例性实施例通过提供在处置服务请求时联合考虑来自RAN、CN和云资源管理组件的信息的技术来解决这些和其它问题、挑战和/或难题。例如,此类技术可在决定何时调度大量数据的传输时联合考虑此类各种组件,其中目标是最小化此类传输的成本和/或此类传输对其它网络业务的影响。

这些示例性实施例的优点包括优化了处置特定服务所需的所有资源的使用。从网络的角度来看,此类实施例避免了未充分利用RAN和CN资源,诸如避免了在服务中所涉及的云只具有有限的资源可用性时分配RAN/CN资源。从云的角度来看,此类实施例通过向云提供关于与特定服务相关联的传入数据业务的信息(例如,量、时间窗口等)而有助于更好地管理云资源。并且更广泛地,此类实施例可有助于通过网络的更有效服务处置,并且也可有助于支持新服务,其中云资源发挥更重要的角色。这可包括为边缘部署供应云资源、根据预期/调度的服务为本地疏导动态分配云资源等。

在本公开中,术语“网络”一般用于指两个节点之间的通信基础设施,例如蜂窝网络和副链路(自组织)通信。

在本公开中,术语“服务”一般用于指与一个或多个应用相关联的一组数据,其在需要履行的某些特定递送要求下经由网络传送以便使应用成功。服务的示例可以是大量数据(例如,软件更新或上传数据),其可以或者可以不分割成更小的区块,以用于实现高效递送。另一个示例是与跟相同服务有关的信息相关联的一组独立文件。服务可具有相关联的传输截止期限,无论是在时间域中(例如,在1小时内完成传输)还是在空间域中(例如,在UE到达某个地理区域之前完成传输)。服务也可提供对于服务递送有用的附加信息。例如,在V2X服务的情况下,服务可提供车辆的预期/计划的轨迹。

在本公开中,术语“组件”一般用于指递送服务所需的任何组件。组件的示例是RAN(例如,E-UTRAN、NG-RAN或其部分,诸如eNB、gNB、基站(BS)等)、CN(例如,EPC、5GC或其部分,包括在RAN和CN实体之间的所有类型的链路)以及具有诸如计算、存储之类的相关资源的云基础设施。每个组件都具有“管理器”,它一般用于指可收集关于资源利用的历史信息、提供关于与该组件(例如,RAN管理器)相关联的资源的当前和预测的未来可用性的信息的实体。

本公开的实施例考虑以下三个主要组件中的资源可用性:

RAN,其包括诸如eNB和/或gNB的BS。“RAN管理器”可从与某个区域有关的一个或多个RAN节点(例如,BS)收集信息。RAN管理器的示例可以是AMF、从RAN收集分析的NWDAF、运营商域中从某个BS集合收集信息的通用分析功能、运营商域中负责配置某个BS集合的使用的通用功能等。

CN,其包括在服务递送中涉及的CN实体、功能和/或链路。示例性“CN管理器”可包括SMF、从CN实体/功能/链路收集分析的NWDAF、或运营商域中从某个CN实体/功能/链路集合收集信息的通用分析功能、运营商域中负责配置某个CN实体/功能/链路集合的使用的通用功能等。

云,其包括私有、公共或混合云的计算、存储和联网资源。“云管理器”可从一个或若干个云收集信息。与向/从云的数据传输相关联的关键资源是与云数据中心(DC)相关联的联网/IO资源。“云管理器”的示例可包括云资源的编排器、基础设施管理器、从某个云集合收集信息的分析功能、负责配置云资源的使用的分析功能等。对于与云DC相关联的联网/IO资源的情况,资源管理器可以是DC网关控制器。可在每个租户基础上提供来自云管理器的关于资源可用性的信息,这意味着,资源可用性是针对负责数据传输和云中的处理的租户特定的。这要求,使云管理器知道应当为其报道资源可用性的租户身份。也可在聚合级为多个租户提供信息。

这三个组件/管理器只是作为示例给出,并且在一些实施例中,可使用额外的管理器。例如,可以有对传输网络和/或回程网络特定的管理器,其可以或者可以不由移动网络的相同运营商运营/控制。

图8示出根据本公开的各种示例性实施例的示例性服务管理信令流。更具体来说,图8示出在服务810和服务810的服务处置器的服务协商功能(或模块)820之间的示例性信令流。图8还示出在服务处置器的服务管理器功能(或模块)830、与RAN管理器840、CN管理器850和云管理器860之间的信令流。

在由图8所示的实施例中,服务管理器830接收与服务810相关联的资源请求(例如,经由服务协商功能820),并经由相应的管理器840-860与在递送该特定服务中所涉及的相关RAN、CN和云组件交互。与相关组件的交互由服务管理器执行,以便采集关于它们的相应的资源可用性的信息(包括历史数据、当前情况和预期或预测的行为),并考虑服务要求和涉及的组件的资源可用性而计算递送服务的最佳方式。5GC中可托管服务管理器的功能性的现有网络功能的示例是PCF、SMF、NWDAF或运营商的OAM或OSS/BSS系统中的其它功能。

类似地,可在5GC的NEF中实现服务协商820。服务协商820与服务810协商服务处置,并且根据服务要求和从服务接收的附加信息(诸如车辆轨迹),向服务管理器830发送指示处置服务810所需的资源的类型(例如,RAN、CN和云)、相关联的要求(例如,传送1GB数据)和约束(例如,在1小时内传送)的资源请求。

在从服务协商820接收服务要求并从组件管理器840-860接收资源可用性信息之后,服务管理器830可执行可提供最合适的服务管理策略的各种优化算法和/或规划工具。此类服务管理策略可包括对于服务递送应当使用哪些组件以及在哪些时间窗口中。为服务管理选择的策略可以与服务类型有关,例如涉及大量数据传输的服务可关联到指向降低数据传输的成本的策略。服务管理器830也可将诸如网络是否可履行服务请求的反馈提供给请求服务810(例如,经由服务协商820)。

在一些实施例中,服务管理器830可将服务管理策略转换为考虑服务要求和约束以及与网络政策有关的附加要求的一些目标成本函数。

在各种实施例中,与云管理器860相关联的云可以是私有云(例如,网络运营商基础设施)、公共云或混合云。云可用于托管服务的一些功能性(例如,边缘部署中的服务数据处理的部分),或托管递送服务所需的一些网络功能性(例如,本地疏导和相关功能性、移动UE上下文等)。

在各种实施例中,服务管理器830和云管理器830之间的接口可具有各种特性。例如,云管理器侧的端点可以是云资源的编排器、基础设施管理器、从某个云集合收集信息的分析功能、负责配置云资源的使用的分析功能等。更一般地,取决于服务管理器830、云管理器860的实现以及与云管理器860相关联的云的类型(例如,私有、公有或混合云),接口和/或在此类接口上交换的信息的类型可不同。

如图8所示,服务管理器830可向云管理器860发送可包含以下信息的请求:

资源请求,指示需要哪些资源(计算、存储、联网等)以及(一个或多个)预期的量;

相关联的服务信息,指示服务递送的时间窗口、服务优先级、租户信息等。

所需信息,指示服务管理器830所需的服务信息,包括在指定的时间间隔内云资源的预期负载(又称为“辅助成本函数”)和预期的服务履行(又称为“每个组件的请求履行”)。

可考虑服务请求以及要实行的相关网络政策和诸如客户简档之类的其它信息而计算由服务管理器830发送到云管理器830的请求。可从表示为数据传输的服务请求计算对联网和/或I/O的云需求。对于计算和存储资源,应当扩展服务请求以涵盖与数据传输相关联的服务的处理和存储需求。

云管理器860可基于由服务管理器提供的信息计算响应。响应可包含可以用不同方式生成的所需信息。例如,如果云使用预先调度,那么可基于未来资源预留的当前视图生成所需信息。作为另一个示例,它可基于使用历史数据和/或对未来资源可用性的一些预测/估计算法而生成。响应也可通过考虑来自网络政策或与云管理有关的其它政策的其它信息而生成。

在本公开的一些示例性实施例中,服务管理器(例如,图8中所示的服务管理器830)可实现有助于管理服务递送(例如,对于服务810)的优化算法。例如,用于有助于服务递送的示例性优化算法可基于各种信息片段,如下文所描述。

一般来说,优化利用“目标成本函数”,这是优化的目标,并且提供即将用于服务递送的解决方案。换一种说法,这是即将优化的问题的目标函数,诸如将传输成本最小化、将对其它业务的影响最小化、将服务完成的等待时间最小化等。即便如此,仍可将此类最小化问题重公式化为最大化问题。可通过网络运营商初始化、建立和/或设置目标成本函数以反映一些网络政策。备选地,可通过与服务的协商过程来动态地设置目标成本函数。在其它备选方案中,可作为网络运营商和服务(例如,对于V2X应用中的特定车辆制造)之间的协议(例如,服务水平协议SLA)来决定目标成本函数。

优化还可利用通过涉及的组件(包括云管理器)计算并且供服务管理器作为优化问题的输入使用的“辅助成本函数”。如上文所论述,辅助成本函数在相应的组件管理器处运行,并且经由所需信息提供。例如,如果辅助成本函数是空闲容量,那么每个组件管理器可确定它的相关联的组件的空闲容量(例如,空闲RAN容量、空闲云容量等)。

在一些实施例中,服务管理器可知道可用的辅助成本函数(例如,经由某种辅助成本函数发现、或经由静态配置),并且可以从相应的组件管理器请求(一个或多个)特定的辅助成本函数。例如,可考虑来自不同组件的不同辅助成本函数(例如,作为来自RAN的辅助成本函数的负载估计和来自云的响应时间估计)而计算目标成本函数。在此类情况下,辅助成本函数的供应涉及相应组件的请求/响应。在这种情况下,服务管理器向不同的组件管理器发送不同的请求。

