一种消除vienna整流器电流过零点畸变的方法

文档序号:926522 发布日期:2021-03-02 浏览:5次 >En<

阅读说明:本技术 一种消除vienna整流器电流过零点畸变的方法 (Method for eliminating VIENNA rectifier current zero crossing distortion ) 是由 孙鑫祥 于 2020-12-10 设计创作,主要内容包括:本发明涉及一种消除VIENNA整流器电流过零点畸变的方法,包括以下步骤:采集电网电压信息;通过整流器进行能量分析,根据整流器直流侧提供给负载的有功功率计算d轴网侧电流分量;分析基于输入未知的q轴网侧电流分量时电网电压向量、网侧输入电流向量和整流器输出电压向量之间的几何关系;根据电流过零点的临界条件和步骤S3中获取的几何关系来计算注入特定的q轴网侧电流分量;根据整流器输出电压向量确定开关管的开关序列。该方法使得VIENNA整流器在电流过零点运行时,可以完全消除输出电压畸变,与整流器输出电压定向电流消除电流过零点畸变方法相比,提高了功率因数。(The invention relates to a method for eliminating VIENNA rectifier current zero crossing distortion, which comprises the following steps: collecting power grid voltage information; performing energy analysis through a rectifier, and calculating a current component of a d-axis network side according to active power provided to a load by a direct current side of the rectifier; analyzing a geometrical relationship among a grid voltage vector, a grid side input current vector and a rectifier output voltage vector when unknown q-axis grid side current components are input; calculating a current component injected into a specific q-axis network side according to the critical condition of the current zero crossing point and the geometric relation obtained in the step S3; and determining the switching sequence of the switching tube according to the vector of the output voltage of the rectifier. The method can completely eliminate the distortion of the output voltage when the VIENNA rectifier operates at the zero crossing point of the current, and compared with the method for eliminating the distortion of the zero crossing point of the current by the directional current of the output voltage of the rectifier, the power factor is improved.)

一种消除VIENNA整流器电流过零点畸变的方法

技术领域

本发明属于电力电子技术应用领域,具体涉及一种消除VIENNA整流器电流过零点畸变的方法。

背景技术

近年来,三电平变流器受到了广泛地关注。相比于传统的两电平变流器,三电平变流器具有较低的总谐波畸变率、较低的器件电压应力和较高的能量转换效率的优点。在众多三电平变流器中,VIENNA整流器凭借其功率因数高,控制简单,被广泛应用于风力发电机、电动汽车等诸多中、高压大功率场合。

VIENNA整流器电流过零点畸变问题主要是传统控制方法工作于网侧单位功率因数,即电网电压与网侧输入电流同相位引起的。当VIENNA整流器在电流过零电点运行,会出现调制电压与相电流符号不一致,这是引起电流过零点畸变的根本原因。

为了消除VIENNA整流器电流过零点畸变问题,本质上的解决方法是使得网侧输入电流与整流器输出电压同相位。但是这种方法牺牲了功率因数。而高功率因数是VIENNA整流器的优良性能之一。因此,需要一种既能消除电流过零点畸变又能提高功率因数的VIENNA整流器控制方法。

发明内容

本发明的目的就在于为了解决上述问题,提供了一种消除VIENNA整流器电流过零点畸变的方法,该方法通过注入特定的q轴网侧输入电流分量,解决电流过零点畸变问题。同时解决了因消除电流过零点畸变引起的功率因数降低问题。

本发明通过以下技术方案来实现上述目的:

一种消除VIENNA整流器电流过零点畸变的方法,包括以下步骤:

步骤S1.采集电网电压信息q;

步骤S2.根据电网电压信息确定整流器直流侧提供给负载的有功功率,基于整流器直流侧提供给负载的有功功率确定d轴网侧电流分量Id

步骤S3.分析基于输入未知的q轴网侧电流分量Iq时电网电压向量E、网侧输入电流向量I和整流器输出电压向量U之间的几何关系;

