Detection of large blood vessels during parenchymal dissection using a smart knife

文档序号:957280 发布日期:2020-10-30 浏览:2次 中文

阅读说明:本技术 使用智能刀在实质解剖期间检测大血管 (Detection of large blood vessels during parenchymal dissection using a smart knife ) 是由 J·E·布拉迪 G·A·特里斯 于 2019-03-04 设计创作,主要内容包括:超声装置可包括由预定谐振频率限定的机电超声系统,并且包括联接到超声刀的超声换能器。将能量递送到装置的方法可包括经由联接到刀的换能器以第一功率水平向刀施加能量,测量换能器的复阻抗,接收复阻抗反馈数据点,将复阻抗反馈数据点与参考复阻抗特征图案进行比较,以及基于比较来确定刀正在接触血管。该方法还可包括停用施加到换能器的功率并切换到较低的功率水平。该方法还可包括生成刀正在接触血管的警告,诸如光或声音。超声外科器械可实现该方法。(The ultrasonic device may include an electromechanical ultrasound system defined by a predetermined resonant frequency and include an ultrasonic transducer coupled to an ultrasonic blade. A method of delivering energy to a device may include applying energy to a blade at a first power level via a transducer coupled to the blade, measuring a complex impedance of the transducer, receiving complex impedance feedback data points, comparing the complex impedance feedback data points to a reference complex impedance signature pattern, and determining that the blade is contacting a blood vessel based on the comparison. The method may further include disabling power to the transducer and switching to a lower power level. The method may also include generating a warning, such as a light or sound, that the knife is contacting the blood vessel. An ultrasonic surgical instrument can implement the method.)

1. A method of delivering energy to an ultrasound device, the ultrasound device comprising an electromechanical ultrasound system defined by a predetermined resonant frequency, the electromechanical ultrasound system further comprising an ultrasound transducer coupled to an ultrasonic blade, the method comprising:

applying, by a processor or control circuit, energy to the ultrasonic blade at a first power level P1 via the ultrasonic transducer coupled to the ultrasonic blade;

measuring, by the processor or the control circuit, a complex impedance of the ultrasound transducer;

receiving, by the processor or the control circuit, a complex impedance feedback data point;

comparing, by the processor or the control circuit, the complex impedance feedback data points to a reference complex impedance signature pattern; and

determining, by the processor or the control circuit, that the ultrasonic blade is contacting a blood vessel based on a result of the comparison.

2. The method of claim 1, further comprising:

disabling, by the processor or the control circuit, power applied to the ultrasound transducer; and

switching, by the processor or the control circuit, to a second power level P2 that is lower than the first power level P1.

3. The method of claim 2, further comprising generating, by the processor or the control circuit, an alert that the ultrasonic blade is contacting a blood vessel.

4. The method of claim 3, wherein generating, by the processor or the control circuit, an alert that the ultrasonic blade is contacting a blood vessel comprises: a warning light is emitted by the processor or the control circuit.

5. The method of claim 3, wherein generating, by the processor or the control circuit, an alert that the ultrasonic blade is contacting a blood vessel comprises: a warning sound is emitted by the processor or the control circuit.

6. The method of claim 1, wherein determining, by the processor or the control circuit, that the ultrasonic blade is contacting a blood vessel comprises:

measuring, by the processor or the control circuit, a complex impedance of the ultrasound transducer, wherein the complex impedance is defined as

Figure FDA0002672394000000011

Receiving, by the processor or the control circuit, a complex impedance measurement data point;

comparing, by the processor or the control circuit, the complex impedance measurement data points to data points in a reference complex impedance signature pattern;

classifying, by the processor or the control circuit, the complex impedance measurement data points based on a result of the comparative analysis; and

determining, by the processor or the control circuit, that the ultrasonic blade is contacting a blood vessel based on a result of the comparative analysis.

7. The method of claim 1, wherein determining, by the processor or the control circuit, that the ultrasonic blade is contacting a blood vessel comprises:

applying, by a drive circuit, a drive signal to the ultrasonic transducer, wherein the drive signal is a periodic signal defined by an amplitude and a frequency;

scanning, by the processor or the control circuit, the frequency of the drive signal from below resonance to above resonance of the electromechanical ultrasound system;

measuring and recording an impedance/admittance circular variable R by the processor or the control circuite、Ge、XeAnd Be

The measured impedance/admittance circular variable R is measured by the processor or the control circuite、Ge、XeAnd BeAnd a reference impedance/admittance circular variable R ref、Gref、XrefAnd BrefComparing; and is

Determining, by the processor or the control circuit, that the ultrasonic blade is contacting a blood vessel based on a result of the comparative analysis.

8. An ultrasonic surgical instrument comprising:

an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; and

a generator configured to be capable of supplying power to the ultrasound transducer, wherein the generator comprises a control circuit configured to be capable of:

applying energy to the ultrasonic blade at a first power level P1 via the ultrasonic transducer coupled to the ultrasonic blade;

measuring a complex impedance of the ultrasonic transducer;

receiving a complex impedance feedback data point;

comparing the complex impedance feedback data points to a reference complex impedance signature pattern; and is

Determining that the ultrasonic blade is contacting a blood vessel based on a result of the comparison.

9. The ultrasonic surgical instrument of claim 8, wherein the control circuit is further configured to:

disabling power applied to the ultrasonic transducer; and is

To a second power level P2 lower than the first power level P1.

10. The ultrasonic surgical instrument of claim 9 wherein said control circuit is further configured to generate a warning that said ultrasonic blade is contacting a blood vessel.

11. The ultrasonic surgical instrument of claim 10 wherein said warning comprises illumination by a warning light.

12. The ultrasonic surgical instrument of claim 10 wherein said warning comprises emitting a warning sound.

13. The ultrasonic surgical instrument of claim 8, wherein the control circuit is further configured to:

measuring a complex impedance of the ultrasound transducer, wherein the complex impedance is defined as

Receiving a complex impedance measurement data point;

comparing the complex impedance measurement data points to data points in a reference complex impedance signature pattern;

classifying the complex impedance measurement data points based on the results of the comparative analysis; and is

Determining that the ultrasonic blade is contacting a blood vessel based on a result of the comparative analysis.

14. The ultrasonic surgical instrument of claim 8, wherein the control circuit is further configured to:

causing a drive circuit to apply a drive signal to the ultrasonic transducer, wherein the drive signal is a periodic signal defined by an amplitude and a frequency;

Scanning the frequency of the drive signal from below resonance to above resonance of the electromechanical ultrasound system;

measuring and recording the impedance/admittance circular variable Re、Ge、XeAnd Be

Measuring the impedance/admittance circular variable Re、Ge、XeAnd BeAnd the reference impedance/admittance circular variable Rref、Gref、XrefAnd BrefComparing; and is

Determining that the ultrasonic blade is contacting a blood vessel based on a result of the comparative analysis.

15. A generator for an ultrasonic surgical instrument, the generator comprising:

a control circuit configured to be capable of:

applying energy to an ultrasonic blade at a first power level P1 via an ultrasonic transducer coupled to the ultrasonic blade;

measuring a complex impedance of the ultrasonic transducer;

receiving a complex impedance feedback data point;

comparing the complex impedance feedback data points to a reference complex impedance signature pattern; and is

Determining that the ultrasonic blade is contacting a blood vessel based on a result of the comparison.

16. The generator for an ultrasonic surgical instrument of claim 15, wherein the control circuit is further configured to:

disabling power applied to the ultrasonic transducer; and is

To a second power level P2 lower than the first power level P1.

17. The generator for an ultrasonic surgical instrument of claim 16, wherein the control circuit is further configured to generate an alert that the ultrasonic blade is contacting a blood vessel.

18. The generator for an ultrasonic surgical instrument of claim 17, wherein the warning comprises illumination emitted by a warning light.

19. The generator for an ultrasonic surgical instrument of claim 17, wherein the warning comprises emitting a warning sound.

20. The generator for an ultrasonic surgical instrument of claim 15, wherein the control circuit is further configured to:

measuring a complex impedance of the ultrasound transducer, wherein the complex impedance is defined as

Receiving a complex impedance measurement data point;

comparing the complex impedance measurement data points to data points in a reference complex impedance signature pattern;

classifying the complex impedance measurement data points based on the results of the comparative analysis; and is

Determining that the ultrasonic blade is contacting a blood vessel based on a result of the comparative analysis.

21. The generator for an ultrasonic surgical instrument of claim 15, wherein the control circuit is further configured to:

causing a drive circuit to apply a drive signal to the ultrasonic transducer, wherein the drive signal is a periodic signal defined by an amplitude and a frequency;

Scanning the frequency of the drive signal from below resonance to above resonance of the electromechanical ultrasound system;

measuring and recording the impedance/admittance circular variable Re、Ge、XeAnd Be

Measuring the impedance/admittance circular variable Re、Ge、XeAnd BeAnd the reference impedance/admittance circleVariable Rref、Gref、XrefAnd BrefComparing; and is

Determining that the ultrasonic blade is contacting a blood vessel based on a result of the comparative analysis.

Background

In a surgical environment, the smart energy device may be required in a smart energy architecture environment. Ultrasonic surgical devices, such as ultrasonic scalpels, are used in a variety of surgical applications due to their unique performance characteristics. Depending on the particular device configuration and operating parameters, the ultrasonic surgical device may provide transection of tissue and hemostasis by coagulation substantially simultaneously, thereby advantageously minimizing patient trauma. An ultrasonic surgical device may include a handpiece containing an ultrasonic transducer having a distally mounted end effector (e.g., a blade tip) to cut and seal tissue, and an instrument coupled to the ultrasonic transducer. In some cases, the instrument may be permanently attached to the handpiece. In other cases, the instrument may be detachable from the handpiece, as in the case of disposable instruments or interchangeable instruments. The end effector transmits ultrasonic energy to tissue in contact with the end effector to effect the cutting and sealing action. Ultrasonic surgical devices of this nature may be configured for open surgical use, laparoscopic or endoscopic surgical procedures, including robotic-assisted procedures.

Ultrasonic energy is used to cut and coagulate tissue using temperatures lower than those used in electrosurgery, and ultrasonic energy may be transmitted to the end effector by an ultrasonic generator in communication with the handpiece. With high frequency vibration (e.g., 55,500 cycles per second), the ultrasonic blade denatures proteins in the tissue to form a viscous coagulum. The pressure exerted by the knife surface on the tissue collapses the vessel and causes the clot to form a hemostatic seal. The surgeon may control the cutting speed and coagulation by the force applied to the tissue by the end effector, the time that the force is applied, and the selected deflection level of the end effector.

The ultrasonic transducer can be modeled as an equivalent circuit comprising a first branch with a static capacitance and a second "dynamic" branch with an inductance, a resistance and a capacitance connected in series, which define the electromechanical properties of the resonator. The known ultrasonic generator may comprise a tuning inductor for detuning the static capacitance at the resonance frequency, so that substantially all of the generator's drive signal current flows into the dynamic branch. Thus, by using a tuning inductor, the generator's drive signal current is representative of the dynamic branch current, and thus the generator is able to control its drive signal to maintain the resonant frequency of the ultrasound transducer. The tuning inductor may also transform the phase impedance profile of the ultrasonic transducer to improve the frequency locking capability of the generator. However, the tuning inductor must be matched to the particular static capacitance of the ultrasound transducer at the operating resonant frequency. In other words, different ultrasonic transducers with different static capacitances require different tuning inductors.

In addition, in some ultrasound generator architectures, the drive signal of the generator exhibits asymmetric harmonic distortion, which complicates impedance magnitude and phase measurements. For example, the accuracy of impedance phase measurements may be reduced due to harmonic distortion in the current and voltage signals.

Furthermore, electromagnetic interference in a noisy environment can reduce the generator's ability to maintain a lock on the resonant frequency of the ultrasonic transducer, thereby increasing the likelihood of invalid control algorithm inputs.

Electrosurgical devices for applying electrical energy to tissue to treat and/or destroy tissue are also finding increasingly widespread use in surgery. Electrosurgical devices include a handpiece and an instrument having a distally mounted end effector (e.g., one or more electrodes). The end effector is positionable against tissue such that an electrical current is introduced into the tissue. The electrosurgical device may be configured for bipolar or monopolar operation. During bipolar operation, current is introduced into and returned from the tissue through the active and return electrodes, respectively, of the end effector. During monopolar operation, current is introduced into tissue through the active electrode of the end effector and returned through a return electrode (e.g., a ground pad) separately positioned on the patient's body. The heat generated by the current flowing through the tissue may form a hemostatic seal within and/or between the tissues, and thus may be particularly useful, for example, in sealing blood vessels. The end effector of the electrosurgical device may also include a cutting member movable relative to the tissue and an electrode for transecting the tissue.

The electrical energy applied by the electrosurgical device may be transmitted to the instrument by a generator in communication with the handpiece. The electrical energy may be in the form of Radio Frequency (RF) energy. The RF energy is in the form of electrical energy that can be in the frequency range of 300kHz to 1MHz as described in EN60601-2-2:2009+ a11:2011, definition 201.3.218-high frequency. For example, frequencies in monopolar RF applications are typically limited to less than 5 MHz. However, in bipolar RF applications, the frequency can be almost any value. Monopolar applications typically use frequencies above 200kHz in order to avoid unwanted stimulation of nerves and muscles due to the use of low frequency currents. Bipolar techniques may use lower frequencies if the risk analysis shows that the likelihood of neuromuscular stimulation has been mitigated to an acceptable level. Typically, frequencies above 5MHz are not used to minimize the problems associated with high frequency leakage currents. It is generally considered that 10mA is the lower threshold for tissue thermal effects.

During its operation, the electrosurgical device may transmit low frequency RF energy through tissue, which may cause ionic vibration or friction, and in effect resistive heating, thereby raising the temperature of the tissue. Because a sharp boundary may be formed between the affected tissue and the surrounding tissue, the surgeon is able to operate at a high level of accuracy and control without damaging adjacent non-target tissue. The low operating temperature of the RF energy may be suitable for removing soft tissue, contracting soft tissue, or sculpting soft tissue while sealing the vessel. RF energy may be particularly well suited for connective tissue, which is composed primarily of collagen and contracts when exposed to heat.

Ultrasonic and electrosurgical devices typically require different generators due to their unique drive signal, sensing and feedback requirements. In addition, in situations where the instrument is disposable or interchangeable with the handpiece, the ability of the ultrasound and electrosurgical generators to identify the particular instrument configuration used and to optimize the control and diagnostic procedures accordingly is limited. Furthermore, capacitive coupling between the non-isolated circuitry of the generator and the patient isolated circuitry, especially where higher voltages and frequencies are used, can result in exposure of the patient to unacceptable levels of leakage current.

Furthermore, ultrasonic and electrosurgical devices often require different user interfaces for different generators due to their unique drive signal, sensing and feedback requirements. In such conventional ultrasonic and electrosurgical devices, one user interface is configured for use with an ultrasonic instrument, while the other user interface may be configured for use with an electrosurgical instrument. Such user interfaces include hand and/or foot activated user interfaces, such as hand activated switches and/or foot activated switches. Since various aspects of a combined generator for use with ultrasonic and electrosurgical instruments are contemplated in the ensuing disclosure, additional user interfaces configured to be operable with ultrasonic and/or electrosurgical instrument generators are also contemplated.

Additional user interfaces for providing feedback to a user or other machine are contemplated in subsequent disclosures to provide feedback indicative of the mode or state of operation of the ultrasonic and/or electrosurgical instrument. Providing user and/or machine feedback for operating a combination of ultrasonic and/or electrosurgical instruments would require providing sensory feedback to the user as well as providing electrical/mechanical/electromechanical feedback to the machine. Feedback devices incorporating visual feedback devices (e.g., LCD display screens, LED indicators), audio feedback devices (e.g., speakers, buzzers), or tactile feedback devices (e.g., tactile actuators) for combining ultrasonic and/or electrosurgical instruments are contemplated in the subsequent disclosure.

