一种精密冲压高速切割链锯片用冷轧钢板及其制造方法

文档序号:920550 发布日期:2021-03-02 浏览:1次 >En<

阅读说明:本技术 一种精密冲压高速切割链锯片用冷轧钢板及其制造方法 (Cold-rolled steel plate for precision stamping high-speed cutting chain saw blade and manufacturing method thereof ) 是由 马植甄 于 2019-08-26 设计创作,主要内容包括:本发明公开了一种精密冲压高速切割链锯片用冷轧钢板及其制造方法,解决现有精密冲压高速切割链锯片用冷轧钢板的球化率低,热处理硬度低的技术问题。本发明提供的一种精密冲压高速切割链锯片用冷轧钢板,其化学成分重量百分比:C:0.64-0.70%,Si≤0.3%,Mn:0.3-0.5%,Cr:0.2-0.4%,Ni:0.2-0.4%,Mo:0.05-0.25%,P≤0.015%,S≤0.005%,其余为Fe和不可避免的杂质。冷轧钢板的屈服强度R_(P0.2)为330-400MPa,抗拉强度R_m为480-550MPa,断后伸长率A_(50mm)为24-32%。本发明冷轧钢板主要用于精密冲压高速切割链锯片的基板。(The inventionDiscloses a cold-rolled steel plate for a precision stamping high-speed cutting chain saw blade and a manufacturing method thereof, which solve the technical problems of low spheroidization rate and low heat treatment hardness of the existing cold-rolled steel plate for the precision stamping high-speed cutting chain saw blade. The invention provides a cold-rolled steel plate for a precise stamping high-speed cutting chain saw blade, which comprises the following chemical components in percentage by weight: c: 0.64-0.70%, Si is less than or equal to 0.3%, Mn: 0.3-0.5%, Cr: 0.2-0.4%, Ni: 0.2-0.4%, Mo: 0.05-0.25 percent, less than or equal to 0.015 percent of P, less than or equal to 0.005 percent of S, and the balance of Fe and inevitable impurities. Yield strength R of Cold rolled Steel sheet P0.2 330- m 480-550MPa, elongation after fracture A 50mm Is 24-32%. The cold-rolled steel sheet is mainly used for precisely stamping the substrate of the high-speed cutting chain saw blade.)

一种精密冲压高速切割链锯片用冷轧钢板及其制造方法

技术领域

本发明涉及一种用于精密冲压加工的冷轧钢板,特别涉及一种精密冲压高速切割链锯片用冷轧钢板及其制造方法,属于铁基合金技术领域。

背景技术

链锯片因具有优越的切割性能和耐磨性能,被广泛应用于伐木和木材加工。链锯片用钢一般采用中高碳优质钢,材料加工成型后,通过热处理获得较高的强度、硬度和耐磨性,保证对伐木和木材进行高速切削加工。

通常的链锯锯片基体是50钢、65Mn等中碳钢材料,但淬硬性较差,导致锯片热处理后硬度较低;淬透性不足,致使零件淬火后硬度低且不均匀,板坯连铸、热轧困难,板坯缺陷敏感性高,碳及合金元素偏析大,易产生裂纹和分层,轧后钢卷强度偏高,不便于用户冷加工和材料热处理。

申请公布号为CN105568170A的中国专利申请文件公开了一种锯片用优质带钢及其生产工艺,其化学成份:C:0.50-0.55%;Si:0.20-0.30%;Mn:0.50-0.65%;P:≤0.30%;S:≤0.30%;Cr:≤0.20%;Ni:≤0.20%;Cu:≤0.20%,余量为铁和不可避免的杂质元素。该专利采用的是方坯连铸生产热轧窄带的传统工艺,钢卷的成材率低、组织均匀性较差;同时钢中只含有C、Si、Mn等常规合金元素,热处理后链锯硬度、耐磨性等达不到使用要求。

申请公布号为CN105018835A的中国专利申请文件公开了一种精冲性能优良的中高碳带钢及生产制造方法,其化学成份重量百分比为:C:0.50-0.65%,Si:0.50-1.60%,Mn:0.50-1.70%,Ca:0.0030-0.0070%,B:0.0008-0.0050%,Al:0.015-0.030%,P:≤0.015%,S:≤0.008%;其余为Fe和不可避免的杂质。该专利利用Si元素提高碳原子活度,但是存在Si元素添加量较多会提高材料硬度,恶化冲裁性能;同时较高的硅含量在钢带热轧过程产生大量的氧化铁皮,降低钢带表面质量。