优化还可利用“总体请求履行函数”来评估:给定辅助成本函数的值,在某个时间间隔内可履行多少服务请求。在各种实施例中,总体请求履行函数可由服务管理器执行。在一些实施例中,每个组件可计算它自己的“每个组件请求履行函数”。例如,RAN基站可基于它自己的空闲容量和UE位置确定,在某个时间间隔内,它只可履行1GB数据传输请求的20%。在相同的示例中,云可根据它自己的空闲容量确定它只可履行请求的10%。在其它实施例中,可在服务管理器处考虑辅助成本函数的值作为输入而计算各种组件的每个组件请求履行。在该示例中,考虑所有的每个组件请求履行值(例如,20%和10%)作为输入而计算请求的整体请求履行。

图9示出根据本公开的各种示例性实施例用于在RAN、CN和云实体之间确定资源的优化的示例性系统模型。更具体来说,图9示出可联合上文概述的优化技术使用的系统模型。另外,图10示出根据本公开的各种示例性实施例在服务、RAN、CN和云实体之间与确定服务的网络资源的优化相关联的示例性信令流。更具体来说,图10示出在资源调度优化中所涉及的各种功能之间的请求/响应机制和交互。下文参考图9-10论述了优化问题的更一般的数学公式。

在该模型中,车辆(例如,UE)向网络发送请求,请求可已经关联某个要求集合,例如时间或空间截止期限。例如,在车辆到达某个地理区域之前和/或在时间间隔期间,车辆/UE可请求发送1GB数据。基于该响应,网络必须在服务的时间间隔期间为数据传输调度车辆,并且必须保证在空间/时间截止期限内完全履行请求。因此,网络必须确定特定的调度解决方案是否可行,即,它是否履行请求。

在该时间间隔期间,车辆将附连到若干个基站(BS)或由若干个基站(BS)服务,并且将有若干个云可用。网络考虑通过为数据传输选择最合适的(一个或多个)BS、(一个或多个)云和(一个或多个)时间间隔来优化特定的目标成本函数(例如,使总的传输成本最小化)以用于管理服务的递送。网络也可对在服务递送中所涉及的每个组件使用辅助成本函数,网络可由此导出目标成本函数。例如,可使用每个组件的剩余容量作为输入来计算目标成本函数。更具体来说,优化问题可用公式化为:

找出即将用于在接下来的1个小时期间传送1GB的(一个或多个)最合适的时间间隔(连续或非连续)和组件(例如,(一个或多个)BS、(一个或多个)CN实体/(一个或多个)功能/(一个或多个)链路和(一个或多个)云),给定每个涉及的组件的辅助成本函数的一些值,这将传输成本最小化。

问题的公式化使用以下符号:

i=1,2,...,I表示感兴趣的离散时间间隔的索引,为简单起见,出于计算的原因,将时间视为是离散的。时间离散化可在开始优化之前进行,例如考虑预期UE被附连到问题所感兴趣的BS时的时间或作为来自网络实体(如云)的输入,即,当它们预期负载较小时。

a=1,2,...,A表示根据例如车辆轨迹计算的可容许BS的集合。

c=1,2,...,C表示根据例如可用BS的集合以及在可用云和BS之间的相关网络连接计算的可容许云的集合。

pv(ti,ti+1)表示时间间隔(ti,ti+1)中的UE的位置/轨迹。

R=[RBS,RCL]表示车辆的资源请求,其拆分成BS处的资源请求(RBS)和云处的资源请求(RCL),以一般的方式,这将考虑,例如,车辆想要传送1GB数据,并且将该请求转换为BS处的资源请求以及用于处置此类数据的云处的计算资源。

问题的公式化还涉及以下工作函数:

Ωi用于指示在某个时间间隔(ti,ti+1)期间某个组件的辅助成本函数的值。

是BS a在时间间隔(ti,ti+1)内的辅助成本函数的值。函数ωBS是经调谐以便例如计算BS的负载、BS的空闲容量等的通用函数。

是云c在时间间隔(ti,ti+1)内的辅助成本函数的值。函数ωCL是经调谐以便例如计算云的负载、云的空闲容量等的通用函数。

引入以考虑与某个BS a和云c之间的连接性相关联的辅助成本函数的值。函数ωCN是经调谐以便例如计算关联到某个BSa和云c之间的连接性的辅助成本函数的通用函数。

为简单起见,在有多种方式将BS a连接到云c的情况下,在公式化中考虑最佳选项。不管怎么样,这可通过扩展ωCN的定义来加以考虑。

为简单起见,关联到某个BS a和云c之间的连接性的辅助成本函数视为独立于时间,不管怎么样,这可视为引入时间间隔(ti,ti+1)来公式化ωCN

在某个BS a和云c之间的连接不可用的情况下(或者对于一些约束,诸如考虑一些网络政策而使链路不可用),则可设置以使得可从解集合中排除它。

注意,可对进行调谐,以便影响最终决定,例如避免某个组件的使用低于或大于某个阈值。当目标函数大于(或小于)某个阈值时,这可通过在目标函数ωBS小于(或高于)阈值时定义例如来实现(例如,如果BS的估计的负载>70%,则不想要使用该BS,以避免过载问题)。

Θi表示在某个时间间隔(ti,ti+1)期间每个组件请求履行的百分比。

是BS a在时间间隔(ti,ti+1)内的请求履行百分比的值。函数θBS是用于根据请求R和辅助成本函数的值对BS的请求履行建模的通用函数。

是云c在时间间隔(ti,ti+1)内的请求履行百分比的值。函数θCL是用于根据请求R和辅助成本函数的值对云的请求履行建模的通用函数。

引入以考虑关联到某个BS a和云c之间的连接性的请求履行百分比的值和辅助成本函数的值函数θCN是可进行调谐以便例如计算关联到某个BS a和云c之间的连接性的辅助成本函数的通用函数。为了简单起见,将关联到某个BS a和云c之间的连接性的请求履行的百分比视为独立于时间。不管怎么样,这可视为引入时间间隔(ti,ti+1)以公式化θCN

注意,可对进行调谐,以避免在小的请求履行的情况下使用资源(例如,如果BS只履行1%的请求则避免选择使用该BS的解决方案)。在这种情况下,例如,如果则可将设置为+∞。

注意,一旦服务管理器作为输入从涉及的组件管理器接收Ωi的值,便也可通过服务管理器计算Θi

注意,Θi表示由某个管理器的组件计算的请求履行的估计,实际请求履行在服务递送期间计算,因为它受到组件管理器的关于如何处置服务递送(例如,在RAN中,如何调度数据传输)的实际决定的影响。

鉴于上文,可如下编写使用辅助成本函数的值作为输入计算的目标成本函数的优化:

以使得:

其中:

引入尺寸为I×A的矩阵XBS,其中如果在时间间隔(ti,ti+1)中使用BS a,则是等于1的二进制值,否则它为零。

引入尺寸为I×C的矩阵XCL,其中如果在时间间隔(ti,ti+1)中使用云c,则是等于1的二进制值,否则它为零。

矩阵XBS和XCL表示问题的解。

函数γ表示使用每个组件请求履行的值作为输入计算的整体请求履行。

作为以上问题的解,可选择表示将在哪些时间间隔中使用哪些BS和哪些云的矩阵XBS和XCL,以便在选择的解将完全满足请求R的约束下使目标成本函数最小化。注意,可引入附加约束,以便进一步规定问题(如果需要的话),例如考虑一些特定的网络政策。附加约束的示例包括:

它可用于指示选择的解具有只使用一个云的约束(该约束可进行修改以便考虑只利用一个BS、或只利用一个BS和一个云的解)。

它可用于指示选择的解只使用连续传输,即,一旦数据传输开始,它便不会停止,直到全部履行请求为止(这将避免选择其中将传输碎片化为非邻接时间间隔的解)。

在一些实施例中,可将优化问题公式化为还考虑不满足100%的请求的解。例如,这可通过修改在约束中所指示的请求履行的百分比来获得。换句话说,在没有解满足100%的请求的情况下,可修改优化以便迭代地降低请求履行,直到找到解为止。

图11示出根据本公开的各种示例性实施例涉及在截止期限内以低成本传输大量数据的示例性V2X服务场景。更具体来说,图11示出图7中的V2X服务场景,其中根据上文描述的各种实施例已经执行了网络资源的优化。与图7(其中RAN中心和云中心的资源调度分别在t1和t3期间导致次优调度)相比,使用联合RAN-云资源优化导致在间隔t2期间最优调度1-GB数据传输。该间隔表示RAN和云两者中支持请求的服务的资源的“最佳”(例如,根据特定的优化准则)可用性。

图12示出根据本公开的各种示例性实施例用于调度与通信网络的多个组件相关联的资源以用于向用户设备(UE)提供网络服务的示例性方法和/或过程。如图12所示的示例性方法和/或过程可由通信网络中的服务的服务处置器执行,诸如本文中参考其它图所描述的。尽管图12中通过块按特定顺序示出示例性方法和/或过程,但是该顺序只是示例性的,并且与块对应的操作可以按不同的顺序执行,并且可以组合和/或划分为具有与如图12所示的功能性不同的功能性的块和/或操作。此外,如图12所示的示例性方法和/或过程可以与本文中公开的其它示例性方法和/或过程互补,以使得它们能够协作地用于提供益处、优点和/或上文描述的问题的解决方案。可选的块和/或操作由虚线指示。

示例性方法和/或过程可包括块1210的操作,在块1210中,服务处置器可接收向UE提供网络服务的服务请求。服务请求可包括一个或多个服务约束。在一些实施例中,一个或多个服务约束可包括应当在其期间履行请求的未来时间间隔。在一些实施例中,服务请求还可包括在未来时间间隔期间UE的轨迹。在一些实施例中,UE可与车辆相关联,请求的网络服务可以是传输大量数据,并且一个或多个服务约束可包括用于传输数据的时间间隔或地理区域。