Other electrosurgical instruments include, but are not limited to, irreversible and/or reversible electroporation, and/or microwave technology, among others. Accordingly, the techniques disclosed herein may be applicable to ultrasound, bipolar or monopolar RF (electrosurgical), irreversible and/or reversible electroporation, and/or microwave-based surgical instruments, among others.

Disclosure of Invention

One aspect of the ultrasound device may include an electromechanical ultrasound system defined by a predetermined resonant frequency, the electromechanical ultrasound system also having an ultrasound transducer coupled to the ultrasound blade, one aspect of a method of delivering energy to the ultrasound device may include applying, by a processor or control circuit, energy to the ultrasound blade at a first power level P1 via the ultrasound transducer coupled to the ultrasound blade, measuring, by the processor or control circuit, a complex impedance of the ultrasound transducer, receiving, by the processor or control circuit, complex impedance feedback data points, comparing, by the processor or control circuit, the complex impedance feedback data points to a reference complex impedance signature pattern, and determining, by the processor or control circuit, based on a result of the comparison, that the ultrasound blade is contacting the blood vessel.

In one aspect, the method may further include deactivating, by the processor or the control circuit, power applied to the ultrasound transducer, and switching, by the processor or the control circuit, to a second power level P2 that is lower than the first power level P1.

In one aspect, the method may further include generating, by the processor or control circuit, an alert that the ultrasonic blade is contacting the blood vessel.

In one aspect of the method, generating, by the processor or control circuit, an alert that the ultrasonic blade is contacting the blood vessel may include: a warning light is emitted by the processor or control circuit.

In one aspect of the method, generating, by the processor or control circuit, an alert that the ultrasonic blade is contacting the blood vessel may include: a warning sound is emitted by the processor or control circuit.

In one aspect of the method, determining, by the processor or control circuitry, that the ultrasonic blade is contacting the blood vessel may comprise: measuring ultrasonic transduction by processor or control circuitA complex impedance of the device, wherein the complex impedance is defined as

Figure BDA0002672394010000041

The method further includes receiving, by a processor or control circuit, the complex impedance measurement data points, comparing, by the processor or control circuit, the complex impedance measurement data points to data points in a reference complex impedance signature pattern, classifying, by the processor or control circuit, the complex impedance measurement data points based on results of the comparative analysis, and determining, by the processor or control circuit, that the ultrasonic blade is contacting the blood vessel based on results of the comparative analysis.

In one aspect of the method, determining, by the processor or control circuitry, that the ultrasonic blade is contacting the blood vessel may comprise: applying a drive signal to the ultrasonic transducer by a drive circuit, wherein the drive signal is a periodic signal defined by an amplitude and a frequency, scanning the drive signal by a processor or control circuit from below resonance to above resonance of the electromechanical ultrasonic system, measuring and recording an impedance/admittance circular variables (R) by the processor or control circuite、Ge、XeAnd BeThe measured impedance/admittance circular variable R being processed by a processor or control circuite、Ge、XeAnd BeAnd a reference impedance/admittance circular variable Rref、Gref、XrefAnd BrefA comparison is made and a determination is made by the processor or control circuitry that the ultrasonic blade is contacting the blood vessel based on the results of the comparative analysis.

One aspect of an ultrasonic surgical instrument may include an ultrasonic electromechanical system having an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide and a generator configured to supply power to the ultrasonic transducer. One aspect of the generator may include a control circuit configured to apply energy to an ultrasonic blade at a first power level P1 via an ultrasonic transducer coupled to the ultrasonic blade, measure a complex impedance of the ultrasonic transducer, receive complex impedance feedback data points, compare the complex impedance feedback data points to a reference complex impedance signature pattern, and determine that the ultrasonic blade is contacting a blood vessel based on a result of the comparison.

In one aspect of the ultrasonic surgical instrument, the control circuit is further configured to deactivate power applied to the ultrasonic transducer and switch to a second power level P2 that is lower than the first power level P1.

In one aspect of the ultrasonic surgical instrument, the control circuit is further configured to generate a warning that the ultrasonic blade is contacting a blood vessel.

In one aspect of the ultrasonic surgical instrument, the warning includes illumination emitted by a warning light.

In one aspect of the ultrasonic surgical instrument, the warning includes emitting a warning sound.

In one aspect of the ultrasonic surgical instrument, the control circuit is further configured to measure a complex impedance of the ultrasonic transducer, wherein the complex impedance is defined as

Figure BDA0002672394010000051

The method further includes receiving complex impedance measurement data points, comparing the complex impedance measurement data points to data points in a reference complex impedance signature pattern, classifying the complex impedance measurement data points based on a result of the comparative analysis, and determining that the ultrasonic blade is contacting the blood vessel based on a result of the comparative analysis.

In one aspect of the ultrasonic surgical instrument, the control circuit is further configured to cause the drive circuit to apply a drive signal to the ultrasonic transducer, wherein the drive signal is a periodic signal defined by an amplitude and a frequency, sweep the frequency of the drive signal from below resonance to above resonance of the electromechanical ultrasonic system, measure and record the impedance/admittance circular variable R e、Ge、XeAnd BeThe measured impedance/admittance circular variable Re、Ge、XeAnd BeAnd a reference impedance/admittance circular variable Rref、Gref、XrefAnd BrefA comparison is made and it is determined that the ultrasonic blade is contacting the blood vessel based on the results of the comparative analysis.

One aspect of a generator for an ultrasonic surgical instrument may include a control circuit configured to apply energy to an ultrasonic blade at a first power level P1 via an ultrasonic transducer coupled to the ultrasonic blade, measure a complex impedance of the ultrasonic transducer, receive complex impedance feedback data points, compare the complex impedance feedback data points to a reference complex impedance signature pattern, and determine that the ultrasonic blade is contacting a blood vessel based on a result of the comparison.

In one aspect of the generator for an ultrasonic surgical instrument, the control circuit is further configured to deactivate power applied to the ultrasonic transducer and switch to a second power level P2 that is lower than the first power level P1.

In one aspect of the generator for an ultrasonic surgical instrument, the control circuit is further configured to generate a warning that the ultrasonic blade is contacting a blood vessel.

In one aspect of a generator for an ultrasonic surgical instrument, the warning includes illumination emitted by a warning light.

In one aspect of the generator for an ultrasonic surgical instrument, the warning includes emitting a warning sound.

In one aspect of the generator for an ultrasonic surgical instrument, the control circuit is further configured to measure a complex impedance of the ultrasonic transducer, wherein the complex impedance is defined as

Figure BDA0002672394010000061

The method further includes receiving complex impedance measurement data points, comparing the complex impedance measurement data points to data points in a reference complex impedance signature pattern, classifying the complex impedance measurement data points based on a result of the comparative analysis, and determining that the ultrasonic blade is contacting the blood vessel based on a result of the comparative analysis.

In one aspect of the generator for an ultrasonic surgical instrument, the control circuit is further configured to cause the drive circuit to apply a drive signal to the ultrasonic transducer, wherein the drive signal is a periodic signal defined by an amplitude and a frequency, sweep the frequency of the drive signal from below resonance to above resonance of the electromechanical ultrasonic system, measure and record the impedance/admittance circular variable Re、Ge、XeAnd BeThe measured impedance/admittance circular variable Re、Ge、XeAnd BeAnd a reference impedance-Admittance circular variable Rref、Gref、XrefAnd BrefA comparison is made and it is determined that the ultrasonic blade is contacting the blood vessel based on the results of the comparative analysis.

Drawings

The features of the various aspects are set out with particularity in the appended claims. The various aspects, however, both as to organization and method of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings.

Fig. 1 is a system configured to execute an adaptive ultrasonic blade control algorithm in a surgical data network including a modular communication hub, according to at least one aspect of the present disclosure.

Fig. 2 illustrates an example of a generator according to at least one aspect of the present disclosure.

Fig. 3 is a surgical system including a generator and various surgical instruments configured for use therewith, according to at least one aspect of the present disclosure.

Fig. 4 is an end effector according to at least one aspect of the present disclosure.

Fig. 5 is an illustration of the surgical system of fig. 3 in accordance with at least one aspect of the present disclosure.

Fig. 6 is a model illustrating dynamic branch current in accordance with at least one aspect of the present disclosure.

Fig. 7 is a structural view of a generator architecture according to at least one aspect of the present disclosure.

Fig. 8A-8C are functional views of a generator architecture according to at least one aspect of the present disclosure.

Fig. 9A-9B are structural and functional aspects of a generator according to at least one aspect of the present disclosure.

Fig. 10 illustrates a control circuit configured to control aspects of a surgical instrument or tool according to at least one aspect of the present disclosure.

Fig. 11 illustrates a combinational logic circuit configured to control aspects of a surgical instrument or tool in accordance with at least one aspect of the present disclosure.

Fig. 12 illustrates sequential logic circuitry configured to control aspects of a surgical instrument or tool in accordance with at least one aspect of the present disclosure.

Fig. 13 illustrates one aspect of a basic architecture of a digital synthesis circuit, such as a Direct Digital Synthesis (DDS) circuit, configured to generate a plurality of wave shapes for electrical signal waveforms in a surgical instrument, in accordance with at least one aspect of the present disclosure.

Fig. 14 illustrates one aspect of a Direct Digital Synthesis (DDS) circuit configured to generate a plurality of wave shapes for use in electrical signal waveforms in a surgical instrument, in accordance with at least one aspect of the present disclosure.

Fig. 15 illustrates one cycle of a discrete-time digital electrical signal according to at least one aspect of the present disclosure in terms of an analog waveform (shown superimposed over a discrete-time digital electrical signal waveform for comparison purposes), in accordance with at least one aspect of the present disclosure.

FIG. 16 is a diagrammatic view of a control system according to an aspect of the present disclosure.

FIG. 17 illustrates a proportional-integral-derivative (PID) controller feedback control system in accordance with an aspect of the present disclosure.

Fig. 18 is an alternative system for controlling the frequency of and detecting the impedance of an ultrasound electromechanical system in accordance with at least one aspect of the present disclosure.

FIG. 19 is a spectral plot of the same ultrasound device in various different states and conditions of the end effector, wherein the phase and amplitude of the impedance of the ultrasound transducer is plotted as a function of frequency, according to at least one aspect of the present disclosure.

Fig. 20 is a graphical representation of a graph of a set of 3D training data S in which ultrasound transducer impedance magnitude and phase are plotted as a function of frequency, according to at least one aspect of the present disclosure.

Fig. 21 is a logic flow diagram depicting a control program or logic configuration for determining jaw condition based on a complex impedance signature pattern (fingerprint) in accordance with at least one aspect of the present disclosure.

Fig. 22 is a graph of complex impedance plotted as a relationship between an imaginary component and a real component of a piezoelectric vibrator, in accordance with at least one aspect of the present disclosure.

Fig. 23 is a circular diagram of complex admittances plotted as a relationship between an imaginary component and a real component of a piezoelectric vibrator, in accordance with at least one aspect of the present disclosure.

FIG. 24 is a circular diagram of the complex admittance of a 55.5kHz ultrasonic piezoelectric transducer.

Fig. 25 is a graphical display of an impedance analyzer showing an impedance/admittance chart of an ultrasound device with jaws open and no load, with complex admittances depicted in dashed lines and complex impedances depicted in solid lines, according to at least one aspect of the present disclosure.

Fig. 26 is a graphical display of an impedance analyzer showing an impedance/admittance chart of an ultrasonic device with jaws clamped on dry oil tanning (chamois), with complex admittances depicted in phantom and complex impedances depicted in solid lines, according to at least one aspect of the present disclosure.

Fig. 27 is a graphical display of an impedance analyzer showing an impedance/admittance chart of an ultrasonic device with a jaw tip clamped on wet oil tanned leather, with complex admittance depicted in dashed lines and complex impedance depicted in solid lines, according to at least one aspect of the present disclosure.

Fig. 28 is a graphical display of an impedance analyzer showing an impedance/admittance chart of an ultrasonic device with jaws fully clamped on wet oil tanned leather, with complex admittances depicted in dashed lines and complex impedances depicted in solid lines, according to at least one aspect of the present disclosure.

Fig. 29 is a graphical display of an impedance analyzer showing an impedance/admittance plot in which frequencies from 48kHz to 62kHz are swept to capture multiple resonances of an ultrasonic device with a jaw open, wherein a rectangular stack shown in dashed lines facilitates viewing a circle, according to at least one aspect of the present disclosure.

Fig. 30 is a logic flow diagram depicting a process of control procedure or logic configuration to determine jaw condition based on estimated values of radius and offset of impedance/admittance circles, in accordance with at least one aspect of the present disclosure.

Fig. 31 is a diagram of a liver resection with blood vessels embedded in parenchymal tissue in accordance with at least one aspect of the present disclosure.

Fig. 32 is a diagram of an ultrasonic blade in substance but not contacting a blood vessel in accordance with at least one aspect of the present disclosure.

33A-33B are ultrasound transducer impedance magnitude/phase diagrams, shown substantially as red curves, according to at least one aspect of the present disclosure.

FIG. 34 is a view of an ultrasonic blade in parenchyma and contacting a large blood vessel.

Fig. 35A-35B are ultrasound transducer impedance magnitude/phase diagrams in which large blood vessels are shown as green curves, according to at least one aspect of the present disclosure.

Fig. 36 is a logic flow diagram depicting a control procedure or logic configuration for a process of treating tissue in parenchyma when a blood vessel is detected, in accordance with at least one aspect of the present disclosure.

Description

The applicant of the present patent application also owns the following concurrently filed U.S. patent applications, each of which is incorporated herein by reference in its entirety:

U.S. provisional patent application entitled "METHODS FOR CONTROLLING a transistor IN an ultra DEVICE," attorney docket number END8560USNP 1/180106-1M;

U.S. provisional patent application entitled "ULTRASONIC SEALING ALGORITHM WITH TEMPERATURE CONTROL", attorney docket number END8560USNP 3/180106-3;

U.S. provisional patent APPLICATION entitled "APPLICATION OF SMART ULTRASONIC BLADE TECHNOLOGY" attorney docket number END8560USNP 4/180106-4;

U.S. provisional patent application entitled "ADAPTIVE ADVANCED TISSUE TREATMENT PAD SAVER MODE" having attorney docket number END8560USNP 5/180106-5;

U.S. provisional patent application entitled "SMART BLADE TECHNOLOGY TO CONTROL BLADE INSTILITY" attorney docket number END8560USNP 6/180106-6; and

U.S. provisional patent application entitled "START TEMPERATURE OF BLADE," attorney docket number END8560USNP 7/180106-7.

The applicant of the present patent application also owns the following concurrently filed U.S. patent applications, each of which is incorporated herein by reference in its entirety:

U.S. provisional patent application entitled "METHOD FOR ESTIMATING AND CONTROL STATE OF ULTRASONIC EFFECTOR" attorney docket number END8536USNP 1/180107-1M;

U.S. provisional patent application entitled "IN-THE-JAW CLASSIFIER BASED ON MODEL," attorney docket number END8536USNP 3/180107-3;

U.S. provisional patent APPLICATION entitled "APPLICATION OF SMART BLADE TECHNOLOGY" attorney docket number END8536USNP 4/180107-4;

U.S. provisional patent application entitled "SMART BLADE AND POWER PULSING" attorney docket number END8536USNP 5/180107-5;

U.S. provisional patent application entitled "ADJUSTMENT OF COMPLEX IMPEDANCE TO COMPENSATE FOR LOST POWER AN ARTICULATING ULTRASONIC DEVICE", attorney docket number END8536USNP 6/180107-6;

U.S. provisional patent application entitled "USING SPECTROSCOPY TO DETERMINE DEVICE USE STATE IN COMBOINSTRUMENT" attorney docket number END8536USNP 7/180107-7;

U.S. provisional patent application entitled "VESSEL SENSING FOR ADAPTIVE ADVANCED HEMOSSTASIS," attorney docket number END8536USNP 8/180107-8;

U.S. provisional patent application entitled "CALCIFIED VESSEL IDENTIFICATION", attorney docket number END8536USNP 9/180107-9;

U.S. provisional patent APPLICATION entitled "SMART BLADE APPLICATION FOR REUSABLE AND DISPOSABLEDEVICES" attorney docket number END8536USNP 11/180107-11;

U.S. provisional patent application entitled "LIVE TIME sharing CLASSIFICATION USING electric patent applications," attorney docket number END8536USNP 12/180107-12; and

U.S. provisional patent application entitled "FINE DISSECTION MODE FOR TISSUE CLASSIFIFICATION" having attorney docket number END8536USNP 13/180107-13.