步骤S4.根据电流过零点的临界条件和步骤S3中获取的几何关系来计算注入特定的q轴网侧电流分量Iq和整流器输出电压向量U;

步骤S5.根据步骤S4中获得的整流器输出电压向量U确定开关管的开关序列。

作为本发明的进一步优化方案,所述步骤S2中d轴网侧电流分量Id的计算公式为:

Id=P/E (1)

其中P为整流器直流侧提供给负载的有功功率,E是采集的电网电压。

作为本发明的进一步优化方案,所述步骤S3中网侧输入电流向量I滞后电网电压向量E并超前整流器输出电压向量U,网侧输入电流向量I滞后电网电压向量E的角度为电网侧的功率因数整流器输出电压向量U处于可调制区域和不可调制区域的边界线上。

作为本发明的进一步优化方案,所述步骤S4中特定的q轴网侧电流分量Iq的计算公式为:

其中Ud和Uq为整流器输出电压向量在dq坐标系下的分解向量,Id和Iq为网侧输入电流向量I在dq坐标系下的分解向量,电网电压向量E与d轴重合。

作为本发明的进一步优化方案,根据Ud和Uq确定开关序列。

本发明的有益效果在于:

1)本发明通过注入特定的q轴网侧输入电流分量,调整电网电压向量、网侧输入电流向量和整流器输出电压向量之间的关系,从而消除电流过零点畸变的问题;

2)本发明与采用整流器输出电压定向电流的方法相比,提高了电网侧的功率因数。

附图说明

图1是本发明消除VIENNA整流器电流过零点畸变的流程图;

图2是VIENNA整流器的拓扑结构;

图3是VIENNA整流器的空间矢量图;

图4是VIENNA整流器的可调制局部空间矢量图;

图5是VIENNA整流器的不可调制局部空间矢量图;

图6是dq轴下的向量图;

图7为Id的曲线图。

具体实施方式

下面结合附图对本申请作进一步详细描述,有必要在此指出的是,以下具体实施方式只用于对本申请进行进一步的说明,不能理解为对本申请保护范围的限制,该领域的技术人员可以根据上述申请内容对本申请作出一些非本质的改进和调整。

实施例1

本实施例提供了一种消除VIENNA整流器电流过零点畸变的控方法,如图1所示,包括以下步骤:

VIENNA整流器的拓扑结构如图2所示。为了便于分析,可以认为三相电流的值和方向在一个载波周期中几乎是恒定的。RL为负载;C1、C2为直流侧上下电容;S为开关管;D为不控二极管;Ls和Rs分别为三相交流侧输入电感的电感值和电阻值;ex(x=a,b,c)为三相交流电网相电压;ix为网侧输入电流;ux为整流器桥臂输出电压。

定义开关函数Sx(x=a,b,c)表示内管的状态。当内管导通时,Sx=1;当内管关断时,Sx=0。当Sx=1时,不论电流为正或为负,整流器x相输出均与O点相连,定义这种状态为0电平。在Sx=0时,当电流为正时,电流通过二极管Dx1与正母线相连,定义这种状态为1电平;当电流为负时,电流通过二极管Dx2与负母线相连,定义这种状态为-1电平,其具体关系如下表1所示。

表1

因为三相每种状态可以确定一个矢量,例如矢量[1,-1,-1]表示A相输出1电平,B和C相都输出-1电平。可以得到VIENNA整流器的空间矢量图如图3所示。考虑到上述约束条件,该图中的某些矢量的存在是有条件的。在实际工作时,整流器输出电压滞后网侧输入电流θ。以B相电流由负到正的过零点为例,此时VIENNA整流器的局部空间矢量图如图4所示,u和i分别代表整流器桥臂输出电压矢量和网侧输入电流矢量。