示例性方法和/或过程还可包括块1220的操作,在块1220中,对于多个网络组件中的每个网络组件,服务处置器可根据服务约束确定履行服务请求所需的组件资源。在一些实施例中,多个网络组件可包括无线电接入网络(RAN)、核心网络(CN)和云基础设施。在一些实施例中,对于包括未来时间间隔的多个子间隔中的每个子间隔,确定的组件资源可包括在该特定子间隔期间在该特定组件中所需的组件资源。在此类实施例中,基于UE的轨迹确定在特定子间隔期间在特定组件中所需的组件资源。

示例性方法和/或过程还可包括块1230的操作,在块1230中,对于多个网络组件中的每个网络组件,服务处置器可向与特定组件相关联的管理器功能发送资源请求。资源请求可包括确定的组件资源的标识以及与服务约束有关的信息。在一些实施例中,特定组件的资源请求还可包括特定组件的请求的服务信息的指示。在一些实施例中,请求的服务信息可包括辅助成本函数和预期服务履行百分比。

示例性方法和/或过程还可包括块1240的操作,在块1240中,对于多个网络组件中的每个网络组件,服务处置器可接收与特定组件相关联的服务信息。这可例如从与该特定组件相关联的管理器功能接收。在一些实施例中,对于包括未来时间间隔的多个子间隔中的每个子间隔,接收的服务信息可包括在该特定子间隔期间该特定组件的辅助成本函数和预期服务履行百分比。

示例性方法和/或过程还可包括块1250的操作,在块1250中,服务处置器可为履行服务请求的多个网络组件确定资源调度。可基于服务信息和成本函数确定资源调度。在一些实施例中,成本函数可由服务处置器响应于服务请求确定。在一些实施例中,可在服务处置器和服务本身之间协商成本函数。在一些实施例中,成本函数可涉及以下一个或多个因素:请求的网络服务对其它网络服务和/或用户的影响;以及网络资源的可用性。

在一些实施例中,块1250的操作可包括子块1252的操作,在子块1252中,服务处置器可基于相应组件的预期服务履行百分比计算总的预期服务履行百分比。在一些实施例中,块1250的操作可包括子块1254的操作,在子块1254中,服务处置器可基于相应组件的辅助成本函数计算成本函数。在一些实施例中,块1250的操作可包括子块1256的操作,在子块1256中,服务处置器可确定经受总的预期服务履行百分比大于阈值的成本函数的最小值。在一些实施例中,阈值可以是100%。在其它实施例中,阈值可以小于100%。

在一些实施例中,块1250的操作可包括子块1258的操作,在子块1258中,服务处置器可选择多个子间隔中包含在其期间提供请求的网络服务的时间间隔的一个子间隔。在一些实施例中,选择的子间隔可对应于成本函数在例如相应子间隔上的最小值。

在一些实施例中,示例性方法和/或过程还可包括块1260的操作,在块1260中,服务处置器可将资源调度信息发送到多个组件。在一些实施例中,示例性方法和/或过程还可包括块1270的操作,在块1270中,如果确定没有多个网络组件的资源调度能够履行请求,则服务处置器可执行以下操作中的一个或多个操作:发送指示失败的服务响应;以及基于服务履行信息和另外的成本函数确定另外的资源调度。

图13示出根据本公开的各种示例性实施例用于在通信网络的组件中调度资源以用于向用户设备(UE)提供网络服务的示例性方法和/或过程。如图13所示的示例性方法和/或过程可由通信网络组件(例如,RAN、CN、云等)的组件管理器执行,诸如本文中参考其它图所描述的。尽管图13中通过块按特定顺序示出示例性方法和/或过程,但是该顺序只是示例性的,并且与块对应的操作可以按不同的顺序执行,并且可以组合和/或划分为具有与如图13所示的功能性不同的功能性的块。此外,如图13所示的示例性方法和/或过程可以与本文中公开的其它示例性方法和/或过程互补,以使得它们能够协作地用于提供益处、优点和/或上文描述的问题的解决方案。可选的块和/或操作由虚线指示。

示例性方法和/或过程可包括块1310的操作,在块1310中,组件管理器可从与网络服务相关联的管理器功能接收资源请求。资源请求可包括履行服务请求所需的组件的资源的标识。资源请求还可包括与同服务请求相关联的一个或多个服务约束有关的信息。在一些实施例中,一个或多个服务约束可包括应当在其期间履行服务请求的未来时间间隔。在一些实施例中,对于包含未来时间间隔的多个子间隔中的每个子间隔,标识的组件资源可包括在该特定子间隔期间所需的组件资源。

在一些实施例中,UE可与车辆相关联,请求的网络服务可以是传输大量数据,并且一个或多个服务约束可包括用于传输数据的时间间隔或地理区域。在一些实施例中,资源请求还可包括特定组件的请求的服务信息的指示。在一些实施例中,请求的服务信息可包括辅助成本函数和预期服务履行百分比。

在一些实施例中,示例性方法和/或过程可包括块1320的操作,在块1320中,组件管理器可对于每个子间隔确定与组件相关联的服务信息。在一些实施例中,可响应于请求(例如,在操作1310中接收)进行该确定。在一些实施例中,确定的服务信息可包括辅助成本函数和预期服务履行百分比。在一些实施例中,辅助成本函数可涉及组件资源的可用性。

示例性方法和/或过程可包括块1330的操作,在块1330中,组件管理器可向管理器功能发送与组件相关联的服务信息。在一些实施例中,对于包括未来时间间隔的多个子间隔中的每个子间隔,发送到管理器的服务信息可包括在该特定子间隔期间该特定组件的辅助成本函数和预期服务履行百分比。

在一些实施例中,示例性方法和/或过程还可包括块1340的操作,在块1340中,组件管理器可从管理器功能接收与服务请求相关联的组件资源调度。

尽管关于诸如如图14所示的示例无线网络的无线网络描述了本文中公开的实施例,但是本文中描述的主题可在任何合适类型的系统中使用任何合适的组件实现。为了简单起见,图14的无线网络只描绘了网络1406、网络节点1460和1460b以及WD 1410、1410b和1410c。实际上,无线网络可进一步包括适合于支持无线装置之间或无线装置和诸如固定电话、服务供应商或任何其它网络节点或最终装置之类的另一个通信装置之间的通信的任何额外元件。在所示组件中,额外详细地描绘了网络节点1460和无线装置(WD)1410。无线网络可向一个或多个无线装置提供通信和其它类型的服务,以有助于无线装置访问和/或使用由或经由无线网络提供的服务。

无线网络可包括任何类型的通信、电信、数据、蜂窝和/或无线电网络或其它类似类型的系统和/或通过接口与之连接。在一些实施例中,无线网络可配置成根据特定标准或其它类型的预定义规则或过程进行操作。因此,无线网络的特定实施例可实现:通信标准,诸如全球移动通信系统(GSM)、通用移动电信系统(UMTS)、长期演进(LTE)和/或其它合适的2G、3G、4G或5G标准;无线局域网络(WLAN)标准,诸如IEEE 802.11标准;和/或任何其它适当的无线通信标准,诸如全球微波接入互操作性(WiMax)、蓝牙、Z-Wave和/或ZigBee标准。

网络1460可包括一个或多个回程网络、核心网络、IP网络、公共交换电话网络(PSTN)、分组数据网络、光学网络、广域网络(WAN)、局域网络(LAN)、无线局域网络(WLAN)、有线网络、无线网络、城域网络和使得能够在装置之间通信的其它网络。

网络节点1460和WD 1410包括下文将更详细描述的各种组件。这些组件一起工作以便提供网络节点和/或无线装置功能性,诸如在无线网络中提供无线连接。在不同的实施例中,无线网络可包括任意数量的有线或无线网络、网络节点、基站、控制器、无线装置、中继站和/或可有助于或参与数据和/或信号的通信(不管是经由有线还是无线连接)的任何其它组件或系统。

如本文中所使用,网络节点指能够、配置成、布置成和/或可操作以与无线装置和/或与无线网络中的其它网络节点或设备直接或间接通信以便为无线装置启用和/或提供无线接入和/或在无线网络中执行其它功能(例如,管理)的设备。网络节点的示例包括但不限于接入点(AP)(例如,无线电接入点)、基站(BS)(例如,无线电基站、Node B、演进Node B(eNB)和NR NodeB(gNB))。可基于它们提供的覆盖量(或换句话说,基于它们的传送功率等级)将基站归类,并且于是又可将基站称为毫微微基站、微微基站、微基站或宏基站。基站可以是中继节点或控制中继站的中继施主节点。网络节点还可包括分布式无线电基站的一个或多个(或所有)部分,诸如集中式数字单元和/或远程无线电单元(RRU)(有时称为远程无线电头端(RRH))。此类远程无线电单元可以或者可以不与天线集成为天线集成式无线电。分布式无线电基站的部分又可称为分布式天线系统(DAS)中的节点。

网络节点的另外的示例包括多标准无线电(MSR)设备(诸如MSR BS)、网络控制器(诸如无线电网络控制器(RNC)或基站控制器(BSC))、基站收发信台(BTS)、传输点、传输节点、多小区/多播协调实体(MCE)、核心网络节点(例如,MSC、MME)、O&M节点、OSS节点、SON节点、定位节点(例如,E-SMLC)和/或MDT。作为另一个示例,网络节点可以是如下文更详细描述的虚拟网络节点。但是,更一般地,网络节点可表示能够、配置成、布置成和/或可操作以便为无线装置启用和/或提供对无线网络的接入或向已经访问无线网络的无线装置提供一些服务的任何合适的装置(或装置群组)。

在图14中,网络节点1460包括处理电路1470、装置可读介质1480、接口1490、辅助设备1484、电源1486、电源电路1487和天线1462。尽管在图14的示例无线网络中示出的网络节点1460可表示包括硬件组件的所示组合的装置,但是其它实施例可包括具有不同组件组合的网络节点。将了解,网络节点包括执行本文中公开的任务、特征、功能和方法和/或过程所需的硬件和/或软件的任何合适的组合。此外,尽管将网络节点1460的组件描绘为是位于更大块内或嵌套在多个块内的单个块,但是实际上,网络节点可包括构成单个所示组件的多个不同的物理组件(例如,装置可读介质1480可包括多个单独的硬盘驱动器以及多个RAM模块)。