The applicant of the present application owns the following U.S. patent applications filed on 9/10 of 2018, the disclosure of each of which is incorporated herein by reference in its entirety:

U.S. provisional patent application Ser. No. 62/729,177 entitled "AUTOMATED DATA SCALING, ALIGNMENT, AND ORGANIZING BASED ON PREDEFINED PARAMETERS WITHIN A SURGICALNETWORK BEFORE TRANSMISSION";

U.S. provisional patent application Ser. No. 62/729,182 entitled "SENSING THE PATIENTPOSITION AND CONTACT UTILIZING THE MONO POLAR RETURN PAD ELECTRO TO PROVIDED ATIONAL AWARENESS TO THE HUB";

U.S. provisional patent application Ser. No. 62/729,184 entitled "POWER SURGICAL TOOLWITH A PREDEFINED ADJUSTABLE CONTROL ALGORITHM FOR CONTROLLING AT LEAST ONE ONEEND EFFECTOR PARAMETER AND A MEANS FOR LIMITING THE ADJUSTMENT";

U.S. provisional patent application Ser. No. 62/729,183 entitled "SURGICAL NETWORK RECOMMENDITION FROM REAL TIME ANALYSIS OF PROCEDURE VARIABLE AGAINST ABASELINE HIGHLIGHTING DIFFERENCES FROM THE OPEN OF THE OPTIMAL SOLUTION";

U.S. provisional patent application Ser. No. 62/729,191 entitled "A CONTROL FOR A SURGICALNETWORK OR SURGICALNICAL NETWORK CONNECTED DEVICE THAT ADJUTS ITS FUNCTION BASION A SENSED STATION OR USAGE";

U.S. provisional patent application Ser. No. 62/729,176 entitled "INDIRECT COMMAND ANDCONTROL OF A FIRST OPERATING ROOM SYSTEM THROUGH THE USE OF A SECONDARATIONING ROOM SYSTEM WITHIN A STERILE FIELDWHERE THE SECOND OPERATING ROOMSYSTEM HAS PRIMARY AND SECONDARY OPERATING MODES";

U.S. provisional patent application Ser. No. 62/729,186, entitled "WIRELESS PAIRING OF ASURGICAL DEVICE WITH ANOTHER DEVICE WITHIN A STERILE SURGICAL FILED BASED ONTHE USAGE AND SITUATIONAL AWARENESS OF DEVICES"; and

U.S. provisional patent application Ser. No. 62/729,185 entitled "POWER STAPLING DEVICETHAT IS CAPABLE OF ADJUSE FORCE, ADVANCEMENT SPEED, AND OVERALL STROKE OFCUTTING MEMBER OF THE DEVICE BASED ON SENSED PARAMETER OF FIRING ORCLAMPING".

The applicant of the present application owns the following U.S. patent applications filed on 28/8/2018, the disclosure of each of which is incorporated herein by reference in its entirety:

U.S. patent application Ser. No. 16/115,214 entitled "ESTIMATING STATE OFULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR";

U.S. patent application Ser. No. 16/115,205 entitled "TEMPERATURE CONTROL OFULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR";

U.S. patent application Ser. No. 16/115,233 entitled RADIO FREQUENCY ENERGY DEVICEFOR DELIVERING COMMUNICED ELECTRICAL SIGNALS;

U.S. patent application Ser. No. 16/115,208 entitled "CONTROL AN ULTRASONICSURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION";

U.S. patent application Ser. No. 16/115,220 entitled "CONTROL ACTIVATION OF ANULTRASONIC SURGICAL INSTRUMENT ACCORDING TO THE PRESENCE OF TISSUE";

U.S. patent application serial No. 16/115,232, entitled "DETERMINING TISSUECOMPOSITION VIA AN ULTRASONIC SYSTEM";

U.S. patent application Ser. No. 16/115,239 entitled "DETERMINING THE STATE OF orthogonal electronic Circuit System ACCORDING TO FREQUENCY SHIFT";

U.S. patent application Ser. No. 16/115,247 entitled "DETERMINING THE STATE OF ANULTRASONIC END EFFECTOR";

U.S. patent application Ser. No. 16/115,211 entitled "STATATIONAL AWARENESS OFELECTRROSURGICAL SYSTEMS";

U.S. patent application serial No. 16/115,226, entitled "MECHANISMS FOR CONTROLLINGDIFFERENT ELECTROMECHANICAL SYSTEMS OF AN ELECTROSURGICAL INSTRUMENT";

U.S. patent application Ser. No. 16/115,240 entitled "DETECTION OF END effects IN LIQUID identification";

U.S. patent application Ser. No. 16/115,249 entitled "INTERRUPTION OF ENGAGUTIVE DUE TOINADVERTENT CAPACITIVE COUPLING";

U.S. patent application Ser. No. 16/115,256, entitled "INCREASING RADIO FREQUENCY TOCREATE PAD-LESS MONOPOLAR LOOP";

U.S. patent application Ser. No. 16/115,223 entitled "BIPOLAR COMMUNICATION DEVICETHAT AUTOMATICALLY ADJUTS PRESSURE BASED ON ENERGY MODALITY"; and

U.S. patent application Ser. No. 16/115,238 entitled "ACTIVATION OF ENERGYDEVICES".

The applicant of the present application owns the following U.S. patent applications filed on 23.8.2018, the disclosure of each of which is incorporated herein by reference in its entirety:

U.S. provisional patent application No. 62/721,995 entitled "control AN ultraSONICSURGICAL INSTRUMENTS ACCORDING TO TISSUE LOCATION";

U.S. provisional patent application No. 62/721,998 entitled "STATATIONAL AWARENESS OFELECTRROSURGICAL SYSTEMS";

U.S. provisional patent application No. 62/721,999 entitled "INTERRUPTION OF ENGAGUTIVE DUE TOINADVERTENT CAPACITIVE COUPLING";

U.S. provisional patent application 62/721,994 entitled "BIPOLAR COMMUNICATION DEVICE THATUATION MATICALLY ADJUTS PRESSURE BASED ON ENERGY MODALITY"; and

U.S. provisional patent application No. 62/721,996 entitled RADIO FREQUENCY ENERGY DEVICEFOR DELIVERING COMMUNICED ELECTRICAL SIGNALS.

The applicant of the present application owns the following U.S. patent applications filed on 30.6.2018, the disclosure of each of which is incorporated herein by reference in its entirety:

U.S. provisional patent application No. 62/692,747 entitled "SMART ACTIVATION OF AN ENERGYDEVICE BY ANOTHER DEVICE";

U.S. provisional patent application 62/692,748, entitled "SMART ENERGY ARCHITECTURE"; and

U.S. provisional patent application No. 62/692,768, entitled "SMART ENERGY DEVICES".

The applicant of the present application owns the following U.S. patent applications filed on 29.6.2018, the disclosure of each of which is incorporated herein by reference in its entirety:

U.S. patent application serial No. 16/024,090, entitled "CAPACITIVE COUPLED RETURNPATH PAD WITH SEPARABLE ARRAY ELEMENTS";

U.S. patent application Ser. No. 16/024,057 entitled "control A SURGICALINSTRUCTION ACCORDING TO SENSED CLOSURE PARAMETERS";

U.S. patent application Ser. No. 16/024,067 entitled "SYSTEM FOR ADJUSE ENDEFECTOR PARAMETERS BASED ON PERIORATIVE INFORMATION";

U.S. patent application Ser. No. 16/024,075 entitled "SAFETY SYSTEMS FOR SMARTPOWER SURGICAL STAPLING";

U.S. patent application Ser. No. 16/024,083 entitled "SAFETY SYSTEMS FOR SMARTPOWER SURGICAL STAPLING";

U.S. patent application Ser. No. 16/024,094 entitled "SURGICAL SYSTEMS FOR RDETTING END EFFECTOR TISSUE DISTRIBUTION IRREGULARITIES";

U.S. patent application Ser. No. 16/024,138 entitled "SYSTEM FOR DETECTING PROXIMITY OF SURGICAL END EFFECTOR TO CANCEROUS TISSUE";

U.S. patent application Ser. No. 16/024,150 entitled "SURGICAL INSTRUMENT CARTRIDGESENSOR ASSEMBLIES";

U.S. patent application Ser. No. 16/024,160 entitled "VARIABLE OUTPUT CARTRIDGESENSOR ASSEMBLY";

U.S. patent application Ser. No. 16/024,124 entitled "SURGICAL INSTRUMENT HAVING AFLEXIBLE ELECTRODE";

U.S. patent application Ser. No. 16/024,132 entitled "SURGICAL INSTRUMENT HAVARING AFLEXIBLE CICUIT";

U.S. patent application Ser. No. 16/024,141 entitled "SURGICAL INSTRUMENT WITH ATISSUE MARKING ASSEMBLY";

U.S. patent application Ser. No. 16/024,162 entitled "SURGICAL SYSTEMS WITHPRIORIZED DATA TRANSMISSION CAPABILITIES";

U.S. patent application Ser. No. 16/024,066 entitled "SURGICAL EVACUTION SENSING MOTOR CONTROL";

U.S. patent application Ser. No. 16/024,096 entitled "SURGICAL EVACUTION SENSORARRANGEMENTS";

U.S. patent application Ser. No. 16/024,116 entitled "SURGICAL EVACUTION FLOWPATHS";

U.S. patent application Ser. No. 16/024,149 entitled "SURGICAL EVACUTION SENSING GENERATOR CONTROL";

U.S. patent application Ser. No. 16/024,180, entitled "SURGICAL EVACUTION SENSINGAND DISPLAY";

U.S. patent application Ser. No. 16/024,245 entitled "COMMUNICATION OF SMOKEEVACUTION SYSTEM PARAMETERS TO HUB OR CLOUD IN SMOKE EVACUTION MODULE FOR RINTERACTIVE SURGICAL PLATFORM";

U.S. patent application Ser. No. 16/024,258 entitled "SMOKE EVACUATION SYSTEMINGLUTING A SEGMENTED CONTROL CIRCUIT FOR INTERACTIVE SURGICAL PLATFORM";

U.S. patent application Ser. No. 16/024,265 entitled "SURGICAL EVACUTION SYSTEMWITH A COMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKEEVACUTION DEVICE"; and

U.S. patent application Ser. No. 16/024,273, entitled "DUAL IN-SERIES LARGE ANDSMALL DROPLET FILTERS".

The applicant of the present application owns the following U.S. provisional patent applications filed on 28.6.2018, the disclosures of each of which are incorporated herein by reference in their entirety:

U.S. provisional patent application Ser. No. 62/691,228 entitled "A METHOD OF USENNING INFORCED FLEX CICUITS WITH MULTI SENSE SENSOR WITH ELECTRICITY DEVICES";

U.S. provisional patent application Ser. No. 62/691,227 entitled "controlling a scientific recording to sensed closure parameters";

U.S. provisional patent application Ser. No. 62/691,230 entitled "SURGICAL INSTRUMENTTHAVING A FLEXIBLE ELECTRODRODE";

U.S. provisional patent application Ser. No. 62/691,219 entitled "SURGICAL EVACUATIONSENSING AND MOTOR CONTROL";

U.S. provisional patent application Ser. No. 62/691,257 entitled "COMMUNICATION OF SMOKEEVACUTION SYSTEM PARAMETERS TO HUB OR CLOUD IN SMOKE EVACUTION MODULE FOR RINTERACTIVE SURGICAL PLATFORM";

U.S. provisional patent application Ser. No. 62/691,262 entitled "SURGICAL EVACUATION SYSTEM WITH A COMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND ASMOKE EVACUATION DEVICE"; and

U.S. provisional patent application Ser. No. 62/691,251 entitled "DUAL IN-SERIES LARGE ANDSMALL DROPLET FILTERS";

the applicant of the present application owns the following U.S. provisional patent applications filed on 2018, 4/19, the disclosure of each of which is incorporated herein by reference in its entirety:

U.S. provisional patent application serial No. 62/659,900 entitled "METHOD OF hubcmonication";

the applicant of the present application owns the following U.S. provisional patent applications filed on 30/3/2018, the disclosures of each of which are incorporated herein by reference in their entirety:

us provisional patent application No. 62/650,898, entitled "CAPACITIVITY ECOUPLED RETURN PATH PAD WITH SECARABLE ARRAY ELEMENTS", filed 3, 30.2018;

U.S. provisional patent application Ser. No. 62/650,887 entitled "SURGICAL SYSTEMS WITHOPTIMIZED SENSING CAPABILITIES";

U.S. patent application Ser. No. 62/650,882 entitled "SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM"; and

U.S. patent application Ser. No. 62/650,877, entitled "SURGICAL SMOKE EVACUATIONSENSING AND CONTROLS".

The applicant of the present patent application owns the following U.S. patent applications filed on 29/3/2018, the disclosures of each of which are incorporated herein by reference in their entirety:

U.S. patent application Ser. No. 15/940,641 entitled "INTERACTIVE SURGICAL SYSTEMSWITH ENCRYPTED COMMUNICATION CAPABILITIES";

U.S. patent application Ser. No. 15/940,648 entitled "INTERACTIVE SURGICAL SYSTEMSWITH CONDITION HANDLING OF DEVICES AND DATA CAPABILITIES";

U.S. patent application Ser. No. 15/940,656 entitled "SURGICAL HUB COORDINATION OFCONTROL AND COMMUNICATION OF OPERATING ROOM DEVICES";

U.S. patent application Ser. No. 15/940,666 entitled "SPATIAL AWARENESS OF SURGICALUHUBS IN OPERATING ROOMS";

U.S. patent application Ser. No. 15/940,670 entitled "COOPERATIVE UTILIZATION OFDATA DERIVED FROM SECONDARY SOURCES BY INTELLIGENT SURGICAL HUBS";

U.S. patent application Ser. No. 15/940,677 entitled "SURGICAL HUB CONTROLARANGEMENTS";

U.S. patent application Ser. No. 15/940,632 entitled "DATA STRIPPING METHOD OF INTERROTATE PATIENT RECORD AND CREATE ANONYMIZED RECORD";

U.S. patent application Ser. No. 15/940,640 entitled "COMMUNICATION HUB AND STORAGE EVICE FOR STORING PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHARED WITH CLOUD BASED ANALYTICS SYSTEMS";

U.S. patent application Ser. No. 15/940,645 entitled "SELF DESCRIBING DATA PACKETSGENERATED AT AN ISSUING INSTRUMENT"; U.S. patent application Ser. No. 15/940,649 entitled "DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH AN OUTCOME";

U.S. patent application Ser. No. 15/940,654 entitled "SURGICAL HUB SITUATIONALAWARENESS";

U.S. patent application Ser. No. 15/940,663 entitled "SURGICAL SYSTEM DISTRIBUTEDPROCESSING";

U.S. patent application Ser. No. 15/940,668 entitled "AGGREGAGATION AND REPORTING OFSURGICAL HUB DATA";

U.S. patent application Ser. No. 15/940,671 entitled "SURGICAL HUB SPATIALAWARENESS TO DETERMINE DEVICES IN OPERATING THEEATER";

U.S. patent application Ser. No. 15/940,686 entitled "DISPLAY OF ALIGNMENT OFSTAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE";

U.S. patent application Ser. No. 15/940,700 entitled "STERILE FIELD INTERACTIVECONNTROL DISPLAYS";