发明内容

本发明目的是提供一种精密冲压高速切割链锯片用冷轧钢板及其制造方法,解决现有精密冲压高速切割链锯片用冷轧钢板的球化率低,热处理硬度低的技术问题。

本发明通过采用较高的碳含量成分设计,进一步控制P、S有害元素,并通过添加少量添加微量的Cr、Ni、Mo合金元素,满足零件热处理性能要求;同时优化热轧过程温度控制,采用冷压延和球化退火工艺,改善珠光体球化效果,显著降低材料强度和硬度、提高延伸率,得到满足用于精冲加工的链锯片用钢带。

本发明采用的技术方案是,一种精密冲压高速切割链锯片用冷轧钢板,其化学成分重量百分比:C:0.64-0.70%,Si≤0.3%,Mn:0.3-0.5%,Cr:0.2-0.4%,Ni:0.2-0.4%,Mo:0.05-0.25%,P≤0.015%,S≤0.005%,其余为Fe和不可避免的杂质。

本发明冷轧钢板的金相组织为块状铁素体+粒状珠光体,铁素体晶粒度为I 7.0-9.0级,球化率为90-95%,1.0-2.2mm厚冷轧钢板的屈服强度RP0.2为330-400MPa,抗拉强度Rm为480-550MPa,屈强比为0.64-0.72,断后伸长率A50mm为24-32%,维氏硬度HV10为150-170。

采用本发明冷轧钢板为基板制造的精密冲压高速切割链锯片主要用于伐木和木材加工。

本发明中精密冲压高速切割链锯片用冷轧钢板的化学成分限定在上述范围内的理由如下:

C:碳是珠光体形成的主要合金元素,同时影响材料热轧、冷轧、退火以及零件淬火后的硬度。C含量过低,钢种珠光体含量偏少,不能满足零件最终使用要求;C含量过高则达到共析钢,硬度过高,不利于冲压成型。本发明中碳的添加范围是0.64-0.70%。

Si:硅作为固溶强化元素,固溶在钢带基体中有一定的强化效果,同时作为冶炼时的一种脱氧剂,对脱氧、脱硫发挥作用。但大量含有时会使铁素体相硬化,加工性能明显降低。并且Si在热轧过程促进钢卷表面锈红氧化铁皮缺陷产生,影响成品外观;所以本发明中通过降低Si含量来降低材料强度,限制Si在0.3%以下。

Mn:锰是良好的脱氧剂和脱硫剂。钢中含有一定量的锰,能消除或减弱由于硫所引起的钢热脆性,从而改善钢的热加工性能。但含量较多时,固溶强化作用明显,冲裁加工性能急剧下降。因此本发明特别通过降低Mn含量来降低材料强度,提高韧性和精冲性能。本发明中Mn限定在0.3-0.5%之间。

P:磷为杂质元素,偏析于晶界使加工性能下降,希望尽可能减少其含量,提高成型性能;但考虑到工艺设备控制能力和脱磷成本,本发明限定P≤0.015%。

S:硫为杂质元素,在钢中形成MnS等夹杂物,影响精冲性能。希望尽可能减少其含量;考虑到实际控制能力和脱硫成本,本发明限定S≤0.005%。

Cr:铬能增加钢的淬透性,是耐蚀、耐氧化主要合金元素。本发明中Cr添加范围0.2~0.4%之间,是提高珠光体球化的主要合金元素。本发明发现添加Cr元素后可细化热轧板的珠光体组织,从而加速片状珠光体的熔断和C原子的扩散速度,提高钢带球化速度。

Ni:镍是钢中的奥氏体形成元素,稳定钢中的奥氏体,降低晶界碳化物析出倾向,显著减少晶间碳化物数量,降低临界转变温度,降低各元素的扩散速率,提高淬透性。镍也可以细化珠光体,提高材料韧性,提高抗疲劳性能。但Ni属于贵重合金,价格很高,考虑到成本因素,本发明中Cr添加范围限定在0.2~0.4%之间。

Mo:钼在钢中具有一定的固溶度,可以与钢中的C、N等元素形成化合物。在淬火冷却过程中,碳化物析出使得硬度和强度升高,提高钢的硬度和耐磨性,同时提高材料的淬透性和淬硬性。钼的添加,使钢可以在较高的温度回火保持高硬度,提高钢热处理时回火的稳定性。为了达到这样的效果,钢中钼含量需在0.05%以上;当钢中钼含量超过0.30%时,会导致热轧时钢的硬度急剧上升,不利于后续加工。本发明限定Mo含量为0.05%~0.25%。

一种精密冲压高速切割链锯片用冷轧钢板的制造方法,该方法包括:

钢水经钢包精炼、真空脱气处理后进行连续浇注得到连铸板坯,其中所述钢水成分的重量百分比为:C:0.64-0.70%,Si≤0.3%,Mn:0.3-0.5%,Cr:0.2-0.4%,Ni:0.2-0.4%,Mo:0.05-0.25%,P≤0.015%,S≤0.005%,其余为Fe和不可避免的杂质;