类似地,网络节点1460可由多个物理上独立的组件(例如,NodeB组件和RNC组件、或BTS组件和BSC组件等)组成,它们可各自具有它们自己的相应组件。在网络节点1460包括多个独立组件(例如,BTS和BSC组件)的某些场景中,可在若干个网络节点之中共享独立组件中的一个或多个组件。例如,单个RNC可控制多个NodeB。在此类场景中,在一些实例中,每个唯一的NodeB和RNC对可视为是单个独立的网络节点。在一些实施例中,网络节点1460可配置成支持多种无线电接入技术(RAT)。在此类实施例中,一些组件可复制(例如,不同RAT的独立装置可读介质1480),并且一些组件可被重用(例如,RAT可共享相同天线1462)。网络节点1460还可对于集成到网络节点1460中的不同的无线技术(诸如例如GSM、WCDMA、LTE、NR、WiFi或蓝牙无线技术)包括各种所示组件的多个集合。这些无线技术可与网络节点1460内的其它组件集成到相同或不同的芯片或芯片组中。

处理电路1470可配置成执行本文中作为由网络节点提供而加以描述的任何确定、演算或类似操作(例如,某些获得操作)。由处理电路1470执行的这些操作可包括:通过例如将由处理电路1470获得的信息转换成其它信息、将获得的信息或转换后的信息与存储在网络节点中的信息进行比较和/或基于获得的信息或转换后的信息执行一个或多个操作来处理获得的信息;以及作为所述处理的结果做出确定。

处理电路1470可包括以下中的一个或多个的组合:微处理器、控制器、微控制器、中央处理单元、数字信号处理器、专用集成电路、现场可编程门阵列或任何其它合适的计算装置、资源、或可操作以单独或与诸如装置可读介质1480之类的其它网络节点1460组件组合提供网络节点1460功能性的硬件、软件和/或编码逻辑的组合。例如,处理电路1470可执行存储在装置可读介质1480中或处理电路1470内的存储器中的指令。此类功能性可包括提供本文中论述的任何各种无线特征、功能或益处。在一些实施例中,处理电路1470可包括片上系统(SOC)。

在一些实施例中,处理电路1470可包括射频(RF)收发器电路1472和基带处理电路1474中的一个或多个。在一些实施例中,射频(RF)收发器电路1472和基带处理电路1474可位于独立的芯片(或芯片组)、板或单元(诸如无线电单元和数字单元)上。在备选实施例中,RF收发器电路1472和基带处理电路1474的部分或全部可位于相同的芯片或芯片组、板或单元上。

在某些实施例中,本文中描述为由网络节点、基站、eNB或其它此类网络装置提供的一些或所有功能性可通过处理电路1470执行存储在装置可读介质1480或处理电路1470内的存储器上的指令来执行。在备选实施例中,一些或所有功能性可由处理电路1470在不执行存储在独立或离散的装置可读介质上的指令的情况下以诸如硬接线的方式提供。在那些实施例中的任何实施例中,不管是否执行存储在装置可读存储介质上的指令,处理电路1470都可配置成执行描述的功能性。由此类功能性提供的益处不限于处理电路1470单独或网络节点1460的其它组件,而是由网络节点1460作为整体和/或一般由最终用户和无线网络享有。

装置可读介质1480可包括任何形式的易失性或非易失性计算机可读存储器,包括但不限于持久存储设备、固态存储器、远程安装存储器、磁介质、光介质、随机存取存储器(RAM)、只读存储器(ROM)、大容量存储介质(例如,硬盘)、可移动存储介质(例如,闪速驱动器、致密盘(CD)或数字视频盘(DVD))和/或存储可供处理电路1470使用的信息、数据和/或指令的任何其它易失性或非易失性、非暂时性装置可读和/或计算机可执行存储器装置。装置可读介质1480可存储任何合适的指令、数据或信息,包括计算机程序、软件、包括逻辑、规则、代码、表格等中的一个或多个的应用、和/或能够由处理电路1470执行并供网络节点1460使用的其它指令。装置可读介质1480可用于存储由处理电路1470进行的任何演算和/或经由接口1490接收的任何数据。在一些实施例中,可考虑将处理电路1470和装置可读介质1480集成在一起。

接口1490用于在网络节点1460、网络1406和/或WD 1410之间有线或无线地传递信令和/或数据。如图所示,接口1490包括用于例如通过有线连接向以及从网络1406发送和接收数据的(一个或多个)端口/(一个或多个)端子1494。接口1490还包括可耦合到天线1462或在某些实施例中作为天线1462的一部分的无线电前端电路1492。无线电前端电路1492包括滤波器1498和放大器1496。无线电前端电路1492可连接到天线1462和处理电路1470。无线电前端电路可配置成调节在天线1462和处理电路1470之间通信的信号。无线电前端电路1492可接收数字数据,将经由无线连接将数字数据向外发送到其它网络节点或WD。无线电前端电路1492可使用滤波器1498和/或放大器1496的组合将数字数据转换成具有合适信道和带宽参数的无线电信号。然后,可经由天线1462传送无线电信号。类似地,当接收数据时,天线1462可收集无线电信号,然后通过无线电前端电路1492将无线电信号转换成数字数据。可将数字数据传递到处理电路1470。在其它实施例中,接口可包括不同的组件和/或组件的不同组合。

在某些备选实施例中,网络节点1460可不包括单独的无线电前端电路1492;而是,处理电路1470可包括无线电前端电路,并且可在没有单独的无线电前端电路1492的情况下连接到天线1462。类似地,在一些实施例中,RF收发器电路1472的全部或一些可视为是接口1490的一部分。又在其它实施例中,接口1490可包括一个或多个端口或端子1494、无线电前端电路1492和RF收发器电路1472以作为无线电单元(未示出)的一部分,并且接口1490可与作为数字单元(未示出)的部分的基带处理电路1474通信。

天线1462可包括配置成发送和/或接收无线信号的一个或多个天线或天线阵列。天线1462可耦合到无线电前端电路1490,并且可以是能够无线地传送和接收数据和/或信号的任何类型的天线。在一些实施例中,天线1462可包括可操作以在例如2GHz和66GHz之间传送/接收无线电信号的一个或多个全向、扇区或平板天线。全向天线可用于在任何方向传送/接收无线电信号,扇区天线可用于在特定区域内传送/接收来自装置的无线电信号,并且平板天线可以是用于以相对直线传送/接收无线电信号的视线天线。在一些实例中,使用多于一个天线可称为MIMO。在某些实施例中,天线1462可以与网络节点1460分开,并且可通过接口或端口连接到网络节点1460。

天线1462、接口1490和/或处理电路1470可配置成执行本文中描述为由网络节点执行的任何接收操作和/或某些获得操作。可从无线装置、另一个网络节点和/或任何其它网络设备接收任何信息、数据和/或信号。类似地,天线1462、接口1490和/或处理电路1470可配置成执行本文中描述为由网络节点执行的任何传送操作。可将任何信息、数据和/或信号传送到无线装置、另一个网络节点和/或任何其它网络设备。

电源电路1487可包括或可耦合到电源管理电路,并且配置成为网络节点1460的组件供给功率以用于执行本文中描述的功能性。电源电路1487可从电源1486接收功率。电源1486和/或电源电路1487可配置成以适合于相应组件的形式(例如,以每个相应组件所需的电压和电流电平)向网络节点1460的各种组件提供功率。电源1486可包含在电源电路1487和/或网络节点1460中或位于其外部。例如,网络节点1460可经由输入电路或接口(诸如电缆)连接到外部电源(例如,电源插座),由此外部电源向电源电路1487供电。作为另外的示例,电源1486可包括连接到或集成在电源电路1487中的电池或电池组形式的电源。当外部电源发生故障时,电池可提供备用电源。也可使用其它类型的电源,诸如光伏器件。

网络节点1460的备选实施例可包括图14中示出的组件以外的额外组件,其可负责提供网络节点的功能性的某些方面,包括本文中描述的任何功能性和/或支持本文中描述的主题所必需的任何功能性。例如,网络节点1460可包括允许和/或有助于将信息输入到网络节点1460中并允许和/或有助于从网络节点1460输出信息的用户接口设备。这可允许和/或有助于用户对网络节点1460执行诊断、维护、修复和其它管理功能。

如本文中所使用,无线装置(WD)是指能够、配置成、布置成和/或可操作以与网络节点和/或其它无线装置无线地通信的装置。除非另外说明,否则术语WD在本文可以与用户设备(UE)互换地使用。无线通信可涉及使用电磁波、无线电波、红外波和/或适合通过空气传达信息的其它类型的信号来传送和/或接收无线信号。在一些实施例中,WD可配置成在没有直接人类交互的情况下传送和/或接收信息。例如,WD可设计成在又内部或外部事件触发时或响应于来自网络的请求而按预定计划表将信息传送到网络。WD的示例包括但不限于智能电话、移动电话、蜂窝电话、IP语音(VoIP)电话、无线本地回路电话、桌上型计算机、个人数字助理(PDA)、无线相机、游戏控制台或装置、音乐存储装置、播放器具、可穿戴终端装置、无线端点、移动站、平板、膝上型计算机、膝上型嵌入式设备(LEE)、膝上型安装式设备(LME)、智能装置、无线客户驻地设备(CPE)、车载无线终端装置等。