U.S. patent application Ser. No. 15/940,629 entitled "COMPUTER IMPLEMENTEDINTERACTIVE SURGICAL SYSTEMS";

U.S. patent application Ser. No. 15/940,704 entitled "USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT";

U.S. patent application Ser. No. 15/940,722 entitled "CHARACTERIZATION OF TISSUEIRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTIVITY"; and

U.S. patent application Ser. No. 15/940,742 entitled "DUAL CMOS ARRAY IMAGING";

U.S. patent application Ser. No. 15/940,636 entitled "ADAPTIVE CONTROL programs for DEVICES";

U.S. patent application Ser. No. 15/940,653 entitled "ADAPTIVE CONTROL PROGRAMUPDATES FOR SURGICAL HUBS";

U.S. patent application Ser. No. 15/940,660 entitled "CLOOUD-BASED MEDICAL ANALYTICSFOR CUTOSTIMION AND RECOMMENDITION TO A USER";

U.S. patent application Ser. No. 15/940,679 entitled "CLOOUD-BASED MEDICAL ANALYTICSFOR LINKING OF LOCAL USAGE TRENDS WITH THE RESOURCE ACQUISITION BEHAVIORS OFLARGER DATA SET";

U.S. patent application Ser. No. 15/940,694 entitled "CLOOUD-BASED MEDICAL ANALYTICSFOR MEDICAL FACILITY SEGMENTED INDIDUALIZATION OF INSTRUMENTS FUNCTIONS";

U.S. patent application Ser. No. 15/940,634 entitled "CLOOUD-BASED MEDICAL ANALYTICSFOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES";

U.S. patent application Ser. No. 15/940,706 entitled "DATA HANDLING ANDPRIORITIZATION IN A CLOUD ANALYTICS NETWORK";

And

U.S. patent application Ser. No. 15/940,675 entitled "CLOOUD INTERFACE FOR COUPLEDSURGICAL DEVICES";

U.S. patent application Ser. No. 15/940,627 entitled "DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS";

U.S. patent application Ser. No. 15/940,637 entitled "COMMUNICATION ARRANGEMENTSFOR ROBOT-ASSISTED SURGICAL PLATFORMS";

U.S. patent application Ser. No. 15/940,642 entitled "CONTROL FOR ROBOT-ASSISTED DSURGICAL PLATFORMS";

U.S. patent application Ser. No. 15/940,676 entitled "AUTOMATIC TOOL ADJUSTMENTSFOR ROBOT-ASSISTED SURGICAL PLATFORMS";

U.S. patent application Ser. No. 15/940,680 entitled "CONTROL FOR ROBOT-ASSISTED SURGICAL PLATFORMS";

U.S. patent application Ser. No. 15/940,683 entitled "COOPERATIVE SURGICAL ACTIONFOR ROBOT-ASSISTED SURGICAL PLATFORMS";

U.S. patent application Ser. No. 15/940,690 entitled "DISPLAY ARRANGEMENTS ForOBOT-ASSISTED SURGICAL PLATFORMS"; and

U.S. patent application Ser. No. 15/940,711, entitled "SENSING ARRANGEMENTS ForOBOT-ASSISTED SURGICAL PLATFORMS".

The applicant of the present application owns the following U.S. provisional patent applications filed on 28/3/2018, the disclosures of each of which are incorporated herein by reference in their entirety:

U.S. provisional patent application serial No. 62/649,302 entitled "INTERACTIVE SURGICALSYSTEMS WITH ENCRYPTED notification CAPABILITIES";

U.S. provisional patent application Ser. No. 62/649,294 entitled "DATA STRIPPING METHOD OF INTERROTATE PATIENT RECORD AND CREATE ANONYMIZED RECORD";

U.S. provisional patent application Ser. No. 62/649,300 entitled "SURGICAL HUB SITUATIONALAWARENESS";

U.S. provisional patent application Ser. No. 62/649,309 entitled "SURGICAL HUB SPATIALAWARENESS TO DETERMINE DEVICES IN OPERATING THEEATER";

U.S. provisional patent application serial No. 62/649,310 entitled "COMPUTER incorporated into active minor SYSTEMS";

U.S. provisional patent application Ser. No. 62/649291 entitled "USE OF LASER LIGHT ANDRED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT";

U.S. provisional patent application Ser. No. 62/649,296 entitled "ADAPTIVE CONTROL program FOR basic DEVICES";

U.S. provisional patent application Ser. No. 62/649,333 entitled "CLOOUD-BASED MEDICANAL POLYTICS FOR CUTOSTOMIZATION AND RECOMMENDITIONS TO A USER";

U.S. provisional patent application Ser. No. 62/649,327 entitled "CLOOUD-BASED MEDICANAL POLYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES";

U.S. provisional patent application Ser. No. 62/649,315 entitled "DATA HANDLING ANDPRIORITIZATION IN A CLOUD ANALYTICS NETWORK";

U.S. provisional patent application Ser. No. 62/649,313 entitled "CLOOUD INTERFACE FORCOUPLED SURGICAL DEVICES";

U.S. provisional patent application Ser. No. 62/649,320, entitled "DRIVE ARRANGEMENTS ForOBOT-ASSISTED SURGICAL PLATFORMS";

U.S. provisional patent application Ser. No. 62/649,307 entitled "AUTOMATIC TOOLADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS"; and

U.S. provisional patent application serial No. 62/649,323, entitled "SENSING ARRANGEMENTS forced-associated minor planar platrms".

The applicant of the present application owns the following U.S. provisional patent applications filed on 2017, 12, 28, the disclosure of each of which is incorporated herein by reference in its entirety:

U.S. provisional patent application serial No. 62/611,341, entitled "INTERACTIVE SURGICALPLATFORM";

U.S. provisional patent application Ser. No. 62/611,340 entitled "CLOOUD-BASED MEDICALANALYTICS"; and

U.S. provisional patent application serial No. 62/611,339, entitled "ROBOT associated SURGICALPLATFORM";

before explaining various aspects of the surgical device and generator in detail, it should be noted that the example illustrated application or use is not limited to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative examples may be implemented alone or in combination with other aspects, variations and modifications, and may be practiced or carried out in various ways. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments for the convenience of the reader and are not for the purpose of limiting the invention. Moreover, it is to be understood that expressions of one or more of the following described aspects, and/or examples may be combined with any one or more of the other below described aspects, and/or examples.

Various aspects relate to improved ultrasonic surgical devices, electrosurgical devices, and generators for use therewith. Aspects of an ultrasonic surgical device may be configured to transect and/or coagulate tissue, for example, during a surgical procedure. Aspects of the electrosurgical device may be configured to transect, coagulate, target, weld, and/or desiccate tissue, for example, during a surgical procedure.

Self-adaptive ultrasonic knife control algorithm

In various aspects, the smart ultrasonic energy device may include an adaptive algorithm for controlling the operation of the ultrasonic blade. In one aspect, the ultrasonic blade adaptive control algorithm is configured to identify a tissue type and adjust device parameters. In one aspect, the ultrasonic blade control algorithm is configured to be capable of parameterizing tissue type. The following sections of the present disclosure describe an algorithm for detecting the collagen/elasticity ratio of tissue to tune the amplitude of the distal tip of an ultrasonic blade. Various aspects of intelligent ultrasonic energy devices are described herein in connection with, for example, fig. 1-2. Accordingly, the following description of the adaptive ultrasonic blade control algorithm should be read in conjunction with fig. 1-2 and the description associated therewith.

In certain surgical procedures, it is desirable to employ an adaptive ultrasonic blade control algorithm. In one aspect, an adaptive ultrasonic blade control algorithm may be employed to adjust parameters of an ultrasonic device based on the type of tissue in contact with the ultrasonic blade. In one aspect, parameters of the ultrasonic device can be adjusted based on the position of tissue within the jaws of the ultrasonic end effector (e.g., the position of tissue between the clamp arm and the ultrasonic blade). The impedance of the ultrasound transducer can be used to distinguish the percentage of tissue in the distal or proximal end of the end effector. The response of the ultrasound device may be based on the tissue type or compressibility of the tissue. In another aspect, parameters of the ultrasound device may be adjusted based on the identified tissue type or parameterization. For example, the mechanical displacement amplitude of the distal tip of the ultrasonic blade may be tuned based on the ratio of collagen to elastin tissue detected during the tissue identification process. The ratio of collagen to elastin tissue can be detected using a variety of techniques, including Infrared (IR) surface reflectance and specific radiance. The force applied to the tissue by the clamp arm and/or the stroke of the clamp arm creates the gap and compression. Electrical continuity across the electrode-equipped jaws may be employed to determine the percentage of jaw coverage by tissue.

Fig. 1 is a system 800 configured to execute an adaptive ultrasonic blade control algorithm in a surgical data network including a modular communication hub, according to at least one aspect of the present disclosure. In one aspect, the generator module 240 is configured to be capable of executing an adaptive ultrasonic blade control algorithm 802 as described herein. In another aspect, the device/instrument 235 is configured to be capable of executing an adaptive ultrasonic blade control algorithm 804 as described herein with reference to fig. 19-36. In another aspect, both the device/instrument 235 and the device/instrument 235 are configured to be capable of executing the adaptive ultrasonic blade control algorithms 802, 804 as described herein with reference to fig. 19-36.

The generator module 240 may include a patient isolation stage in communication with a non-isolation stage via a power transformer. The secondary winding of the power transformer is contained in an isolation stage and may include a tapped configuration (e.g., a center-tapped or non-center-tapped configuration) to define a drive signal output for delivering drive signals to different surgical instruments, such as, for example, ultrasonic surgical instruments, RF electrosurgical instruments, and multi-functional surgical instruments including ultrasonic energy modes and RF energy modes that can be delivered separately or simultaneously. In particular, the drive signal output may output an ultrasonic drive signal (e.g., a 420V Root Mean Square (RMS) drive signal) to the ultrasonic surgical instrument 241, and the drive signal output may output an RF electrosurgical drive signal (e.g., a 100V RMS drive signal) to the RF electrosurgical instrument 241. Aspects of the generator module 240 are described herein with reference to fig. 7-12.

The generator module 240 or the device/instrument 235, or both, are coupled to a modular control tower 236 that is connected to a plurality of operating room devices, such as, for example, intelligent surgical instruments, robots, and other computerized devices located in the operating room. In some aspects, the surgical data network may include a modular communication hub configured to enable connection of modular devices located in one or more operating rooms of a medical facility or any room in a medical facility specially equipped for surgical operations to a cloud-based system (e.g., cloud 204, which may include a remote server 213 coupled to a storage device).

Modular devices located in an operating room may be coupled to the modular communication hub. A network hub and/or network switch may be coupled to the network router to connect the device to the cloud 204 or local computer system. Data associated with the device may be transmitted via the router to the cloud-based computer for remote data processing and manipulation. Data associated with the device may also be transmitted to a local computer system for local data processing and manipulation. Modular devices located in the same operating room may also be coupled to a network switch. A network switch may be coupled to the network hub and/or the network router to connect the device to the cloud 204. Data associated with the device may be transmitted via the network router to the cloud 204 for data processing and manipulation. Data associated with the device may also be transmitted to a local computer system for local data processing and manipulation.

It should be appreciated that cloud computing relies on shared computing resources rather than using local servers or personal devices to process software applications. The term "cloud" may be used as a metaphor for "internet," although the term is not so limited. Accordingly, the term "cloud computing" may be used herein to refer to a "type of internet-based computing" in which different services (such as servers, memory, and applications) are delivered to a modular communication hub and/or computer system located in a surgical room (e.g., a fixed, mobile, temporary, or live operating room or space) and devices connected to the modular communication hub and/or computer system over the internet. The cloud infrastructure may be maintained by a cloud service provider. In this case, the cloud service provider may be an entity that coordinates the use and control of devices located in one or more operating rooms. Cloud computing services can perform a large amount of computing based on data collected by smart surgical instruments, robots, and other computerized devices located in the operating room. The hub hardware enables multiple devices or connections to connect to a computer in communication with the cloud computing resources and memory.

Fig. 1 further illustrates some aspects of a computer-implemented interactive surgical system including a modular communication hub that may include a system 800 configured to be capable of executing an adaptive ultrasonic blade control algorithm in a surgical data network. The surgical system may include at least one surgical hub in communication with the cloud 204, which may include a remote server 213. In one aspect, the computer-implemented interactive surgical system includes a modular control tower 236 that is connected to a plurality of operating room devices, such as, for example, intelligent surgical instruments, robots, and other computerized devices located in the operating room. The modular control tower 236 may include a modular communication hub coupled to a computer system. In some aspects, the modular control tower 236 is coupled to an imaging module coupled to the endoscope, a generator module 240 coupled to the energy device 241, a smart device/instrument 235 optionally coupled to the display 237. The operating room devices are coupled to cloud computing resources and data storage via modular control tower 236. Robot hub 222 may also be connected to modular control tower 236 and cloud computing resources. The devices/instruments 235, visualization system 208, etc. may be coupled to the modular control tower 236 via wired or wireless communication standards or protocols, as described herein. The modular control tower 236 may be coupled to the hub display 215 (e.g., monitor, screen) to display and overlay images received from the imaging module, device/instrument display, and/or other visualization system 208. The hub display 215 may also display data received from devices connected to the modular control tower in conjunction with the image and the overlay image.

Generator hardware

Fig. 2 illustrates an example of a generator 900, which is one form of a generator configured to be coupled to an ultrasonic instrument and further configured to execute an adaptive ultrasonic blade control algorithm in a surgical data network including a modular communication hub, as shown in fig. 1. The generator 900 is configured to deliver a plurality of energy modalities to the surgical instrument. The generator 900 provides an RF signal and an ultrasonic signal for delivering energy to the surgical instrument independently or simultaneously. The RF signal and the ultrasound signal may be provided separately or in combination, and may be provided simultaneously. As described above, at least one generator output may deliver multiple energy modalities (e.g., ultrasound, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave energy, etc.) through a single port, and these signals may be delivered separately or simultaneously to the end effector to treat tissue. The generator 900 includes a processor 902 coupled to a waveform generator 904. The processor 902 and waveform generator 904 are configured to generate a variety of signal waveforms based on information stored in a memory coupled to the processor 902, which memory is not shown for clarity of the present disclosure. Digital information associated with the waveform is provided to a waveform generator 904, which includes one or more DAC circuits to convert a digital input to an analog output. The analog output is fed to an amplifier 906 for signal conditioning and amplification. The regulated and amplified output of amplifier 906 is coupled to power transformer 908. The signal is coupled to the secondary side of the patient isolation side through a power transformer 908. A first signal of a first ENERGY mode is provided to a first ENERGY mode labeled ENERGY 1And a terminal of the RETURN. A second signal of a second ENERGY mode is coupled across capacitor 910 and provided to a second output terminal labeled ENERGY2And a terminal of the RETURN. It should be understood that output may be providedMore than two ENERGY modes, and thus the subscript "n" may be used to specify that up to n ENERGY may be providednA terminal, wherein n is a positive integer greater than 1. It should also be understood that up to n RETURN paths RETURN may be provided without departing from the scope of this disclosuren

First voltage sensing circuit 912 is coupled to a circuit labeled ENERGY1And across the terminals of the RETURN path to measure the output voltage therebetween. A second voltage sense circuit 924 is coupled to the circuit labeled ENERGY2And across the terminals of the RETURN path to measure the output voltage therebetween. As shown, a current sensing circuit 914 is placed in series with the RETURN leg on the secondary side of the power transformer 908 to measure the output current of either energy mode. If a different return path is provided for each energy modality, a separate current sensing circuit should be provided in each return branch. The outputs of the first 912 and second 924 voltage sensing circuits are provided to respective isolation transformers 916, 922 and the output of the current sensing circuit 914 is provided to another isolation transformer 918. The output of the isolation transformers 916, 928, 922 on the primary side of the power transformer 908 (not the patient isolation side) is provided to one or more ADC circuits 926. The digitized output of the ADC circuit 926 is provided to the processor 902 for further processing and computation. Output voltage and output current feedback information may be employed to adjust the output voltage and current provided to the surgical instrument and calculate parameters such as output impedance. Input/output communication between the processor 902 and the patient isolation circuitry is provided through an interface circuit 920. The sensors may also be in electrical communication with the processor 902 through an interface circuit 920.