当B相电流由负到正刚完成过零时,有ia>0,ib>0且ic<0,以下约束条件必须被满足:A和B相不能输出-1电平,C相不能输出1电平,在图4中矢量[0,-1,-1]和[1,-1,-1]无法被输出。仅考虑调制度较高(m>0.5)且θ<π/6的情形,当u位于A2扇区内,u可以通过[1,1,0]、[1,0,0]、[1,0,-1]和[0,0,-1]电压矢量合成,所以是可调制的;当u位于A3扇区内,只存在[1,0,0]和[1,0,-1]电压矢量,不能合成u,所以是不可调制的。A2和A3扇区相同部分的线段就是可调制区域和不可调制区域的分界线。

步骤S1、采样电网电压信息;

步骤S2、在整流器能量分析下,通过整流器直流侧提供给负载的有功功率,确定d轴网侧电流分量;

d轴网侧输入电流分量Id具体为:

Id=P/E (1)

其中,P为整流器直流侧提供给负载的有功功率,E为采样的电网电压,这两者都是已知的。

步骤S3、在注入未知的q轴网侧电流分量的基础上,分析此时电网电压向量、网侧输入电流向量和整流器输出电压向量之间的关系;

注入未知的q轴网侧输入电流分量Iq需满足:

注入未知的q轴网侧输入电流分量Iq需使得电网电压向量E、网侧输入电流向量I和整流器输出电压向量U满足如下关系,如图6所示:

网侧输入电流向量I将滞后电网电压向量E,同时将超前整流器输出电压向量U。将网侧输入电流向量I滞后电网电压向量E的角度记为其物理意义是电网侧的功率因数。此时将q轴网侧输入电流分量的范围记作[Iq,min,0],其中Iq,min<0。

当Iq<Iq,min时,网侧输入电流向量I将滞后整流器输出电压向量U,VIENNA整流器在电流过零点处依然存在输出电压畸变问题;当Iq>0时,网侧输入电流向量I将超前电网电压向量E,并且加大了网侧电流和整流器输入电压之间的夹角θ,使电流过零点畸变的区域增大。

注入未知的q轴网侧输入电流分量Iq需使得整流器输出电压向量U始终处于可调制区域和不可调制区域的边界线上。

以A扇区为例,当B相电流等于零时,若注入无功电流Iq后,整流器输入电压位于A2扇区,则代表注入的无功电流Iq偏大,整流器没有运行于最大功率因数;若注入无功电流Iq后,整流器的输入电压位于A3扇区,则代表注入的无功电流Iq偏小,整流器在电流过零点处仍然存在输出电压畸变。

步骤S4、根据电流过零点畸变的临界条件和上述向量之间的几何关系,求解注入特定的q轴网侧电流分量;

基于图6分析,整流器输出电压向量U在dq坐标系下分解为Ud和Uq分量,网侧输入电流向量I在dq坐标系下分解为Id和Iq分量,电网电压向量E与d轴重合。在dq轴系下满足的矢量合成关系有:

其中,Ud、Uq和Iq为未知量;E和Id为已知量。

过C点作d轴的平行线,交过A点作q轴的平行线于B点,线段BC,AB分别平行,垂直于d轴。在三角形ABC中,易知δ角与功率因数的关系有:若整流器的输入电压位于A2与A3扇区的边界上,必然满足下式的几何关系:

同时还有:

根据式(2)、(3)和(4)可知,Ud、Uq、Iq为未知数,同时有四个方程,则可以求解出特定的q轴网侧输入电流分量。

式(5)给出了Id的表达式,但是用此方程求解的解析解比较困难,还可以采用查找法,根据Id的曲线图,确定未知量从而得到注入特定的q轴网侧输入电流分量Iq。在归一化的计算下,图7为Id的曲线图,其中只给出了在0-15°区间内,ωLsId的曲线图,根据式2求出的Ud和Uq可确定开关管的开关序列。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种变压整流器输入功率控制电路

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类