WD可通过例如对于副链路通信(车辆到车辆(V2V)、车辆到基础设施(V2I)、车辆到一切(V2X))实现3GPP标准来支持装置到装置(D2D)通信,并且在这种情况下可称为D2D通信装置。作为又一特定示例,在物联网(IoT)场景中,WD可表示执行监测和/或测量并将此类监测和/或测量的结果传送到另一WD和/或网络节点的机器或其它装置。在这种情况下,WD可以是机器到机器(M2M)装置,所述装置在3GPP上下文中可称为MTC装置。作为一个特定示例,WD可以是实现3GPP窄带物联网(NB-IoT)标准的UE。此类机器或装置的特定示例是传感器、计量装置(诸如功率计)、工业机械、或家庭或个人电器(例如冰箱、电视等)、个人可穿戴装置(例如,手表、健身追踪器等)。在其它场景中,WD可表示能够监测和/或报道它的操作状态或与它的操作相关联的其它功能的车辆或其它设备。如上所述,WD可表示无线连接的端点,在这种情况下,装置可称为无线终端。此外,如上所述,WD可以是移动的,在这种情况下,它又可称为移动装置或移动终端。

如图所示,无线装置1410包括天线1411、接口1414、处理电路1420、装置可读介质1430、用户接口设备1432、辅助设备1434、电源1436和电源电路1437。WD 1410可包括由WD1410支持的不同无线技术的图示组件中的一个或多个的多个集合,所述无线技术可以是诸如例如GSM、WCDMA、LTE、NR、WiFi、WiMax、或蓝牙无线技术,只提几个示例。这些无线技术可集成到与WD 1410内的其它组件相同或不同的芯片或芯片组中。

天线1411可包括配置成发送和/或接收无线信号的一个或多个天线或天线阵列,并且连接到接口1414。在某些备选实施例中,天线1411可以与WD 1410分开,并且可通过接口或端口连接到WD 1410。天线1411、接口1414和/或处理电路1420可配置成执行本文中描述为由WD执行的任何接收或传送操作。可从网络节点和/或另一个WD接收任何信息、数据和/或信号。在一些实施例中,无线电前端电路和/或天线1411可视为是接口。

如图所示,接口1414包括无线电前端电路1412和天线1411。无线电前端电路1412包括一个或多个滤波器1418和放大器1416。无线电前端电路1414连接到天线1411和处理电路1420,并且可配置成调节在天线1411和处理电路1420之间通信的信号。无线电前端电路1412可耦合到1411或是天线1411的一部分。在一些实施例中,WD 1410可不包括单独的无线电前端电路1412;而是,处理电路1420可包括无线电前端电路,并且可连接到天线1411。类似地,在一些实施例中,RF收发器电路1422中的一些或全部可视为是接口1414的一部分。无线电前端电路1412可接收数字数据,将经由无线连接将所述数字数据向外发送到其它网络节点或WD。无线电前端电路1412可使用滤波器1418和/或放大器1416的组合将数字数据转换成具有适当信道和带宽参数的无线电信号。然后,可经由天线1411传送无线电信号。类似地,当接收数据时,天线1411可收集无线电信号,然后通过无线电前端电路1412将无线电信号转换成数字数据。可将数字数据传递到处理电路1420。在其它实施例中,接口可包括不同的组件和/或不同的组件组合。

处理电路1420可包括以下中的一个或多个的组合:微处理器、控制器、微控制器、中央处理单元、数字信号处理器、专用集成电路、现场可编程门阵列或任何其它合适的计算装置、资源、或可操作以单独或与诸如装置可读介质1430之类的其它WD 1410组件组合提供WD 1410功能性的硬件、软件和/或编码逻辑的组合。此类功能性可包括提供本文中所论述的任何各种无线特征或益处。例如,处理电路1420可执行存储在装置可读介质1430中或处理电路1420内的存储器中的指令,以便提供本文中公开的功能性。

如图所示,处理电路1420包括RF收发器电路1422、基带处理电路1424和应用处理电路1426中的一个或多个。在其它实施例中,处理电路可包括不同的组件和/或不同的组件组合。在某些实施例中,WD 1410的处理电路1420可包括SOC。在一些实施例中,RF收发器电路1422、基带处理电路1424和应用处理电路1426可位于单独的芯片或芯片组上。在备选实施例中,基带处理电路1424和应用处理电路1426的部分或全部可组合到一个芯片或芯片组中,并且RF收发器电路1422可位于单独的芯片或芯片组上。又在备选的实施例中,RF收发器电路1422和基带处理电路1424的部分或全部可位于相同的芯片或芯片组上,并且应用处理电路1426可位于单独的芯片或芯片组上。在还有其它备选的实施例中,RF收发器电路1422、基带处理电路1424和应用处理电路1426的部分或全部可组合在相同的芯片或芯片组中。在一些实施例中,RF收发器电路1422可以是接口1414的一部分。RF收发器电路1422可调节处理电路1420的RF信号。

在某些实施例中,本文中描述为由WD执行的一些或所有功能性可通过处理电路1420执行存储在装置可读介质1430(在某些实施例中,它可以是计算机可读存储介质)上的指令来提供。在备选实施例中,一些或所有功能性可由处理电路1420在不执行存储在独立或离散的装置可读介质上的指令的情况下以诸如硬接线的方式提供。在那些实施例中的任何实施例中,不管是否执行存储在装置可读存储介质上的指令,处理电路1420都可配置成执行描述的功能性。由此类功能性提供的益处不限于处理电路1420单独或WD 1410的其它组件,而是由WD 1410作为整体和/或一般由最终用户和无线网络享有。

处理电路1420可配置成执行本文中描述为由WD执行的任何确定、演算或类似操作(例如,某些获得操作)。如由处理电路1420执行的这些操作可包括:通过例如将由处理电路1420获得的信息转换成其它信息、将获得的信息或转换后的信息与由WD 1410存储的信息进行比较和/或基于获得的信息或转换后的信息执行一个或多个操作来处理获得的信息;以及作为所述处理的结果做出确定。

装置可读介质1430可操作以存储计算机程序、软件、包括逻辑、规则、代码、表等中的一个或多个的应用和/或能够由处理电路1420执行的其它指令。装置可读介质1430可包括计算机存储器(例如,随机存取存储器(RAM)或只读存储器(ROM))、大容量存储介质(例如,硬盘)、可移除存储介质(例如,致密盘(CD)或数字视频盘(DVD))和/或存储可由处理电路1420使用的信息、数据和/或指令的任何其它易失性或非易失性、非暂时性装置可读和/或计算机可执行存储器装置。在一些实施例中,可考虑将处理电路1420和装置可读介质1430集成在一起。

用户接口设备1432可包括允许和/或有助于人类用户与WD 1410交互的组件。此类交互可具有多种形式,诸如视觉、听觉、触觉等。用户接口设备1432可操作以向用户产生输出,并允许和/或有助于用户向WD 1410提供输入。交互的类型可取决于安装在WD 1410中的用户接口设备1432的类型而变化。例如,如果WD 1410是智能电话,则交互可经由触摸屏进行;如果WD 1410是智能仪表,则交互可通过提供使用情况(例如,所使用的加仑数)的屏幕或提供可听到的警报(例如,如果检测到烟雾的话)的扬声器进行。用户接口设备1432可包括输入接口、装置和电路以及输出接口、装置和电路。用户接口设备1432可配置成允许和/或有助于将信息输入到WD 1410中,并且连接到处理电路1420以允许和/或有助于处理电路1420处理输入信息。用户接口设备1432可包括例如麦克风、接近度传感器或其它传感器、按键/按钮、触摸显示器、一个或多个相机、USB端口或其它输入电路。用户接口设备1432还配置成允许和/或有助于从WD 1410输出信息,并允许和/或有助于处理电路1420从WD 1410输出信息。用户接口设备1432可包括例如扬声器、显示器、振动电路、USB端口、耳机接口或其它输出电路。使用用户接口设备1432的一个或多个输入和输出接口、装置和电路,WD 1410可与最终用户和/或无线网络通信,并允许和/或有助于它们受益于本文中描述的功能性。

辅助设备1434可操作以提供一般可不由WD执行的更特定的功能性。这可包括用于为各种目的进行测量的专业传感器、用于诸如有线通信等的额外类型的通信的接口等。辅助设备1434的组件的包含和类型可取决于实施例和/或场景而变化。

在一些实施例中,电源1436可采取电池或电池组的形式。也可使用其它类型的电源,诸如外部电源(例如,电插座)、光伏器件或功率电池。WD 1410可进一步包括电源电路1437,其用于将来自电源1436的功率递送到需要来自电源1436的功率以执行本文中描述或指示的任何功能性的WD 1410的各种部分。在某些实施例中,电源电路1437可包括功率管理电路。额外地或备选地,电源电路1437可操作以从外部电源接收功率;在这种情况下,WD1410可经由输入电路或接口(诸如,电力电缆)连接到外部电源(诸如电插座)。在某些实施例中,电源电路1437还可操作以将功率从外部电源递送到电源1436。这可用于例如对电源1436充电。电源电路1437可对来自电源1436的功率执行任何转换或其它修改,以便使功率适合于供应给WD 1410的相应组件。

图15示出了根据本文中描述的各种方面的UE的一个实施例。如本文中所使用,在拥有和/或操作相关装置的人类用户的意义来说,用户设备或UE可不一定具有用户。而是,UE可表示打算出售给人类用户或由人类用户操作但是可不或者可最初不与特定的人类用户相关联的装置(例如,智能喷洒器控制器)。备选地,UE可表示不打算出售给最终用户或不打算由最终用户操作但是可与用户的利益相关联或为用户的利益而操作的装置(例如,智能功率计)。UE 15200可以是由第三代合作伙伴计划(3GPP)标识的任何UE,包括NB-IoT UE、机器型通信(MTC)UE和/或增强型MTC(eMTC)UE。如图15所示,UE 1500是配置用于根据由第三代合作伙伴计划(3GPP)颁布的一个或多个通信标准(诸如3GPP的GSM、UMTS、LTE和/或5G标准)进行通信的WD的一个示例。如之前所提及,术语WD和UE可互换使用。因此,尽管图15是UE,但是本文中所讨论的组件同样适用于WD,并且反之亦然。