In one aspect, the impedance may be determined by processor 902 by coupling to a circuit labeled ENERGY1First voltage sense circuit 912 coupled across terminals of/RETURN or otherwise labeled ENERGY2The output of the second voltage sense circuit 924 across the terminals of the/RETURN is divided by the output of the current sense circuit 914 arranged in series with the RETURN leg on the secondary side of the power transformer 908. The outputs of the first 912 and second 924 voltage sensing circuits are provided to separate isolation transformers 916,922,and the output of the current sensing circuit 914 is provided to another isolation transformer 916. The digitized voltage and current sense measurements from the ADC circuit 926 are provided to the processor 902 for use in calculating the impedance. For example, the first ENERGY modality ENERGY1May be ultrasonic ENERGY and the second ENERGY modality ENERGY2May be RF energy. However, in addition to ultrasound and bipolar or monopolar RF energy modalities, other energy modalities include irreversible and/or reversible electroporation and/or microwave energy, among others. Further, while the example shown in fig. 2 shows that a single RETURN path RETURN may be provided for two or more ENERGY modalities, in other aspects, a single RETURN path RETURN may be provided for each ENERGY modality ENERGY nProviding multiple RETURN paths RETURNn. Thus, as described herein, the ultrasound transducer impedance may be measured by dividing the output of the first voltage sensing circuit 912 by the output of the current sensing circuit 914, and the tissue impedance may be measured by dividing the output of the second voltage sensing circuit 924 by the output of the current sensing circuit 914.

As shown in fig. 2, the generator 900 including at least one output port may include a power transformer 908 having a single output and multiple taps to provide power to the end effector in the form of one or more energy modalities (such as ultrasound, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave energy, etc.), for example, depending on the type of tissue treatment being performed. For example, the generator 900 may deliver energy with higher voltages and lower currents to drive an ultrasound transducer, with lower voltages and higher currents to drive an RF electrode for sealing tissue, or with a coagulation waveform for spot coagulation using monopolar or bipolar RF electrosurgical electrodes. The output waveform from the generator 900 may be manipulated, switched, or filtered to provide a frequency to the end effector of the surgical instrument. The connection of the ultrasonic transducer to the output of the generator 900 will preferably be at what is labelled ENERGY 1And the output of RETURN, as shown in fig. 2. In one example, the connection of the RF bipolar electrode to the output of generator 900 will preferably be at what is labeled ENERGY2And the output of RETURN. In the case of unipolar output, the preferred connectionWill be an active electrode (e.g. a light cone or other probe) to ENERGY2The sum of the outputs is connected to a suitable RETURN pad at the RETURN output.

Additional details are disclosed in U.S. patent application publication 2017/0086914 entitled "TECHNIQUES FOR OPERATIONANGGENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICALINDERENMENTS," published 3, 30, 2017, which is incorporated herein by reference in its entirety.

As used throughout this specification, the term "wireless" and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some aspects they may not. The communication module may implement any of a number of wireless or wired communication standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 series), WiMAX (IEEE 802.16 series), IEEE 802.20, Long Term Evolution (LTE), Ev-DO, HSPA +, HSDPA +, HSUPA +, EDGE, GSM, GPRS, CDMA, TDMA, DECT, bluetooth, and ethernet derivatives thereof, as well as any other wireless and wired protocols designated as 3G, 4G, 5G, and above. The computing module may include a plurality of communication modules. For example, a first communication module may be dedicated for shorter range wireless communications such as Wi-Fi and bluetooth, and a second communication module may be dedicated for longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and the like.

As used herein, a processor or processing unit is an electronic circuit that performs operations on some external data source, typically a memory or some other data stream. The term is used herein to refer to a central processing unit (cpu) in one or more systems, especially systems on a chip (SoC), that combine multiple specialized "processors".

As used herein, a system-on-chip or system-on-chip (SoC or SoC) is an integrated circuit (also referred to as an "IC" or "chip") that integrates all of the components of a computer or other electronic system. It may contain digital, analog, mixed signal, and often radio frequency functions-all on a single substrate. The SoC integrates a microcontroller (or microprocessor) with advanced peripherals such as a Graphics Processing Unit (GPU), Wi-Fi modules, or coprocessors. The SoC may or may not include built-in memory.

As used herein, a microcontroller or controller is a system that integrates a microprocessor with peripheral circuitry and memory. The microcontroller (or MCU of the microcontroller unit) may be implemented as a small computer on a single integrated circuit. It may be similar to a SoC; the SoC may include a microcontroller as one of its components. Microcontrollers may include one or more Core Processing Units (CPUs) as well as memory and programmable input/output peripherals. Program memory in the form of ferroelectric RAM, NOR flash memory or OTP ROM as well as a small amount of RAM are often included on the chip. In contrast to microprocessors used in personal computers or other general-purpose applications composed of various discrete chips, microcontrollers may be used in embedded applications.

As used herein, the term controller or microcontroller may be a stand-alone IC or chip device that interfaces with peripheral devices. This may be a link between two components of a computer or a controller on an external device for managing the operation of (and connection to) the device.

Any of the processors or microcontrollers as described herein may be any single-core or multi-core processor, such as those supplied by Texas Instruments under the trade name ARM Cortex. In one aspect, the processor may be, for example, an LM4F230H5QR ARM Cortex-M4F processor core available from Texas Instruments, which includes: 256KB of single cycle flash or other non-volatile memory (up to 40MHz) on-chip memory, prefetch buffer for performance improvement above 40MHz, 32KB of single cycle Serial Random Access Memory (SRAM), load withInternal read-only memory (ROM) for software, electrically erasable programmable read-only memory (EEPROM) for 2KB, one or more Pulse Width Modulation (PWM) modules, one or more Quadrature Encoder Input (QEI) analog, one or more 12-bit analog-to-digital converters with 12 analog input channels(ADC), and other features readily available.

In one example, the processor may include a safety controller that includes two series of controller-based controllers, such as TMS570 and RM4x, also available from Texas Instruments under the trade name Hercules ARM Cortex R4. The safety controller may be configured specifically for IEC61508 and ISO 26262 safety critical applications, etc., to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.

The modular device includes modules (e.g., as described in connection with fig. 3) receivable within a surgical hub and surgical devices or instruments connectable to the various modules for connection or mating with a corresponding surgical hub. Modular devices include, for example, smart surgical instruments, medical imaging devices, suction/irrigation devices, smoke ejectors, energy generators, respirators, insufflators, and displays. The modular devices described herein may be controlled by a control algorithm. The control algorithms may be executed on the modular devices themselves, on a surgical hub paired with a particular modular device, or on both the modular devices and the surgical hub (e.g., via a distributed computing architecture). In some examples, the control algorithm of the modular device controls the device based on data sensed by the modular device itself (i.e., by sensors in, on, or connected to the modular device). This data may be related to the patient being operated on (e.g., tissue characteristics or insufflation pressure) or the modular device itself (e.g., rate at which the knife is advanced, motor current, or energy level). For example, the control algorithm of a surgical stapling and severing instrument may control the rate at which the motor of the instrument drives its knife through tissue based on the resistance encountered by the knife as it advances.

Fig. 3 illustrates one form of a surgical system 1000 including a generator 1100 and various surgical instruments 1104, 1106, 1108 that may be used therewith, wherein the surgical instrument 1104 is an ultrasonic surgical instrument, the surgical instrument 1106 is an RF electrosurgical instrument, and the multifunctional surgical instrument 1108 is a combination ultrasonic/RF electrosurgical instrument. The generator 1100 may be configured for use with a variety of surgical devices. According to various forms, the generator 1100 may be configurable for use with different types of surgical instruments including, for example, an ultrasonic surgical instrument 1104, an RF electrosurgical instrument 1106, and a multifunctional surgical instrument 1108 that integrates both RF energy and ultrasonic energy delivered simultaneously from the generator 1100. Although in the form of fig. 3, the generator 1100 is shown as being separate from the surgical instruments 1104, 1106, 1108, in one form, the generator 1100 may be integrally formed with any of the surgical instruments 1104, 1106, 1108 to form an integrated surgical system. The generator 1100 includes an input device 1110 located on the front panel of the console of the generator 1100. Input device 1110 may include any suitable device that generates signals suitable for programming the operation of generator 1100. The generator 1100 may be configured for wired or wireless communication.

The generator 1100 is configured to drive a plurality of surgical instruments 1104, 1106, 1108. The first surgical instrument is an ultrasonic surgical instrument 1104 and includes a handpiece 1105(HP), an ultrasonic transducer 1120, a shaft 1126, and an end effector 1122. The end effector 1122 includes an ultrasonic blade 1128 acoustically coupled to an ultrasonic transducer 1120 and a clamp arm 1140. The handpiece 1105 includes a combination of a trigger 1143 for operating the clamp arm 1140 and toggle buttons 1134a, 1134b, 1134c for energizing the ultrasonic blade 1128 and driving the ultrasonic blade 1128 or other functions. Toggle buttons 1134a, 1134b, 1134c may be configured to enable the generator 1100 to power the ultrasound transducer 1120.

The generator 1100 is also configured to drive a second surgical instrument 1106. The second surgical instrument 1106 is an RF electrosurgical instrument and includes a hand piece 1107(HP), a shaft 1127, and an end effector 1124. The end effector 1124 includes electrodes in the clamp arms 1142a, 1142b and returns through the electrical conductor portion of the shaft 1127. These electrodes are coupled to and powered by a bipolar energy source within the generator 1100. The handpiece 1107 includes a trigger 1145 for operating the clamp arms 1142a, 1142b and an energy button 1135 for actuating an energy switch to energize the electrodes in the end effector 1124.

The generator 1100 is also configured to drive a multi-function surgical instrument 1108. The multifunctional surgical instrument 1108 includes a hand piece 1109(HP), a shaft 1129, and an end effector 1125. The end effector 1125 includes an ultrasonic blade 1149 and a clamp arm 1146. The ultrasonic blade 1149 is acoustically coupled to the ultrasonic transducer 1120. The handpiece 1109 includes a combination of a trigger 1147 for operating the clamp arm 1146 and switch buttons 1137a, 1137b, 1137c for energizing the ultrasonic blade 1149 and driving the ultrasonic blade 1149 or other functions. The toggle buttons 1137a, 1137b, 1137c may be configured to enable the generator 1100 to power the ultrasonic transducer 1120, and the bipolar energy source also contained within the generator 1100 to power the ultrasonic blade 1149.

The generator 1100 may be configured for use with a variety of surgical devices. According to various forms, the generator 1100 may be configurable for use with different types of surgical instruments including, for example, an ultrasonic surgical instrument 1104, an RF electrosurgical instrument 1106, and a multifunctional surgical instrument 1108 that integrates RF energy and ultrasonic energy delivered simultaneously from the generator 1100. Although in the form of fig. 3, the generator 1100 is shown as being separate from the surgical instruments 1104, 1106, 1108, in another form, the generator 1100 may be integrally formed with any of the surgical instruments 1104, 1106, 1108 to form an integrated surgical system. As discussed above, the generator 1100 includes an input device 1110 located on the front panel of the console of the generator 1100. Input device 1110 may include any suitable device that generates signals suitable for programming the operation of generator 1100. The generator 1100 may also include one or more output devices 1112. Additional aspects of generators and surgical instruments for digitally generating electrical signal waveforms are described in U.S. patent publication US-2017-0086914-A1, which is incorporated herein by reference in its entirety.

Fig. 4 is an end effector 1122 of an exemplary ultrasonic device 1104 in accordance with at least one aspect of the present disclosure. The end effector 1122 may include a blade 1128 that may be coupled to an ultrasonic transducer 1120 via a waveguide. When driven by the ultrasonic transducer 1120, the blade 1128 may vibrate and, when in contact with tissue, may cut and/or coagulate the tissue, as described herein. In accordance with various aspects, and as shown in fig. 4, the end effector 1122 may further comprise a clampAn arm 1140 that may be configured to cooperate with a knife 1128 of the end effector 1122. With knife 1128, clamp arm 1140 can comprise a set of jaws. The clamp arm 1140 may be pivotally connected at a distal end of the shaft 1126 of the instrument portion 1104. Clamp arm 1140 can comprise a clamp arm tissue pad 1163, and clamp arm tissue pad 1163 can be formed fromOr other suitable low friction material. A pad 1163 may be mounted for cooperation with the knife 1128, wherein pivotal movement of the clamp arm 1140 positions the clamp pad 1163 generally parallel to and in contact with the knife 1128. With this configuration, the bite of tissue to be clamped can be grasped between the tissue pad 1163 and the knife 1128. The tissue pad 1163 may have a serrated configuration including a plurality of axially spaced proximally extending gripping teeth 1161 to cooperate with the knife 1128 to enhance the grip of tissue. The clamp arm 1140 may be transitioned from the open position shown in fig. 4 to the closed position (where the clamp arm 1140 is in contact with or proximate to the knife 1128) in any suitable manner. For example, the handpiece 1105 can include a jaw closure trigger. When actuated by the clinician, the jaw closure trigger may pivot the clamp arm 1140 in any suitable manner.

The generator 1100 may be activated to provide a drive signal to the ultrasonic transducer 1120 in any suitable manner. For example, the generator 1100 may include a foot switch 1430 (fig. 5) coupled to the generator 1100 via a foot switch cable 1432. The clinician may activate the ultrasonic transducer 1120, and thereby the ultrasonic transducer 1120 and the knife 1128, by depressing the foot switch 1430. In addition, or in lieu of the foot switch 1430, some aspects of the apparatus 1104 may utilize one or more switches positioned on the handpiece 1105 that, when activated, may cause the generator 1100 to activate the ultrasonic transducer 1120. In one aspect, for example, the one or more switches can include a pair of toggle buttons 1134, 1134a, 1134b (fig. 3), e.g., to determine the operating mode of device 1104. When the toggle button 1134a is depressed, for example, the ultrasound generator 1100 may provide a maximum drive signal to the ultrasound transducer 1120, causing it to produce a maximum ultrasound energy output. Depressing the toggle button 1134b may cause the ultrasound generator 1100 to provide a user selectable drive signal to the ultrasound transducer 1120, causing it to produce an ultrasound energy output that is less than a maximum value. Additionally or alternatively, the device 1104 may include a second switch to, for example, indicate the position of a jaw closure trigger for operating the jaws via the clamp arm 1140 of the end effector 1122. Further, in some aspects, the sonicator 1100 may be activated based on the position of the jaw closure trigger (e.g., ultrasonic energy may be applied when the clinician depresses the jaw closure trigger to close the jaws via the clamp arm 1140).

Additionally or alternatively, the one or more switches can include a toggle button 1134 that, when depressed, causes generator 1100 to provide a pulsed output (fig. 3). The pulses may be provided, for example, at any suitable frequency and grouping. In certain aspects, for example, the power level of the pulse may be the power level associated with the toggle buttons 1134a, 1134b (maximum, less than maximum).

It should be appreciated that the device 1104 may include any combination of toggle buttons 1134a, 1134b, 1134 (FIG. 3). For example, the device 1104 may be configured to be able to have only two toggle buttons: a toggle button 1134a for producing a maximum ultrasonic energy output and a toggle button 1134 for producing a pulsed output at or below a maximum power level. Thus, the drive signal output configuration of generator 1100 may be five continuous signals, or any discrete number of single pulse signals (1, 2, 3, 4, or 5). In certain aspects, a particular drive signal configuration may be controlled, for example, based on an EEPROM setting and/or one or more user power level selections in generator 1100.