连铸板坯于1180-1220℃加热180-240min后进行轧制,所述热轧为两段式轧制工艺,粗轧为5道次连轧,在奥氏体再结晶温度以上轧制;精轧为7道次连轧,精轧结束温度为850-890℃,精轧后钢板厚度为2.0—4.0mm,层流冷却采用前段式冷却控制,冷却速度为25-40℃/S,卷取温度为580-620℃卷取得到热轧钢卷;

热轧钢卷重新开卷后经酸洗、冷轧、罩式退火炉退火,卷取得到厚度为1.0-2.2mm成品冷轧钢板,所述冷轧压下率为40-50%,经过冷轧后的轧硬态带钢经过罩式退火炉退火,带钢在罩式退火炉均热段的温度为705-725℃,带钢在均热段的退火时间为16-20h。

热轧工艺以及其中热轧钢板组织控制是实现本发明的技术关键点之一。通过计算,本发明成分体系A3为740.6℃,A1为735.7℃。本发明所采取的热轧工艺均是基于本发明成分体系和计算的相变点。

本发明采取的生产工艺的理由如下:

1、连铸板坯加热温度和加热时间的设定

连铸板坯加热温度和时间的设定在于保证连铸坯中C、Si、Mn、Cr、Ni、Mo等合金元素充分扩散、固溶,粗大的碳化物颗粒溶解,在钢中均匀分布。温度过低和加热时间过短,都不能达到上述目的。采用中等的板坯加热温度,目标温度1200℃,若温度过高,加热时间过长,由于钢中碳含量较高,板坯表面氧化脱碳严重,不利于钢带最终性能和表面质量,同时也消耗能源。因此,本发明设定连铸板坯加热温度1180℃-1220℃,加热时间180-240min。

2、精轧结束温度的设定

本发明的精轧温度设定有两方面的作用,一方面通过材料在奥氏体未再结晶区轧制,得到内部有变形带的扁平状奥氏体晶粒,在随后的层流冷却过程中转变成细小的铁素体晶粒,起到细化晶粒,减轻带状偏析的作用;另一方面,因为材料强度较高,终轧温度过低,会导致轧制负荷过大,影响轧制稳定性。因此,本发明设定精轧结束温度为850-890℃。

3、精轧后层流冷却方式和冷却速度的设定

本发明精轧后层流冷却采用前段冷却工艺,能够促进精轧后材料组织中奥氏体快速转变为铁素体,且晶粒细化,组织均匀,冷却速度为25-40℃/S。

4、热轧卷取温度的设定

热轧卷取温度主要影响材料的组织、性能及后续的球化退火效果。采取较低的卷取温度,能够使晶粒细化,有利于下游的冷压延加工和球化退火。若热轧卷取温度过高,则会使珠光体过分粗大,材料脆性增加,组织均匀性差。因此,本发明设定热轧卷取温度为580-620℃。

5、冷轧压下率的设定

冷轧变形量是提高钢带尺寸精度的重要手段,满足连续精冲加工要求。同时冷轧变形量的增加,也能够促进片状珠光体断裂,使材料内部位错密度大量增加,为珠光体球化转变提供了更多能量。但过高的变形量会带来冷轧轧机负荷过大,冷轧轧制道次增加,冷轧轧制成本大量增加。综合考虑,本发明优选冷轧压下率为40-50%。

6、退火温度和退火时间的设定

本发明采用罩式退火炉退火,考虑到前工序冷轧变形累积效果,促进片状珠光体球化,一般在A1点温度以下进行退火。过高的退火温度则会造成铁素体晶粒粗大,为提高球化退火效果,本发明设定钢带在罩式退火炉均热段的退火温度为705-725℃。

退火时均热段保温时间也很关键;保温时间过短,则层片状珠光体链未能完全熔断、断开;不能产生细小球状颗粒,形成弥散分布;若保温时间过长,则粒状珠光体又会重新长大、团聚在一起,形成层片状偏析,导致材料韧性下降,不利于后续精冲加工。为提高球化退火效果,本发明钢带在均热段的时间为16-20h。

本发明方法生产的冷轧钢板的金相组织为块状铁素体+粒状珠光体,铁素体晶粒度为I7.0-9.0级,球化率为90-95%,其1.0-2.2mm厚冷轧钢板的屈服强度RP0.2为330-400MPa,抗拉强度Rm为480-550MPa,屈强比为0.64-0.72,断后伸长率A50mm为24-32%,维氏硬度HV10为150-170。