在图15中,UE 1500包括处理电路1501,处理电路1501操作地耦合到输入/输出接口1505、射频(RF)接口1509、网络连接接口1511、包括随机存取存储器(RAM)1517、只读存储器(ROM)1519和存储介质1521等的存储器1515、通信子系统1531、电源1533和/或任何其它组件或者其任何组合。存储介质1521包括操作系统1523、应用程序1525和数据1527。在其它实施例中,存储介质1521可包括其它类似类型的信息。某些UE可利用如图15所示的组件中的所有组件,或者只利用组件的子集。组件之间的集成等级可从一个UE到另一个UE变化。此外,某些UE可包含组件的多个实例,诸如多个处理器、存储器、收发器、传送器、接收器等。

在图15中,处理电路1501可配置成处理计算机指令和数据。处理电路1501可配置成实现:操作以执行作为机器可读计算机程序存储在存储器中的机器指令的任何顺序状态机,诸如一个或多个硬件实现的状态机(例如,在分立逻辑、FPGA、ASIC等中);可编程逻辑连同适当的固件;一个或多个存储的程序、通用处理器(诸如微处理器或数字信号处理器(DSP))连同适当的软件;或以上任何组合。例如,处理电路1501可包括两个中央处理单元(CPU)。数据可以是采取适合于供计算机使用的形式的信息。

在描绘的实施例中,输入/输出接口1505可配置成向输入装置、输出装置或输入和输出装置提供通信接口。UE 1500可配置成经由输入/输出接口1505使用输出装置。输出装置可使用与输入装置相同类型的接口端口。例如,可使用USB端口来向UE 1500提供输入以及从UE 1500提供输出。输出装置可以是扬声器、声卡、视频卡、显示器、监视器、打印机、致动器、发射器、智能卡、另一个输出装置或其任何组合。UE 1500可配置成经由输入/输出接口1505使用输入装置,以允许和/或有助于用户将信息捕获到UE 1500中。输入装置可包括触摸敏感或存在敏感显示器、相机(例如,数字相机、数字摄像机、web相机等)、麦克风、传感器、鼠标、轨迹球、定向板(directional pad)、轨迹板(trackpad)、滚轮、智能卡等。存在敏感显示器可包括电容性或电阻性触摸传感器,以感测来自用户的输入。传感器可以是例如加速度计、陀螺仪、倾斜传感器、力传感器、磁力计、光传感器、接近度传感器、另一个相似的传感器或其任何组合。例如,输入装置可以是加速度计、磁力计、数字相机、麦克风和光传感器。

在图15中,RF接口1509可配置成向RF组件(诸如传送器、接收器和天线)提供通信接口。网络连接接口1511可配置成向网络1543a提供通信接口。网络1543a可涵盖有线和/或无线网络,诸如局域网络(LAN)、广域网络(WAN)、计算机网络、无线网络、电信网络、另一个相似的网络或其任何组合。例如,网络1543a可包括Wi-Fi网络。网络连接接口1511可配置成包括用于根据一个或多个通信协议(诸如以太网、TCP/IP、SONET、ATM等)通过通信网络与一个或多个其它装置通信的接收器和传送器接口。网络连接接口1511可实现适于通信网络链路(例如,光、电等)的接收器和传送器功能性。传送器和接收器功能可共享电路组件、软件或固件,或者备选地可单独实现。

RAM 1517可配置成经由总线1502与处理电路1501接口连接,以便在执行诸如操作系统、应用程序和装置驱动器之类的软件程序期间提供数据或计算机指令的存储或缓存。ROM 1519可配置成向处理电路1501提供计算机指令或数据。例如,ROM 1519可配置成存储基本系统功能的不变的低级系统代码或数据,基本系统功能可以是诸如基本输入和输出(I/O)、启动或从键盘接收存储在非易失性存储器中的键击。存储介质1521可配置成包括存储器,诸如RAM、ROM、可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、磁盘、光盘、软盘、硬盘、可移除盒式磁带或闪速驱动器。在一个示例中,存储介质1521可配置成包括操作系统1523、应用程序1525(诸如web浏览器应用、小部件或小工具引擎或其它应用)以及数据文件1527。存储介质1521可存储各种各样的操作系统或操作系统的组合中的任何一个,以供UE 1500使用。

存储介质1521可配置成包括多个物理驱动单元,诸如独立盘冗余阵列(RAID)、软盘驱动器、闪速存储器、USB闪速驱动器、外部硬盘驱动器、拇指驱动器、笔式驱动器、按键驱动器、高密度数字多功能盘(HD-DVD)光盘驱动器、内部硬盘驱动器、蓝光光盘驱动器、全息数字数据存储(HDDS)光盘驱动器、外部迷你双列直插式存储器模块(DIMM)、同步动态随机存取存储器(SDRAM)、外部微DIMM SDRAM、智能卡存储器(诸如订户身份模块或可移除用户身份(SIM/RUIM)模块)、其它存储器或其任何组合。存储介质1521可允许和/或有助于UE1500访问存储在暂时性或非暂时性存储器介质上的计算机可执行指令、应用程序等,卸载数据,或上传数据。制品(诸如利用通信系统的制品)可在可包括装置可读介质的存储介质1521中有形地实施。

在图15中,处理电路1501可配置成使用通信子系统1531与网络1543b通信。网络1543a和网络1543b可以是相同的一个或多个网络或不同的一个或多个网络。通信子系统1531可配置成包括用于与网络1543b通信的一个或多个收发器。例如,通信子系统1531可配置成包括一个或多个收发器,其用于根据一个或多个通信协议(诸如IEEE 802.15、CDMA、WCDMA、GSM、LTE、UTRAN、WiMax等)与能够进行无线通信的另一个装置(诸如另一个WD、UE或无线电接入网络(RAN)的基站)的一个或多个远程收发器进行通信。每个收发器可包括分别用于实现适合于RAN链路的传送器或接收器功能性(例如,频率分配等)的传送器1533和/或接收器1535。此外,每个收发器的传送器1533和接收器1535可共享电路组件、软件或固件,或者备选地可单独实现。

在所示的实施例中,通信子系统1531的通信功能可包括数据通信、语音通信、多媒体通信、诸如蓝牙的短程通信、近场通信、诸如使用全球定位系统(GPS)来确定位置的基于位置的通信、另一种相似的通信功能或其任何组合。例如,通信子系统1531可包括蜂窝通信、Wi-Fi通信、蓝牙通信和GPS通信。网络1543b可涵盖有线和/或无线网络,诸如局域网络(LAN)、广域网络(WAN)、计算机网络、无线网络、电信网络、另一个相似的网络或其任何组合。例如,网络1543b可以是蜂窝网络、Wi-Fi网络和/或近场网络。电源1513可配置成向UE1500的组件提供交流(AC)或直流(DC)功率。

本文中描述的特征、益处和/或功能可在UE 1500的组件之一中实现,或者可跨UE1500的多个组件划分。此外,本文中描述的特征、益处和/或功能可采用硬件、软件或固件的任何组合实现。在一个示例中,通信子系统1531可配置成包括本文中描述的组件中的任何组件。此外,处理电路1501可配置成通过总线1502与此类组件中的任何组件通信。在另一个示例中,此类组件中的任何组件可由存储在存储器中的程序指令表示,程序指令在由处理电路1501执行时执行本文中描述的对应功能。在另一个示例中,此类组件中的任何组件的功能性可在处理电路1501和通信子系统1531之间划分。在另一个示例中,此类组件中的任何组件的非计算密集型功能可采用软件或固件来实现,并且计算密集型功能可采用硬件来实现。

图16是示出可在其中虚拟化由一些实施例实现的功能的虚拟化环境1600的示意性框图。在本上下文中,虚拟化意味着创建设备或装置的虚拟版本,这可包括虚拟化硬件平台、存储装置和联网资源。如本文中所使用,虚拟化可应用到节点(例如,虚拟化的基站或虚拟化的无线电接入节点)或装置(例如,UE、无线装置或任何其它类型的通信装置)或其组件,并且涉及在其中作为一个或多个虚拟组件实现至少一部分功能性(例如,经由在一个或多个网络中的一个或多个物理处理节点上执行的一个或多个应用、组件、功能、虚拟机或容器)的实现。

在一些实施例中,本文中描述的一些或所有功能可作为由在通过一个或多个硬件节点1630托管的一个或多个虚拟环境1600中实现的一个或多个虚拟机执行的虚拟组件实现。此外,在其中虚拟节点不是无线电接入节点或不需要无线电连接(例如,核心网络节点)的实施例中,则可将网络节点完全虚拟化。

功能可由操作以实现本文中公开的一些实施例的一些特征、功能和/或益处的一个或多个应用1620(其可备选地称为软件实例、虚拟器具、网络功能、虚拟节点、虚拟网络功能等)实现。在提供包括处理电路1660和存储器1690的硬件1630的虚拟化环境1600中运行应用1620。存储器1690包含可由处理电路1660执行的指令1695,由此应用1620操作以提供本文中公开的一个或多个特征、益处和/或功能。

虚拟化环境1600包括包含一个或多个处理器或处理电路1660的集合的通用或专用网络硬件装置1630,处理器或处理电路1660可以是商用现货(COTS)处理器、专用的专用集成电路(ASIC)或包括数字或模拟硬件组件或专用处理器的任何其它类型的处理电路。每个硬件装置可包括存储器1690-1,其可以是临时存储由处理电路1660执行的指令1695或软件的非持久存储器。每个硬件装置可包括一个或多个网络接口控制器(NIC)1670(又称为网络接口卡),其包括物理网络接口1680。每个硬件装置还可包括非暂时性、持久、机器可读存储介质1690-2,其中存储有可由处理电路1660执行的软件1695和/或指令。软件1695可包括任何类型的软件,包括用于实例化一个或多个虚拟化层1650(又称为管理程序)的软件、用于执行虚拟机1640的软件以及允许它执行关于本文中描述的一些实施例描述的功能、特征和/或益处的软件。

虚拟机1640包括虚拟处理、虚拟存储器、虚拟联网或接口和虚拟存储设备,并且可由对应的虚拟化层1650或管理程序运行。虚拟器具1620的实例的不同实施例可在一个或多个虚拟机1640上实现,并且可以用不同的方式实现。