In some aspects, an on/off switch may be provided in place of toggle button 1134 (fig. 3). For example, the device 1104 may include a toggle button 1134a and a dual toggle button 1134b for producing a continuous output at a maximum power level. In the first detent position, the switch button 1134b may produce a continuous output at less than the maximum power level, and in the second detent position, the switch button 1134b may produce a pulsed output (e.g., at or less than the maximum power level, depending on the EEPROM setting).

In some aspects, the RF electrosurgical end effector 1124, 1125 (fig. 3) can also include a pair of electrodes. The electrodes may be in communication with the generator 1100, for example, via a cable. The electrodes may be used, for example, to measure the impedance of a tissue bite existing between the grasping arms 1142a, 1146 and the blades 1142b, 1149. Generator 1100 may provide a signal (e.g., a non-therapeutic signal) to the electrodes. For example, the impedance of tissue occlusion can be found by monitoring the current, voltage, etc. of the signal.

In various aspects, the generator 1100 may include several separate functional elements, such as modules and/or blocks, as shown in fig. 5, in the illustration of the surgical system 1000 of fig. 3. Different functional elements or modules may be configured to drive different kinds of surgical devices 1104, 1106, 1108. For example, the ultrasonic generator module may drive an ultrasonic device, such as ultrasonic surgical device 1104. The electrosurgical/RF generator module may drive an electrosurgical device 1106. For example, the modules may generate respective drive signals for driving the surgical devices 1104, 1106, 1108. In various aspects, the ultrasonic generator module and/or the electrosurgical/RF generator module can each be integrally formed with the generator 1100. Alternatively, one or more of the modules may be provided as a separate circuit module that is electrically coupled to the generator 1100. (the module is shown in phantom to illustrate this portion.) furthermore, in some aspects, the electrosurgical/RF generator module may be integrally formed with the ultrasonic generator module, or vice versa.

According to the aspects, the ultrasonic generator module may generate one or more drive signals of a particular voltage, current, and frequency (e.g., 55,500 cycles per second or Hz). The one or more drive signals may be provided to ultrasound device 1104, in particular transducer 1120, which may operate, for example, as described above. In one aspect, the generator 1100 may be configured to generate drive signals of specific voltage, current, and/or frequency output signals that may be modified in terms of high resolution, accuracy, and reproducibility.

According to the aspects, the electrosurgical/RF generator module may generate one or more drive signals having an output power sufficient to perform bipolar electrosurgery using Radio Frequency (RF) energy. In a bipolar electrosurgical application, the drive signal may be provided to, for example, an electrode of the electrosurgical device 1106, as described above. Accordingly, the generator 1100 may be configured for therapeutic purposes by applying electrical energy to tissue sufficient to treat the tissue (e.g., coagulate, cauterize, tissue weld, etc.).

Generator 1100 may include an input device 2150 located, for example, on a front panel of a console of generator 1100 (fig. 8B). Input device 2150 may include any suitable device that generates signals suitable for programming the operation of generator 1100. In operation, a user may program or otherwise control the operation of generator 1100 using input device 2150. The input device 2150 can include any suitable device that generates signals that can be used by the generator (e.g., by one or more processors included in the generator) to control the operation of the generator 1100 (e.g., the operation of the ultrasound generator module and/or the electrosurgical/RF generator module). In various aspects, the input device 2150 includes one or more of the following: buttons, switches, thumbwheels, keyboards, keypads, touch screen monitors, pointing devices, remote connections to general purpose or special purpose computers. In other aspects, the input device 2150 can comprise, for example, a suitable user interface, such as one or more user interface screens displayed on a touch screen monitor, for example. Thus, through the input device 2150, a user may set or program various operating parameters of the generator, such as, for example, the current (I), voltage (V), frequency (f), and/or period (T) of one or more drive signals generated by the ultrasound generator module and/or the electrosurgical/RF generator module.

The generator 1100 may also include an output device 2140 located, for example, on the front panel of the generator 1100 console (fig. 8B). Output devices 2140 include one or more devices for providing sensory feedback to a user. Such devices may include, for example, visual feedback devices (e.g., LCD display screens, LED indicators), audio feedback devices (e.g., speakers, buzzers), or tactile feedback devices (e.g., haptic actuators).

Although certain modules and/or blocks of generator 1100 may be described by way of example, it may be appreciated that a greater or lesser number of modules and/or blocks may be used and still fall within the scope of the described aspects. Furthermore, although various aspects may be described in terms of modules and/or blocks for ease of illustration, such modules and/or blocks may be implemented by one or more hardware components (e.g., processors, Digital Signal Processors (DSPs), Programmable Logic Devices (PLDs), Application Specific Integrated Circuits (ASICs), circuits, registers) and/or software components (e.g., programs, subroutines, logic), and/or a combination of hardware and software components.

In one aspect, the ultrasonic generator driver module and the electrosurgical/RF driver module 1110 (fig. 3) may include one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. The modules may include various executable modules such as software, programs, data, drivers, Application Program Interfaces (APIs), and so forth. The firmware may be stored in a non-volatile memory (NVM), such as a bit-mask read-only memory (ROM) or flash memory. In various implementations, storing firmware in ROM may protect flash memory. NVM may include other types of memory including, for example, programmable rom (prom), erasable programmable rom (eprom), electrically erasable programmable rom (eeprom), or battery backed Random Access Memory (RAM) (such as dynamic RAM (dram), double data rate dram (ddram), and/or synchronous dram (sdram)).

In one aspect, the modules include hardware components implemented as processors for executing program instructions for monitoring various measurable characteristics of the devices 1104, 1106, 1108 and generating corresponding output drive signals for operating the devices 1104, 1106, 1108. In aspects in which the generator 1100 is used in conjunction with the device 1104, the drive signal may drive the ultrasonic transducer 1120 in a cutting and/or coagulation mode of operation. Electrical characteristics of the device 1104 and/or tissue can be measured and used to control operational aspects of the generator 1100 and/or can be provided as feedback to a user. In aspects in which the generator 1100 is used in conjunction with the device 1106, the drive signal can supply electrical energy (e.g., RF energy) to the end effector 1124 in a cutting, coagulation, and/or dehydration mode. Electrical characteristics of the device 1106 and/or tissue can be measured and used to control operational aspects of the generator 1100 and/or can be provided as feedback to a user. In various aspects, as described previously, the hardware components may be implemented as DSPs, PLDs, ASICs, circuits and/or registers. In one aspect, the processor may be configured to store and execute computer software program instructions to generate step function output signals for driving various components of the apparatus 1104, 1106, 1108 (e.g., the ultrasonic transducer 1120 and the end effectors 1122, 1124, 1125).

An electromechanical ultrasound system includes an ultrasound transducer, a waveguide, and an ultrasonic blade. The electromechanical ultrasound system has an initial resonant frequency defined by the physical characteristics of the ultrasound transducer, the waveguide, and the ultrasonic blade. The ultrasonic transducer being excited by an alternating voltage Vg(t) Signal and Current Ig(t) the resonant frequency of the signal is equal to the electromechanical ultrasound system. When the electromechanical ultrasonic system is at resonance, the voltage Vg(t) Signal and Current Ig(t) the phase difference between the signals is zero. In other words, at resonance, the inductive impedance is equal to the capacitive impedance. As the ultrasonic blade heats up, the compliance of the ultrasonic blade (modeled as an equivalent capacitance) causes the resonant frequency of the electromechanical ultrasonic system to shift. As a result, the inductive impedance is no longer equal to the capacitive impedance, resulting in a mismatch between the drive frequency and the resonant frequency of the electromechanical ultrasound system. The system now operates "off-resonance". The mismatch between the drive frequency and the resonant frequency is manifested as a voltage V applied to the ultrasonic transducerg(t) Signal and Current Ig(t) phase difference between the signals. The generator electronics can easily monitor the voltage Vg(t) and current Ig(t) the phase difference between the signals and the drive frequency can be continuously adjusted until the phase difference is again zero. At this point, the new drive frequency is equal to the new resonant frequency of the electromechanical ultrasound system. The change in phase and/or frequency can be used as an indirect measure of the temperature of the ultrasonic blade.

As shown in fig. 6, the electromechanical properties of the ultrasound transducer can be modeled as an equivalent circuit comprising a first branch with a static capacitance and a second "dynamic" branch with series-connected inductance, resistance and capacitance defining the electromechanical properties of the resonator. The known ultrasonic generator may comprise a tuning inductor for detuning the static capacitance at the resonance frequency, such that substantially all of the driving signal current of the generator flows into the dynamic branch. Thus, by using a tuning inductor, the generator's drive signal current is representative of the dynamic branch current, and thus the generator is able to control its drive signal to maintain the resonant frequency of the ultrasound transducer. The tuning inductor may also transform the phase impedance profile of the ultrasonic transducer to improve the frequency locking capability of the generator. However, the tuning inductor must be matched to the particular static capacitance of the ultrasound transducer at the operating resonant frequency. In other words, different ultrasonic transducers with different static capacitances require different tuning inductors.

Fig. 6 illustrates an equivalent circuit 1500 of an ultrasound transducer, such as ultrasound transducer 1120, according to one aspect. The circuit 1500 includes a series-connected inductor L having electromechanical properties defining a resonator sResistance RsAnd a capacitor CsAnd a first "dynamic" branch C having a static capacitance0. Can be driven at a voltage Vg(t) receiving a drive current I from a generatorg(t) wherein the dynamic current Im(t) flows through the first branch and a current Ig(t)-Im(t) flows through the capacitive branch. Can be controlled by properly controlling Ig(t) and Vg(t) to enable control of the electromechanical properties of the ultrasound transducer. As mentioned above, known generator architectures may include a tuned inductor L in a parallel resonant circuitt(shown in dashed lines in fig. 6), the tuning inductor being used to couple the static capacitance C0Tuned to the resonance frequency so that substantially the current output I of the generatorgAll of (t) flow through the dynamic leg. In this way, by controlling the generator current output Ig(t) to realize the dynamic branch current Im(t) control. However, the tuning inductor LtStatic capacitance C to ultrasonic transducer0Are specific and different ultrasonic transducers with different static capacitances require different tuning inductors Lt. Furthermore, because the inductor L is tunedtAt a single resonant frequencyLower and static capacitance C0So that the dynamic branch current I is only guaranteed at this frequencym(t) precise control. As the frequency shifts downward with transducer temperature, precise control of the dynamic branch current is compromised.

Various aspects of the generator 1100 may not rely on tuning the inductor LtTo monitor the dynamic branch current Im(t) of (d). Rather, the generator 1100 may use a static capacitance C between applications of power for a particular ultrasonic surgical device 11040Along with drive signal voltage and current feedback data to determine dynamic branch current I on a dynamic travel basis (e.g., in real time)mThe value of (t). Thus, such aspects of the generator 1100 can provide virtual tuning to simulate a tuned system or static capacitance C at any frequency0Is resonant, rather than only at the static capacitance C0Is resonant at a single resonant frequency as indicated by the nominal value of (a).

Fig. 7 is a simplified block diagram of an aspect of a generator 1100 that provides inductorless tuning, among other benefits, as described above. Fig. 8A-8C illustrate an architecture of the generator 1100 of fig. 7, according to one aspect. Referring to fig. 7, generator 1100 may include a patient isolation stage 1520 in communication with a non-isolation stage 1540 via a power transformer 1560. Secondary winding 1580 of power transformer 1560 is included in isolation stage 1520 and may include a tapped configuration (e.g., a center-tapped or non-center-tapped configuration) to define drive signal outputs 1600a, 1600b, 1600c for outputting drive signals to different surgical devices, such as, for example, ultrasonic surgical device 1104 and electrosurgical device 1106. Specifically, drive signal outputs 1600a, 1600b, 1600c may output a drive signal (e.g., a 420V RMS drive signal) to ultrasonic surgical device 1104, and drive signal outputs 1600a, 1600b, 1600c may output a drive signal (e.g., a 100V RMS drive signal) to electrosurgical device 1106, with output 1600b corresponding to the center tap of power transformer 1560. Non-isolated stage 1540 may include a power amplifier 1620 having an output connected to primary winding 1640 of power transformer 1560. In certain aspects, the power amplifier 1620 may comprise a push-pull amplifier, for example. Non-isolation stage 1540 may also include a programmable logic device 1660 for supplying a digital output to a digital-to-analog converter (DAC)1680, which in turn supplies a corresponding analog signal to the input of power amplifier 1620. In certain aspects, programmable logic device 1660 may comprise a Field Programmable Gate Array (FPGA), for example. As a result of controlling the input of power amplifier 1620 via DAC 1680, programmable logic device 1660 may thus control any of a number of parameters (e.g., frequency, waveform shape, waveform amplitude) of the drive signals present at drive signal outputs 1600a, 1600b, 1600 c. In certain aspects and as described below, programmable logic device 1660 in conjunction with a processor (e.g., processor 1740 described below) can implement a plurality of Digital Signal Processing (DSP) based algorithms and/or other control algorithms to control parameters of the drive signals output by generator 1100.

Power may be supplied to the power rails of power amplifier 1620 by switch-mode regulator 1700. In certain aspects, the switch mode regulator 1700 may comprise, for example, an adjustable buck regulator. As described above, non-isolated stage 1540 may also include a processor 1740 which in one aspect may include a DSP processor such as ADSP-21469SHARC DSP, available from Analog Devices, Norwood, Mass. In certain aspects, processor 1740 may control the operation of switch-mode power converter 1700 in response to voltage feedback data received by processor 1740 from power amplifier 1620 via analog-to-digital converter (ADC) 1760. In one aspect, for example, processor 1740 can receive as input via ADC 1760 a waveform envelope of a signal (e.g., an RF signal) being amplified by power amplifier 1620. Processor 1740 may then control switch-mode regulator 1700 (e.g., via a Pulse Width Modulation (PWM) output) so that the rail voltage supplied to power amplifier 1620 tracks the waveform envelope of the amplified signal. By dynamically modulating the rail voltage of the power amplifier 1620 based on the waveform envelope, the efficiency of the power amplifier 1620 may be significantly increased relative to a fixed rail voltage amplifier scheme. The processor 1740 may be configured for wired or wireless communication.

In certain aspects and as discussed in more detail in connection with fig. 9A-9B, programmable logic device 1660, in conjunction with processor 1740, can implement a Direct Digital Synthesizer (DDS) control scheme to control the waveform shape, frequency, and/or amplitude of the drive signals output by generator 1100. In one aspect, for example, the programmable logic device 1660 may implement the DDS control algorithm 2680 (fig. 9A) by retrieving (recall) waveform samples stored in a dynamically updated look-up table (LUT), such as a RAM LUT that may be embedded in an FPGA. The control algorithm is particularly useful for ultrasound applications where an ultrasound transducer, such as ultrasound transducer 1120, may be driven by a purely sinusoidal current at its resonant frequency. Because other frequencies may excite parasitic resonances, minimizing or reducing the total distortion of the dynamic branch current may correspondingly minimize or reduce adverse resonance effects. Because the waveform shape of the drive signal output by the generator 1100 is affected by various sources of distortion present in the output drive circuitry (e.g., power transformer 1560, power amplifier 1620), voltage and current feedback data based on the drive signal may be input into an algorithm, such as an error control algorithm implemented by processor 1740, that compensates for the distortion by pre-distorting or modifying the waveform samples stored in the LUT, as appropriate, on a dynamic ongoing basis (e.g., in real time). In one form, the amount or degree of pre-distortion applied to the LUT samples may be based on the error between the calculated dynamic branch current and the desired current waveform shape, where the error may be determined on a sample-by-sample basis. In this manner, the pre-distorted LUT samples, when processed by the drive circuit, can cause the dynamic branch drive signal to have a desired waveform shape (e.g., sinusoidal shape) to optimally drive the ultrasound transducer. Thus, in such aspects, when distortion effects are taken into account, the LUT waveform samples will therefore not represent the desired waveform shape of the drive signal, but rather the desired waveform shape that ultimately produces the desired waveform shape of the dynamic branch drive signal.