本发明相比现有技术具有如下积极效果:1、通过采用较高的碳含量成分设计,进一步控制P、S有害元素,并通过添加少量添加微量的Cr、Ni、Mo合金元素,满足零件热处理性能要求;同时优化热轧过程温度控制,采用冷压延和球化退火工艺,改善珠光体球化效果,显著降低材料强度和硬度、提高延伸率,得到满足用于精冲加工的链锯片用钢带。2、本发明通过控制热轧卷取温度及轧后冷却工艺,发挥微量Cr、Mo等合金元素作用;得到晶粒适度细化的热轧钢板,其金相组织为:细片状珠光体+少量铁素体;材料热轧态强度、硬度适中,有利于后续的冷轧退火。3、本发明通过采用合理的退火工艺,使退火钢卷组织中片状珠光体充分球化、组织均匀分布。冷轧钢带强度大幅降低,韧性优良,性能均匀,满足精密冲压加工的要求。

附图说明

图1为本发明实施例3冷轧退火钢板的金相组织照片。

具体实施方式

下面结合实施例1-5,对本发明做进一步说明,如表1~4所示。

表1为本发明实施例钢的化学成分(按重量百分比计),余量为Fe及不可避免杂质。

表1本发明实施例钢的化学成分,单位:重量百分比。

元素 C Si Mn P S Cr Ni Mo
本发明 0.64-0.70 ≤0.3 0.3-0.5 ≤0.015 ≤0.005 0.2-0.4 0.2-0.4 0.05-0.25
实施例1 0.651 0.226 0.398 0.009 0.0007 0.274 0.246 0.101
实施例2 0.676 0.181 0.364 0.012 0.0012 0.322 0.229 0.126
实施例3 0.669 0.243 0.415 0.008 0.0027 0.309 0.271 0.144
实施例4 0.682 0.132 0.385 0.142 0.0021 0.266 0.239 0.203
实施例5 0.648 0.225 0.427 0.008 0.0028 0.335 0.311 0.118

通过转炉熔炼得到符合化学成分基本要求的钢水,钢水经LF钢包精炼炉深脱硫和合金成分微调后,RH炉进行真空循环脱气处理,RH纯脱气时间大于8分钟,最后连铸机浇注得到连铸板坯;板坯厚度为210-230mm,宽度为900-1300mm,长度为8500-11000mm。

炼钢生产的定尺板坯直接送至加热炉再加热,出炉除鳞后送至热连轧机组轧制。通过粗轧和精轧连轧机组控制轧制,经层流冷却后进行卷取,层流冷却采取前段冷却方式,冷却速度为25-40℃/S,产出厚度为2.0-4.0mm热轧钢卷。热轧工艺控制参数见表2。

表2本发明实施例热轧工艺控制参数

将上述热轧钢钢卷重新开卷后进行酸洗,按照宽度规格要求分条后,在可逆轧机上冷轧,冷轧压下率为40-50%;冷轧后的轧硬态钢卷经过罩式炉退火得到厚度为1.0-2.2mm的成品冷轧钢带,退火工艺为:钢卷在罩式炉退火(均热段)温度为705-725℃,退火(均热段)时间为16-20h。冷轧、退火工艺控制参数见表3。

表3本发明实施例冷轧、退火工艺控制参数

冷轧、退火参数 冷轧压下率/% 退火温度/℃ 退火时间/h 冷轧钢板厚度/mm
本发明 40-50 705-725 16-20 1.0-2.2
实施例1 43.3 715 18.5 1.7
实施例2 45.5 710 17.0 1.2
实施例3 50.0 725 19.0 2.0
实施例4 44.4 710 18.0 1.5
实施例5 48.5 720 16.5 1.8

利用上述方法得到的冷轧钢板,参见图1,冷轧钢板的金相组织为块状铁素体+粒状珠光体,铁素体晶粒度为I 7.0-9.0级,球化率为90-95%,冷轧钢板的屈服强度RP0.2为330-400MPa,抗拉强度Rm为480-550MPa,屈强比为0.64-0.72,断后伸长率A50mm为24-32%,维氏硬度HV10为150-170。

将本发明得到的冷轧钢带按照金属材料拉伸试验方法(GB/T 228.1)、钢的显微组织评定方法(GB/T 13299)、金属材料维氏硬度试验方法(GB/T4340.1-2009)进行拉伸、显微组织、硬度检测,冷轧钢带的力学性能见表4。

表4本发明实施例冷轧钢板的性能指标

本发明得到的冷轧钢带具有较高的碳和一定的合金含量,较低的强度、较高的伸长率和塑性,碳化物呈细小颗粒状、分布均匀;满足精冲和热处理要求。

除上述实施例外,本发明还可以有其他实施方式;凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围内。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于CSP流程的中温卷取型热轧DP600生产方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!