在操作期间,处理电路1660执行用于实例化管理程序或虚拟化层1650的软件1695,软件1695有时可称为虚拟机监视器(VMM)。虚拟化层1650可表示看起来像是虚拟机1640的联网硬件的虚拟操作平台。

如图16所示,硬件1630可以是具有通用或特定组件的独立网络节点。硬件1630可包括天线16225,并且可经由虚拟化实现一些功能。备选地,硬件1630可以是更大的硬件集群的部分(例如,诸如在数据中心或客户驻地设备(CPE)中),其中许多硬件节点一起工作,并且经由尤其监督应用1620的生命周期管理的管理和编排(MANO)16100进行管理。

硬件的虚拟化在一些上下文中称为网络功能虚拟化(NFV)。NFV可用于将许多网络设备类型合并到行业标准高容量服务器硬件、物理交换机和物理存储设备(其可位于数据中心和客户驻地设备中)上。

在NFV的上下文中,虚拟机1640可以是就像正在物理、非虚拟化的机器上执行程序一样运行程序的物理机的软件实现。每个虚拟机1640和硬件1630的执行该虚拟机的那部分形成独立的虚拟网络元件(VNE),而不管它是专用于该虚拟机的硬件和/或由该虚拟机与其它虚拟机1640共享的硬件。

仍然在NFV的上下文中,虚拟网络功能(VNF)负责处置在硬件联网基础设施1630之上的一个或多个虚拟机1640中运行的特定网络功能,并且对应于图16中的应用1620。

在一些实施例中,一个或多个无线电单元16200可耦合到一个或多个天线16225,每个无线电单元16200包括一个或多个传送器16220和一个或多个接收器16210。无线电单元16200可经由一个或多个合适的网络接口直接与硬件节点1630通信,并且可以与虚拟组件组合使用以提供具有无线电能力的虚拟节点,诸如无线电接入节点或基站。

在一些实施例中,一些信令可以通过使用控制系统16230来实现,控制系统16230可备选地用于硬件节点1630和无线电单元16200之间的通信。

参考图17,根据实施例,通信系统包括诸如3GPP-型蜂窝网络的电信网络1710,它包括诸如无线电接入网络的接入网络1711和核心网络1714。接入网络1711包括多个基站1712a、1712b、1712c,诸如NB、eNB、gNB或其它类型的无线接入点,每个基站定义对应的覆盖区域1713a、1713b、1713c。每个基站1712a、1712b、1712c可通过有线或无线连接1715连接到核心网络1714。位于覆盖区域1713c中的第一UE 1791可配置成无线地连接到对应基站1712c或通过对应基站1712c寻呼。覆盖区域1713a中的第二UE 1792可无线地连接到对应基站1712a。尽管在该示例中示出多个UE 1791、1792,但是公开的实施例同样适用于唯一的UE位于覆盖区域中或唯一的UE连接到的情形。

电信网络1710本身连接到主机计算机1730,主机计算机1730可在独立服务器、云实现的服务器、分布式服务器的硬件和/或软件中体现,或作为服务器机群中的处理资源体现。主机计算机1730可在服务供应商拥有或控制之下,或者可由服务供应商或代表服务供应商操作。电信网络1710和主机计算机1730之间的连接1721和1722可从核心网络1714直接扩展到主机计算机1730,或者可途经可选的中间网络1720。中间网络1720可以是公共、私有或托管网络之一或其中多于一个的组合;中间网络1720(如果有的话)可以是骨干网络或互联网;特别地,中间网络1720可包括两个或更多个子网络(未示出)。

图17的通信系统作为整体使能连接的UE 1791、1792和主机计算机1730之间的连接性。可将该连接性描述为过顶(OTT)连接1750。主机计算机1730和连接的UE 1791、1792配置成使用接入网络1711、核心网络1714、任何中间网络1720和可能的另外的基础设施(未示出)作为中介经由OTT连接1750来传递数据和/或信令。在OTT连接1750经过的参与通信装置不知道上行链路和下行链路通信的路由的意义来说,OTT连接1750可以是透明的。例如,可没有或者不需要告知基站1712关于将源自主机计算机1730的数据转发(例如,移交)到连接的UE 1791的传入下行链路通信的过去路由。类似地,基站1712不需要知道从UE 1791发起到主机计算机1730的传出上行链路通信的未来路由。

根据实施例,现在将参考图18描述在前述段落中讨论的UE、基站和主机计算机的示例实现。在通信系统1800中,主机计算机1810包括硬件1815,硬件1815包括配置成与通信系统1800的不同通信装置的接口设立和维持有线或无线连接的通信接口1816。主机计算机1810进一步包括可具有存储和/或处理能力的处理电路1818。特别地,处理电路1818可包括适于执行指令的一个或多个可编程处理器、专用集成电路、现场可编程门阵列或这些可编程处理器、专用集成电路、现场可编程门阵列的组合(未示出)。主机计算机1810进一步包括软件1811,软件1811存储在主机计算机1810中或可由主机计算机1810访问,并且可由处理电路1818执行。软件1811包括主机应用1812。主机应用1812可操作以向远程用户(诸如经由在UE 1830和主机计算机1810处终止的OTT连接1850连接的UE 1830)提供服务。在向远程用户提供服务中,主机应用1812可提供使用OTT连接1850传送的用户数据。

通信系统1800还可包括设置在电信系统中的基站1820,并且基站1820包括硬件1825,以使得它能够与主机计算机1810和UE 1830通信。硬件1825可包括用于与通信系统1800的不同通信装置的接口设立和维持有线或无线连接的通信接口1826以及用于与位于由基站1820服务的覆盖区域(在图18中未示出)中的UE 1830设立和维持至少无线连接1870的无线电接口1827。通信接口1826可配置成有助于连接1860到主机计算机1810。连接1860可以是直接的,或者它可通过电信系统的核心网络(在图18中没有示出)和/或通过电信系统外部的一个或多个中间网络。在示出的实施例中,基站1820的硬件1825还可包括处理电路1828,处理电路1828可包括适于执行指令的一个或多个可编程处理器、专用集成电路、现场可编程门阵列或这些可编程处理器、专用集成电路、现场可编程门阵列的组合(未示出)。基站1820进一步具有存储在内部或可经由外部连接访问的软件1821。

通信系统1800还可包括已经提到过的UE 1830。它的硬件1835可包括配置成与服务UE 1830当前所在的覆盖区域的基站设立和维持无线连接1870的无线电接口1837。UE1830的硬件1835还可包括处理电路1838,处理电路1838可包括适于执行指令的一个或多个可编程处理器、专用集成电路、现场可编程门阵列或这些可编程处理器、专用集成电路、现场可编程门阵列的组合(未示出)。UE 1830进一步包括存储在UE 1830中或可由UE 1830访问并且可由处理电路1838执行的软件1831。软件1831包括客户端应用1832。客户端应用1832可操作以利用主机计算机1810的支持经由UE 1830向人类或非人类用户提供服务。在主机计算机1810中,执行的主机应用1812可经由在UE 1830和主机计算机1810处终止的OTT连接1850与执行客户端应用1832通信。在向用户提供服务中,客户端应用1832可从主机应用1812接收请求数据,并且响应于请求数据而提供用户数据。OTT连接1850可传输请求数据和用户数据两者。客户端应用1832可以与用户交互,以便生成它提供的用户数据。

注意,图18中示出的主机计算机1810、基站1820和UE 1830可分别与图17的主机计算机1730、基站1712a、1712b、1712c之一以及UE 1791、1792之一相似或相同。也就是说,这些实体的内部工作可如图18所示,并且独立地,周围的网络拓扑可以是图17的网络拓扑。

在图18中,已经抽象地绘制了OTT连接1850以便说明主机计算机1810和UE 1830之间经由基站1820的通信,而没有明确提到任何中间装置和经由这些装置的准确的消息路由。网络基础设施可确定路由,它可配置成对UE 1830或对操作主机计算机1810的服务供应商或两者隐藏路由。当OTT连接1850活动时,网络基础设施可进一步做出决定,通过所述决定它动态地改变路由(例如,在负载平衡考虑或重新配置网络的基础上)。

UE 1830和基站1820之间的无线连接1870依照本公开通篇中描述的实施例的教导。各种实施例中的一个或多个实施例可改善使用OTT连接1850提供给UE 1830的OTT服务的性能,其中无线连接1870形成最后一段。更准确地说,本文中公开的示例性实施例可改善网络监测与用户设备(UE)和另一实体(诸如位于5G网络外部的OTT数据应用或服务)之间的数据会话相关联的数据流(包括它们的对应的无线电承载)的端到端服务质量(QoS)的灵活性。这些和其它优点可有助于5G/NR解决方案的更及时的设计、实现和部署。此外,此类实施例可有助于数据会话QoS的灵活且及时控制,这可导致5G/NR设想并且对于OTT服务的成长重要的容量、吞吐量、时延等的改善。

可出于监测数据速率、时延和一个或多个实施例改善的其它网络操作方面的目的而提供测量过程。响应于测量结果的变化,可以进一步有可选的网络功能性以用于重新配置主机计算机1810和UE 1830之间的OTT连接1850。测量过程和/或用于重新配置OTT连接1850的网络功能性可以用主机计算机1810的软件1811和硬件1815、或UE 1830的软件1831和硬件1835、或两者实现。在实施例中,可在OTT连接1850经过的通信装置中或与所述通信装置关联地部署传感器(未示出);传感器可通过供给上文举例的监测量的值或供给其它物理量的值(根据其,软件1811、1831可计算或估计监测量)而参与测量过程。OTT连接1850的重新配置可包括消息格式、重新传输设置、优先路由等;重新配置不需要影响基站1820,并且它对于基站1820可以是未知的或觉察不到的。此类过程和功能性在本领域中已知且已实践。在某些实施例中,测量可涉及有助于主机计算机1810测量吞吐量、传播时间、时延等的专有UE信令。测量可以实现是因为,软件1811和1831在它监测传播时间、错误等时使得使用OTT连接1850传送消息,特别是空的或‘假的’消息。