The non-isolation stage 1540 may also include an ADC 1780 and an ADC 1800 coupled to the output of the power transformer 1560 via respective isolation transformers 1820, 1840 for sampling the voltage and current, respectively, of the drive signal output by the generator 1100. In certain aspects, the ADCs 1780, 1800 may be configured to be capable of sampling at high speed (e.g., 80Msps) to enable oversampling of the drive signal. In one aspect, for example, the sampling speed of the ADCs 1780, 1800 may enable approximately 200X (as a function of frequency) oversampling of the drive signal. In certain aspects, the sampling operations of the ADCs 1780, 1800 may be performed by a single ADC that receives the input voltage signal and the current signal via a two-way multiplexer. By using high speed sampling in aspects of the generator 1100, among other things, computation of complex currents flowing through the dynamic branch (which in some aspects can be used to implement the above-described DDS based waveform shape control), accurate digital filtering of the sampled signal, and computation of actual power consumption with high accuracy can be enabled. The voltage and current feedback data output by the ADCs 1780, 1800 may be received and processed (e.g., FIFO buffered, multiplexed) by the programmable logic device 1660 and stored in data memory for subsequent retrieval by, for example, the DSP processor 1740. As described above, the voltage and current feedback data may be used as inputs to an algorithm for pre-distorting or modifying LUT waveform samples in a dynamic marching manner. In certain aspects, when voltage and current feedback data pairs are collected, this may entail indexing each stored voltage and current feedback data pair based on or otherwise associated with a corresponding LUT sample output by programmable logic device 1660. Synchronizing the LUT samples with the voltage and current feedback data in this manner facilitates accurate timing and stability of the predistortion algorithm.

In certain aspects, voltage and current feedback data may be used to control the frequency and/or amplitude (e.g., current amplitude) of the drive signal. In one aspect, for example, voltage and current feedback data may be used to determine an impedance phase, such as a phase difference between voltage and current drive signals. The frequency of the drive signal may then be controlled to minimize or reduce the difference between the determined impedance phase and the impedance phase set point (e.g., 0 °), thereby minimizing or reducing the effects of harmonic distortion and correspondingly improving impedance phase measurement accuracy. The determination of the phase impedance and frequency control signals may be implemented in processor 1740, for example, where the frequency control signals are supplied as inputs to a DDS control algorithm implemented by programmable logic device 1660.

The impedance phase may be determined by fourier analysis. In one aspect, the generator voltage V may be determined using a Fast Fourier Transform (FFT) or a Discrete Fourier Transform (DFT) as followsg(t) drive signal and generator current Ig(t) phase difference between drive signals:

Figure BDA0002672394010000392

evaluating the fourier transform at sinusoidal frequencies yields:

Figure BDA0002672394010000395

Figure BDA0002672394010000396

other methods include weighted least squares estimation, kalman filtering, and space vector based techniques. For example, almost all processing in the FFT or DFT techniques may be performed in the digital domain with the aid of, for example, a 2-channel high speed ADC 1780, 1800. In one technique, digital signal samples of the voltage signal and the current signal are fourier transformed with an FFT or DFT. The phase angle at any point in time can be calculated by the following equation

Figure BDA0002672394010000402

WhereinIs a phase angle, f is a frequency, t is a time, andis the phase at t-0.

For determining the voltage Vg(t) Signal and Current Ig(t) another technique for phase difference between signals is the zero crossing method and produces very accurate results. For voltages V having the same frequencyg(t) Signal and Current Ig(t) signal, voltage signal Vg(t) the start of each negative-to-positive zero crossing trigger pulse, and the current signal IgEach negative to positive zero crossing of (t) triggers the end of a pulse. The result is a pulse train having a pulse width proportional to the phase angle between the voltage signal and the current signal. In one aspect, the pulse train may be passed through an averaging filter to obtain a measure of the phase difference. Furthermore, if positive-to-negative zero crossings are also used in a similar manner, and the results averaged, any effects of DC and harmonic components may be reduced. In one implementation, the analog voltage Vg(t) Signal and Current Ig(t) the signal is converted to a digital signal which is high if the analog signal is positive and low if the analog signal is negative. High precision phase estimation requires a sharp transition between high and low values. In one aspect, Schmitt triggers and RC stabilization networks may be employed to convert analog signals to digital signals. In other aspects, edge-triggered RS flip-flops (flip-flops) and ancillary circuits may be employed. In yet another aspect, the zero crossing technique may employ exclusive or (XOR) gates.

Other techniques for determining the phase difference between the voltage and current signals include Lissajous diagrams and monitoring of images; methods such as the three volt method, the cross-coil method, the vector voltmeter, and the vector impedance method; and the use of phase-standard instruments, phase-locked loops, and "phase measurements" (Peter O 'Shea, 2000CRC Press LLC, < http:// www.engnetbase.com >) as by Peter O' Shea,2000CRC Press, Inc. < http:// www.engnetbase.com >, which are incorporated herein by reference.

In another aspect, for example, the current feedback data can be monitored to maintain the current amplitude of the drive signal at a current amplitude set point. The current magnitude set point may be specified directly or determined indirectly based on a particular voltage magnitude and power set point. In certain aspects, control of the current amplitude may be achieved by a control algorithm in processor 1740, such as, for example, a proportional-integral-derivative (PID) control algorithm. Variables controlled by the control algorithm for appropriately controlling the current magnitude of the drive signal may include, for example, scaling of LUT waveform samples stored in programmable logic device 1660 and/or full-scale output voltage via DAC1680 of DAC1860 (which supplies an input to power amplifier 1620).

Non-isolated stage 1540 may also include processor 1900 for providing User Interface (UI) functionality, among other things. In one aspect, processor 1900 may include, for example, an Atmel AT91SAM9263 processor with an ARM926EJ-S core available from Atmel Corporation, San Jose, calif. Examples of UI functions supported by the processor 1900 may include audible and visual user feedback, communication with peripheral devices (e.g., via a Universal Serial Bus (USB) interface), communication with the foot switch 1430, communication with an input device 2150 (e.g., a touch screen display), and communication with an output device 2140 (e.g., a speaker). Processor 1900 may communicate with processor 1740 and a programmable logic device (e.g., via a Serial Peripheral Interface (SPI) bus). Although the processor 1900 may primarily support UI functions, in some aspects it may also cooperate with the processor 1740 to achieve risk mitigation. For example, processor 1900 may be programmed to monitor various aspects of user input and/or other input (e.g., touch screen input 2150, foot pedal 1430 input, temperature sensor input 2160) and disable the drive output of generator 1100 when an error condition is detected.

In certain aspects, processor 1740 (fig. 7, 8A) and processor 1900 (fig. 7, 8B) may determine and monitor an operational state of generator 1100. With respect to processor 1740, the operational state of generator 1100 may, for example, indicate to processor 1740 which control and/or diagnostic processes are being implemented. For processor 1900, the operational state of generator 1100 may, for example, indicate which elements of a user interface (e.g., display screen, sound) are presented to the user. Processors 1740, 1900 may independently maintain the current operating state of generator 1100 and identify and evaluate possible transitions of the current operating state. Processor 1740 may serve as a master in this relationship and determine when transitions between operating states may occur. The processor 1900 may note valid transitions between operating states and may verify that a particular transition is appropriate. For example, when processor 1740 instructs processor 1900 to transition to a particular state, processor 1900 may verify that the requested transition is valid. In the event that processor 1900 determines that the requested inter-state transition is invalid, processor 1900 may cause generator 1100 to enter a failure mode.

Non-isolated stage 1540 may also include controller 1960 (fig. 7, 8B) for monitoring input device 2150 (e.g., capacitive touch sensor, capacitive touch screen for turning generator 1100 on and off). In certain aspects, the controller 1960 can include at least one processor and/or other controller device in communication with the processor 1900. In one aspect, for example, the controller 1960 can include a processor (e.g., a Mega 1688 bit controller available from Atemel) configured to be able to monitor user input provided via one or more capacitive touch sensors. In one aspect, the controller 1960 can include a touchscreen controller (e.g., a QT5480 touchscreen controller available from Atemel) to control and manage the acquisition of touch data from a capacitive touchscreen.

In certain aspects, the controller 1960 may continue to receive operating power (e.g., via a line from a power source of the generator 1100, such as the power source 2110 (fig. 7) discussed below) when the generator 1100 is in a "power off state. In this way, controller 1960 may continue to monitor input device 2150 (e.g., a capacitive touch sensor located on the front panel of generator 1100) for turning generator 1100 on and off. When the generator 1100 is in the "power off" state, if activation of the user "on/off input device 2150 is detected, the controller 1960 can wake up the power source (e.g., enable operation of one or more DC/DC voltage converters 2130 (fig. 7) of the power source 2110). Controller 1960 can begin a sequence that transitions generator 1100 to a "power on" state. Conversely, when generator 1100 is in a "power on" state, if activation of "on/off input device 2150 is detected, controller 1960 may begin a sequence that transitions generator 1100 to a" power off "state. In certain aspects, for example, controller 1960 may report activation of "on/off input device 2150 to processor 1900, which in turn implements the desired sequence of processes to transition generator 1100 to a" power off "state. In such aspects, the controller 1960 may not have the independent ability to remove power from the generator 1100 after the "power off" state has been established.

In certain aspects, the controller 1960 can cause the generator 1100 to provide audible or other sensory feedback for alerting a user that a "power on" or "power off sequence has begun. This alert may be provided at the beginning of a "power on" or "power off" sequence and before the beginning of other processes associated with that sequence.

In certain aspects, the isolation stage 1520 may include instrument interface circuitry 1980 to provide a communication interface, for example, between control circuitry of the surgical device (e.g., control circuitry including a handpiece switch) and components of the non-isolation stage 1540 (such as, for example, programmable logic device 1660, processor 1740, and/or processor 1900). The instrument interface circuit 1980 may exchange information with components of the non-isolated stage 1540 via a communication link that maintains a suitable degree of electrical isolation between the stages 1520, 1540, such as, for example, an Infrared (IR) based communication link. For example, instrument interface circuit 1980 may be supplied with power using a low drop-out voltage regulator powered by an isolation transformer, which is driven from non-isolated stage 1540.

In one aspect, the instrument interface circuit 1980 may include a programmable logic device 2000 (e.g., an FPGA) in communication with the signal conditioning circuit 2020 (fig. 7 and 8C). The signal conditioning circuit 2020 may be configured to receive a periodic signal (e.g., a 2kHz square wave) from the programmable logic device 2000 to generate a bipolar interrogation signal having the same frequency. For example, the interrogation signal may be generated using a bipolar current source fed by a differential amplifier. The interrogation signal may be sent to the surgical device control circuit (e.g., by using a conductive pair in a cable connecting the generator 1100 to the surgical device) and monitored to determine the state or configuration of the control circuit. For example, the control circuit may include a plurality of switches, resistors, and/or diodes to modify one or more characteristics (e.g., amplitude, correction) of the interrogation signal such that a state or configuration of the control circuit may be uniquely discerned based on the one or more characteristics. In one aspect, for example, the signal conditioning circuit 2020 may include an ADC for generating samples of a voltage signal in an input of the control circuit derived from the interrogation signal by the control circuit. Programmable logic device 2000 (or a component of non-isolation stage 1540) may then determine the state or configuration of the control circuit based on the ADC samples.

In one aspect, the instrument interface circuit 1980 may include a first data circuit interface 2040 to enable the exchange of information between the programmable logic device 2000 (or other element of the instrument interface circuit 1980) and a first data circuit disposed in or otherwise associated with the surgical device. In certain aspects, for example, the first data circuit 2060 may be provided in a cable integrally attached to the surgical device handpiece or provided in an adapter for interfacing a particular surgical device type or model with the generator 1100. In certain aspects, the first data circuit may include a non-volatile storage device, such as an electrically erasable programmable read-only memory (EEPROM) device. In certain aspects and referring again to fig. 7, the first data circuit interface 2040 may be implemented independently of the programmable logic device 2000 and include suitable circuitry (e.g., discrete logic devices, processors) to enable communication between the programmable logic device 2000 and the first data circuit. In other aspects, first data circuit interface 2040 may be integral to programmable logic device 2000.

In certain aspects, the first data circuit 2060 may store information associated with the particular surgical device associated. Such information may include, for example, a model number, a serial number, a number of operations in which the surgical device has been used, and/or any other type of information. This information may be read by instrument interface circuitry 1980 (e.g., by programmable logic device 2000), transmitted to components of non-isolation stage 1540 (e.g., to programmable logic device 1660, processor 1740, and/or processor 1900), presented to a user via output device 2140, and/or to control functions or operations of generator 1100. Additionally, any type of information may be sent to the first data circuit 2060 via the first data circuit interface 2040 (e.g., using the programmable logic device 2000) for storage therein. Such information may include, for example, the updated number of operations in which the surgical device is used and/or the date and/or time of its use.

As previously discussed, the surgical instrument is detachable from the handpiece (e.g., the instrument 1106 is detachable from the handpiece 1107) to facilitate instrument interchangeability and/or disposability. In such cases, the ability of the known generator to identify the particular instrument configuration used and to optimize the control and diagnostic procedures accordingly may be limited. However, from a compatibility perspective, solving this problem by adding readable data circuitry to the surgical device instrument is problematic. For example, designing a surgical device to remain backward compatible with a generator lacking the requisite data reading functionality may be impractical due to, for example, different signal schemes, design complexity, and cost. Other aspects of the instrument address these issues by using a data circuit that can be economically implemented in existing surgical instruments with minimal design changes to maintain compatibility of the surgical device with current generator platforms.

In addition, aspects of the generator 1100 may enable communication with instrument-based data circuitry. For example, the generator 1100 may be configured to communicate with a second data circuit included in an instrument (e.g., instruments 1104, 1106, or 1108) of the surgical device. The instrument interface circuit 1980 may include a second data circuit interface 2100 for enabling this communication. In one aspect, second data circuit interface 2100 may comprise a tri-state digital interface, although other interfaces may also be used. In certain aspects, the second data circuit may generally be any circuit for transmitting and/or receiving data. In one aspect, the second data circuit may store information associated with the associated particular surgical instrument. Such information may include, for example, a model number, a serial number, a number of operations in which the surgical instrument has been used, and/or any other type of information. Additionally or alternatively, any type of information may be sent to the second data circuit via the second data circuit interface 2100 (e.g., using the programmable logic device 2000) for storage therein. Such information may include, for example, the number of updates to the operation in which the surgical instrument is used and/or the date and/or time of its use. In certain aspects, the second data circuit may transmit data collected by one or more sensors (e.g., instrument-based temperature sensors). In certain aspects, the second data circuit may receive data from the generator 1100 and provide an indication (e.g., an LED indication or other visual indication) to a user based on the received data.

In certain aspects, the second data circuit and the second data circuit interface 2100 may be configured such that communication between the programmable logic device 2000 and the second data circuit may be achieved without providing additional conductors for this (e.g., dedicated conductors of a cable connecting the handpiece to the generator 1100). In one aspect, information may be transmitted to and from the second data circuit using a single bus communication scheme implemented on an existing cable, such as one of the conductors used to transmit interrogation signals from signal conditioning circuit 2020 to control circuitry in the handpiece, for example. In this way, design changes or modifications to the surgical device that may otherwise be necessary may be minimized or reduced. Furthermore, because different types of communication may be implemented on a common physical channel (with or without band splitting), the presence of the second data circuit may be "invisible" to generators that do not have the requisite data reading functionality, thus enabling backwards compatibility of surgical device instruments.