图19是示出根据一个实施例在通信系统中实现的示例性方法和/或过程的流程图。通信系统包括主机计算机、基站和UE,在一些示例性实施例中,它们可以是参考图17和图18描述的那些主机计算机、基站和UE。为了简化本公开,本节中将只包含对图19的附图参考。在步骤1910中,主机计算机提供用户数据。在步骤1910的子步骤1911(它可以是可选的)中,主机计算机通过执行主机应用来提供用户数据。在步骤1920中,主机计算机发起将用户数据携带到UE的传输。在步骤1930(它可以是可选的)中,根据本公开通篇中描述的实施例的教导,基站向UE传送在主机计算机发起的传输中携带了的用户数据。在步骤1940(它可以是可选的)中,UE执行与由主机计算机执行的主机应用相关联的客户端应用。

图20是示出根据一个实施例在通信系统中实现的示例性方法和/或过程的流程图。通信系统包括主机计算机、基站和UE,它们可以是参考图17和图18描述的那些主机计算机、基站和UE。为了简化本公开,本节中将只包含对图20的附图参考。在该方法的步骤2010中,主机计算机提供用户数据。在可选的子步骤(未示出)中,主机计算机通过执行主机应用来提供用户数据。在步骤2020中,主机计算机发起将用户数据携带到UE的传输。根据本公开通篇中描述的实施例的教导,传输可经过基站。在步骤2030(它可以是可选的)中,UE接收在传输中携带的用户数据。

图21是示出根据一个实施例在通信系统中实现的示例性方法和/或过程的流程图。通信系统包括主机计算机、基站和UE,它们可以是参考图17和图18描述的那些主机计算机、基站和UE。为了简化本公开,本节中将只包含对图21的附图参考。在步骤2110(它可以是可选的)中,UE接收由主机计算机提供的输入数据。另外地或备选地,在步骤2120中,UE提供用户数据。在步骤2120的子步骤2121(它可以是可选的)中,UE通过执行客户端应用来提供用户数据。在步骤2110的子步骤2111(它可以是可选的)中,UE执行客户端应用,这在对由主机计算机提供的接收的输入数据的反应中提供用户数据。在提供用户数据中,执行的客户端应用可进一步考虑从用户接收的用户输入。不管以何种特定方式提供了用户数据,在子步骤2130(它可以是可选的)中,UE发起用户数据到主机计算机的传输。在该方法的步骤2140中,根据本公开通篇中描述的实施例的教导,主机计算机接收从UE传送的用户数据。

图22是示出根据一个实施例在通信系统中实现的示例性方法和/或过程的流程图。通信系统包括主机计算机、基站和UE,它们可以是参考图17和图18描述的那些主机计算机、基站和UE。为了简化本公开,本节中将只包含对图22的附图参考。在步骤2210(它可以是可选的)中,根据本公开通篇中描述的实施例的教导,基站从UE接收用户数据。在步骤2220(它可以是可选的)中,基站发起接收的用户数据到主机计算机的传输。在步骤2230(它可以是可选的)中,主机计算机接收在由基站发起的传输中所携带的用户数据。

如本文中所描述,装置和/或设备可以由半导体芯片、芯片组或包含此类芯片或芯片组的(硬件)模块表示;然而,这不排除将装置或设备的功能性作为软件模块(诸如包括用于在处理器上执行或在处理器上运行的可执行软件代码部分的计算机程序或计算机程序产品)实现而不是作为硬件实现的可能性。此外,装置或设备的功能性可通过硬件和软件的任何组合实现。装置或设备也可视为是多个装置和/或设备的总成,而不管它们在功能上是彼此协作还是彼此独立。此外,装置和设备可在整个系统中以分布式方式实现,只要保留装置或设备的功能性。此类和类似的原理视为本领域技术人员已知的。

本文中所使用的术语“网络节点”可以是无线电网络中的任何种类的网络节点,其可进一步包括以下中的任何一个:基站(BS)、无线电基站、基站收发信台(BTS)、基站控制器(BSC)、无线电网络控制器(RNC)、gNodeB(gNB)、演进Node B(eNB或eNodeB)、Node B、多标准无线电(MSR)无线电节点(诸如MSR BS)、多小区/多播协调实体(MCE)、中继节点、控制中继站的施主节点、无线电接入点(AP)、传输点、传输节点、远程无线电单元(RRU)远程无线电头端(RRH)、核心网络节点(例如,移动管理实体(MME)、自组织网络(SON)节点、协调节点、定位节点、MDT节点等)、外部节点(例如,第三方节点、位于当前网络外部的节点)、分布式天线系统(DAS)中的节点、频谱接入系统(SAS)节点、元件管理系统(EMS)等。网络节点还可包括测试设备。

如本文中所使用,“无线电接入节点”(或“无线电网络节点”)可以是无线电接入网络(RAN)中操作以无线地传送和/或接收信号的任何节点。无线电接入节点的一些示例包括但不限于基站(例如,3GPP第五代(5G)新空口(NR)网络中的NR基站(gNB)或3GPP LTE网络中的eNB)、高功率或宏基站、低功率基站(例如,微基站、微微基站、归属eNB等)、中继节点、接入点(AP)、无线电AP、远程无线电单元(RRU)、远程无线电头端(RRH)、多标准BS(例如,MSRBS)、多小区/多播协调实体(MCE)、基站收发信台(BTS)、基站控制器(BSC)、网络控制器、NodeB(NB)等。此类术语也可用于指节点的组件,诸如gNB-CU和/或gNB-DU。

如本文中所使用,术语“无线电节点”可以指无线装置(WD)或无线电网络节点。

如本文中所使用,“核心网络节点”可以是核心网络中的任何类型的节点。核心网络节点的一些示例包括例如移动性管理实体(MME)、分组数据网络网关(P-GW)、服务能力开放功能(SCEF)、接入和移动性管理功能(AMF)、用户平面功能(UPF)、归属订户服务器(HSS)等。

如本文中所使用,“网络节点”是作为诸如蜂窝通信网络/系统之类的无线通信系统的无线电接入网络的部分(例如,“无线电网络节点”或“无线电接入节点”)或核心网络的部分(例如,“核心网络接点”)的任何节点。

在一些实施例中,非限制性术语“无线装置”(WD)或“用户设备”(UE)可互换使用。WD在本文中可以是能够通过无线电信号与网络节点或另一个WD通信的任何类型的无线装置,诸如无线装置(WD)。WD也可以是无线电通信装置、目标装置、装置对装置(D2D)WD、机器型WD或能够进行机器对机器通信(M2M)的WD、低成本和/或低复杂度WD、配备有WD的传感器、平板、移动终端、智能电话、膝上型嵌入式设备(LEE)、膝上型安装式设备(LME)、USB软件狗、客户驻地设备(CPE)、物联网(IoT)装置、窄带IoT(NB-IOT)装置、V2X UE等。

如本文中所使用,“信道”可以是逻辑信道、传输信道或物理信道。信道可包括和/或布置在一个或多个载波、特别是多个子载波上。承载和/或用于承载控制信令/控制信息的信道可视为是控制信道,特别是如果它是物理层信道和/或如果它携带控制平面信息的话。类似地,携带和/或用于携带数据信令/用户信息的信道可视为是数据信道(例如,PDSCH),特别是如果它是物理层信道和/或如果它携带用户平面信息的话。可对于特定的通信方向或对于两个互补的通信方向(例如,UL和DL、或两个方向上的副链路)定义信道,在后一种情况下,它可视为具有两个组成信道,每个方向一个信道。

此外,尽管本文中使用术语“小区”,但是应了解,可取代小区而使用波束(特别是关于5G NR),并且因此,本文中描述的概念同样适用于小区和波束两者。

注意,尽管在本公开中可使用来自诸如例如3GPP LTE和/或新空口(NR)的一个特定无线系统的术语,但是这不应视为将本公开的范围仅仅局限于上述系统。包括但不限于宽带码分多址(WCDMA)、全球微波接入互操作性(WiMax)、超移动宽带(UMB)和全球移动通信系统(GSM)的其它无线系统也可从利用本文描述的概念、原理和/或实施例中受益。

进一步注意,本文中描述为由无线装置或网络节点执行的功能可分布在多个无线装置和/或网络节点上。换句话说,设想,本文中描述的网络节点和无线装置的功能不限于由单个物理装置执行,并且实际上,可分布在若干个物理装置之中。

除非另外定义,否则本文中所使用的所有术语(包括技术和科学术语)具有与本公开所属领域的普通技术人员普遍理解的含义相同的含义。将进一步了解,本文中所使用的术语应解译为具有与它们在本说明书和相关领域的上下文中的含义一致的含义,并且将不以理想化或过度正式的含义来解译它们,除非本文中明确这样定义。

另外,在包括说明书、附图及其示例性实施例的本公开中所使用的某些术语在某些实例中可同义地使用,包括但不限于例如数据和信息。应了解,尽管这些词语和/或可能彼此同义的其它词语在本文中可同义地使用,但是可存在可不打算将此类词语同义地使用的实例。此外,就现有技术知识并未明确地以引用的方式并入到上述本文中来说,它明确地将其全文并入到本文中。引用的所有出版物均以引用的方式将它们全文并入到本文。

以上只是说明了本公开的原理。鉴于本文中的教导,对描述的实施例的各种修改和改变将对于本领域技术人员而言显而易见。因此,将明白,本领域技术人员将能够设想众多系统、布置和过程,尽管在本文中没有明确示出或描述,但是它们实施本公开的原理,并且因此可在本公开的精神和范围内。本领域普通技术人员应了解,各种示例性实施例可以彼此一起使用,并且可以彼此互换使用。

55页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于在分组数据汇聚协议(PDCP)处压缩和解压缩信息中心网络名称的方法和系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类