In certain aspects, the isolation stage 1520 may include at least one blocking capacitor 2960-1 (fig. 8C) connected to the drive signal output 1600b to prevent DC current from flowing to the patient. For example, the signal blocking capacitor may be required to comply with medical regulations or standards. While failures occur relatively rarely in single capacitor designs, such failures can have negative consequences. In one aspect, a second blocking capacitor 2960-2 may be provided in series with the blocking capacitor 2960-1, wherein current leakage from a point between the blocking capacitors 2960-1, 2960-2 is detected by, for example, the ADC 2980 for sampling the voltage induced by the leakage current. The sample may be received by programmable logic device 2000, for example. Based on the change in leakage current (as indicated by the voltage samples in the aspect of FIG. 7), the generator 1100 may determine when at least one of the blocking capacitors 2960-1, 2960-2 fails. Thus, the aspect of fig. 7 has benefits over a single capacitor design with a single point of failure.

In certain aspects, the non-isolated stage 1540 may include a power source 2110 for outputting DC power at appropriate voltages and currents. The power source may comprise, for example, a 400W power source for outputting a system voltage of 48 VDC. As described above, the power source 2110 may also include one or more DC/DC voltage converters 2130 for receiving the output of the power source to produce a DC output at the voltages and currents required by the various components of the generator 1100. As described above in connection with controller 1960, one or more of DC/DC voltage converters 2130 may receive input from controller 1960 when controller 1960 detects a user activation of "on/off input device 2150 to enable operation of DC/DC voltage converter 2130 or to wake up DC/DC voltage converter 2130.

Fig. 9A-9B illustrate certain functional and structural aspects of an aspect of the generator 1100. Feedback indicative of the current and voltage output from the secondary winding 1580 of the power transformer 1560 is received by the ADCs 1780, 1800, respectively. As shown, ADCs 1780, 1800 may be implemented as 2-channel ADCs, and the feedback signal may be sampled at high speed (e.g., 80Msps) to enable oversampling (e.g., approximately 200x oversampling) of the drive signal. The current feedback signal and the voltage feedback signal may be appropriately conditioned (e.g., amplified, filtered) in the analog domain prior to processing by the ADC 1780, 1800. Current and voltage feedback samples from ADCs 1780, 1800 may be individually buffered and then multiplexed or interleaved into a single data stream within block 2120 of programmable logic device 1660. In the aspect of fig. 9A-9B, programmable logic device 1660 comprises an FPGA.

The multiplexed current and voltage feedback samples may be received by a Parallel Data Acquisition Port (PDAP) implemented within block 2144 of the processor 1740. The PDAP may comprise an encapsulation unit for implementing any of a variety of methods for associating multiplexed feedback samples with memory addresses. In one aspect, for example, feedback samples corresponding to particular LUT samples output by programmable logic device 1660 can be stored at one or more memory addresses that correlate to or index LUT addresses of the LUT samples. In another aspect, feedback samples corresponding to particular LUT samples output by programmable logic device 1660 can be stored at a common memory location along with LUT addresses for the LUT samples. In any case, the feedback samples may be stored such that the address of the LUT sample from which the particular set of feedback samples originated may be subsequently determined. As described above, synchronizing the LUT sample addresses and the feedback samples in this manner facilitates correct timing and stability of the predistortion algorithm. A Direct Memory Access (DMA) controller implemented at block 2166 of processor 1740 may store the feedback samples (and any LUT sample address data, if applicable) at a designated memory location 2180 (e.g., internal RAM) of processor 1740.

Block 2200 of processor 1740 may implement a predistortion algorithm for predistorting or modifying LUT samples stored in programmable logic device 1660 on a dynamic marching basis. As described above, predistortion of the LUT samples may compensate for various distortion sources present in the output drive circuit of generator 1100. The pre-distorted LUT samples, when processed by the drive circuit, will thus cause the drive signal to have a desired waveform shape (e.g., sinusoidal shape) to optimally drive the ultrasound transducer.

At block 2220 of the predistortion algorithm, the current through the dynamic branch of the ultrasound transducer is determined. May be based on, for example, current and voltage feedback samples stored at memory location 2180 (which, when properly calibrated, may represent I in the model of FIG. 6 discussed abovegAnd Vg) Static capacitance C of ultrasonic transducer0And a known value of the drive frequency, using kirchhoff's current law to determine the dynamic branch current. Dynamic branch current samples for each set of stored current and voltage feedback samples associated with LUT samples may be determined.

At block 2240 of the predistortion algorithm, each dynamic leg current sample determined at block 2220 is compared to a sample of the desired current waveform shape to determine a difference or sample amplitude error between the compared samples. For this determination, samples of the desired current waveform shape may be supplied, for example, from waveform shape LUT 2260, which waveform shape LUT 2260 contains amplitude samples for one cycle of the desired current waveform shape. The particular sample of the desired current waveform shape from LUT 2260 used for comparison may be determined by the LUT sample address associated with the dynamic branch current sample used for comparison. Thus, the input of the motion leg current to block 2240 may be synchronized to the input of its associated LUT sample address to block 2240. Thus, the number of LUT samples stored in programmable logic device 1660 and LUT samples stored in waveform shape LUT 2260 may be equal. In certain aspects, the desired current waveform shape represented by the LUT samples stored in waveform shape LUT 2260 may be a basic sine wave. Other waveform shapes may be desired. For example, it is contemplated that a basic sine wave for driving the main longitudinal motion of the ultrasound transducer superimposed with one or more other drive signals at other frequencies may be used, such as a third harmonic for driving at least two mechanical resonances for transverse or other modes of favorable vibration.

Each value of the sample magnitude error determined at block 2240 may be transmitted to the LUT of programmable logic device 1660 (shown at block 2280 in fig. 9A) along with an indication of its associated LUT address. Based on the value of the sample magnitude error and its associated address (and optionally, the previously received value of the sample magnitude error for the same LUT address), the LUT 2280 (or other control block of the programmable logic device 1660) can predistort or modify the value of the LUT sample stored at the LUT address such that the sample magnitude error is reduced or minimized. It will be appreciated that such predistortion or modification of each LUT sample in an iterative manner over the entire LUT address range will result in the waveform shape of the generator's output current matching or conforming to the desired current waveform shape represented by the samples of waveform shape LUT 2260.

The current and voltage magnitude measurements, power measurements, and impedance measurements may be determined at block 2300 of processor 1740 based on current and voltage feedback samples stored at memory location 2180. Prior to determining these quantities, the feedback samples may be appropriately scaled and, in some aspects, processed through a suitable filter 2320 to remove noise resulting from, for example, the data acquisition process and induced harmonic components. Thus, the filtered voltage and current samples may substantially represent the fundamental frequency of the generator's drive output signal. In certain aspects, the filter 2320 may be a Finite Impulse Response (FIR) filter applied to the frequency domain. Such aspects may use a Fast Fourier Transform (FFT) of the output drive signal current and voltage signals. In some aspects, the resulting frequency spectrum may be used to provide additional generator functionality. In one aspect, for example, the ratio of the second order harmonic component and/or the third order harmonic component relative to the fundamental frequency component may be used as a diagnostic indicator.

At block 2340 (fig. 9B), a Root Mean Square (RMS) calculation may be applied to current feedback samples representing a sample size of the drive signal for an integer cycle to generate a measurement I representing the drive signal output currentrms

At block 2360, a Root Mean Square (RMS) calculation may be applied to the voltage feedback samples representing a sample size of the drive signal for an integer cycle to determine a measurement V representing the output voltage of the drive signalrms

At block 2380, the current and voltage feedback samples may be multiplied point-by-point and a sample of the drive signal representing an integer cycle may be averaged to determine a generatorMeasured value P of the true output powerr

At block 2400, a measure P of the apparent output power of the generatoraCan be determined as the product Vrms·Irms

At block 2420, the measured value of the load impedance magnitude, ZmCan be determined as a quotient Vrms/Irms

In certain aspects, the amount I determined at blocks 2340, 2360, 2380, 2400, and 2420rms、Vrms、Pr、PaAnd ZmCan be used by the generator 1100 to implement any of a number of control and/or diagnostic processes. In certain aspects, any of these quantities may be communicated to a user via, for example, output device 2140 integral to generator 1100 or output device 2140 connected to generator 1100 through a suitable communication interface (e.g., a USB interface). For example, various diagnostic procedures may include, but are not limited to, handpiece integrity, instrument attachment integrity, instrument overload, approaching instrument overload, frequency lock failure, over current condition, over power condition, voltage sensing failure, current sensing failure, audio indication failure, visual indication failure, short circuit condition, power delivery failure, or blocking capacitor failure.

Block 2440 of processor 1740 may implement a phase control algorithm for determining and controlling the impedance phase of an electrical load (e.g., an ultrasound transducer) driven by generator 1100. As described above, by controlling the frequency of the drive signal to minimize or reduce the difference between the determined impedance phase and the impedance phase set point (e.g., 0 °), the effects of harmonic distortion may be minimized or reduced and the accuracy of the phase measurement increased.

The phase control algorithm receives as inputs the current and voltage feedback samples stored in memory location 2180. The feedback samples may be appropriately scaled and processed in some respects by a suitable filter 2460 (which may be the same as filter 2320) to remove noise resulting from, for example, the data acquisition process and induced harmonic components, before being used in the phase control algorithm. Thus, the filtered voltage and current samples may substantially represent the fundamental frequency of the generator's drive output signal.

At block 2480 of the phase control algorithm, the current through the dynamic branch of the ultrasound transducer is determined. This determination may be the same as the determination described above in connection with block 2220 of the predistortion algorithm. Thus, for each set of stored current and voltage feedback samples associated with LUT samples, the output of block 2480 may be a dynamic branch current sample.

At block 2500 of the phase control algorithm, the impedance phase is determined based on the synchronous input of the dynamic branch current samples and the corresponding voltage feedback samples determined at block 2480. In certain aspects, the impedance phase is determined as an average of the impedance phase measured at the rising edge of the waveform and the impedance phase measured at the falling edge of the waveform.

At block 2520 of the phase control algorithm, the impedance phase value determined at block 2220 is compared to the phase set point 2540 to determine a difference or phase error between the compared values.

At block 2560 (fig. 9A) of the phase control algorithm, a frequency output for controlling the frequency of the drive signal is determined based on the value of the phase error determined at block 2520 and the impedance magnitude determined at block 2420. The value of the frequency output may be continuously adjusted by block 2560 and transmitted to a DDS control block 2680 (discussed below) in order to maintain the impedance phase determined at block 2500 at a phase set point (e.g., zero phase error). In certain aspects, the impedance phase may be adjusted to a 0 ° phase setpoint. In this way, any harmonic distortion will be centered around the peak of the voltage waveform, thereby enhancing the accuracy of the phase impedance determination.

Block 2580 of processor 1740 may implement an algorithm for modulating the current amplitude of the drive signal to control the drive signal current, voltage, and power according to user-specified set points or according to requirements specified by other processes or algorithms implemented by generator 1100. Control of these amounts may be achieved, for example, by scaling LUT samples in LUT 2280 and/or by adjusting the full-scale output voltage of DAC 1680 (which supplies input to power amplifier 1620) via DAC 1860. Block 2600 (which may be implemented in some aspects as a PID controller) may receiveCurrent feedback samples (which may be appropriately scaled and filtered) from memory location 2180 are received as inputs. The current feedback samples may be compared to a "current demand" I specified by a controlled variable (e.g., current, voltage, or power)dThe values are compared to determine whether the drive signal supplies the necessary current. In terms of driving signal current as a control variable, current demand IdCan be controlled by current set point 2620A (I)sp) And directly specifying. For example, the RMS value of the current feedback data (as determined in block 2340) may be compared to a user-specified RMS current set point IspA comparison is made to determine the appropriate controller action. For example, if the current feedback data indicates that the RMS value is less than the current set point I spThe LUT scaled and/or full-scaled output voltage of DAC1680 may be adjusted by block 2600 such that the drive signal current is increased. Conversely, when the current feedback data indicates that the RMS value is greater than the current set point IspWhen desired, block 2600 may adjust LUT scaling and/or full scale output voltages of DAC1680 to reduce drive signal current.

In terms of driving signal voltage as a control variable, current demand IdMay be based, for example, on maintaining the load impedance magnitude Z measured at block 2420mGiven a desired voltage set point 2620B (V)sp) Desired current indirect designation (e.g., I)d=Vsp/Zm). Similarly, in terms of driving signal power as a control variable, current demand IdMay be based, for example, on the voltage V measured at block 2360rmsGiven a desired setpoint 2620C (P)sp) Desired current indirect designation (e.g., I)d=Psp/Vrms)。

Block 2680 (fig. 9A) may implement a DDS control algorithm for controlling the drive signal by retrieving LUT samples stored in LUT 2280. In certain aspects, the DDS control algorithm may be a digitally controlled oscillator (NCO) algorithm for generating samples of a waveform at a fixed clock rate using a point (memory location) -skip technique. The NCO algorithm may implement a phase accumulator or frequency-to-phase converter that is used as an address pointer for retrieving LUT samples from the LUT 2280. In one aspect, the phase accumulator may be a D step, modulus N phase accumulator, where D is a positive integer representing the frequency control value and N is the number of LUT samples in LUT 2280. For example, a frequency control value of D ═ 1 may cause the phase accumulator to sequentially point to each address of LUT2280, resulting in a waveform output that replicates the waveform stored in LUT 2280. When D >1, the phase accumulator may skip addresses in LUT2280, resulting in a waveform output with a higher frequency. Accordingly, the frequency of the waveform generated by the DDS control algorithm can thus be controlled by appropriately changing the frequency control value. In certain aspects, the frequency control value may be determined based on the output of the phase control algorithm implemented at block 2440. The output of block 2680 may supply an input of DAC1680, which DAC1680 in turn supplies a corresponding analog signal to an input of power amplifier 1620.

Block 2700 of processor 1740 may implement a switch-mode converter control algorithm for dynamically modulating a rail voltage of power amplifier 1620 based on a waveform envelope of an amplified signal to improve efficiency of power amplifier 1620. In certain aspects, characteristics of the waveform envelope may be determined by monitoring one or more signals contained in the power amplifier 1620. In one aspect, for example, the characteristics of the waveform envelope may be determined by monitoring a minimum value of a drain voltage (e.g., a MOSFET drain voltage) modulated according to the envelope of the amplified signal. The minimum voltage signal may be generated, for example, by a voltage minimum detector coupled to the drain voltage. The minimum voltage signal may be sampled by the ADC 1760 with the output minimum voltage sample being received at block 2720 of the switch mode converter control algorithm. Based on the value of the minimum voltage sample, block 2740 may control the PWM signal output by PWM generator 2760, which PWM generator 2760 in turn controls the rail voltage supplied to power amplifier 1620 by switch-mode regulator 1700. In certain aspects, the mains voltage may be modulated according to the waveform envelope characterized by the minimum voltage samples, as long as the value of the minimum voltage samples is less than the minimum target 2780 input into block 2720. For example, block 2740 may result in supplying a low rail voltage to power amplifier 1620 when the minimum voltage samples indicate a low envelope power level, with the full rail voltage being supplied only when the minimum voltage samples indicate a maximum envelope power level. When the minimum voltage sample falls below the minimum target 2780, block 2740 may keep the rail voltage at a minimum value suitable to ensure proper operation of power amplifier 1620.

Fig. 10 illustrates a control circuit 500 configured to control aspects of a surgical instrument or tool according to an aspect of the present disclosure. The control circuit 500 may be configured to implement the various processes described herein. The control circuit 500 may include a microcontroller including one or more processors 502 (e.g., microprocessors, microcontrollers) coupled to at least one memory circuit 504. The memory circuitry 504 stores machine-executable instructions that, when executed by the processor 502, cause the processor 502 to execute machine instructions to implement the various processes described herein. The processor 502 may be any of a variety of single-core or multi-core processors known in the art. The memory circuit 504 may include volatile storage media and non-volatile storage media. Processor 502 may include an instruction processing unit 506 and an arithmetic unit 508. The instruction processing unit may be configured to be able to receive instructions from the memory circuit 504 of the present disclosure.

Fig. 11 illustrates a combinational logic circuit 510 configured to control aspects of a surgical instrument or tool according to an aspect of the present disclosure. The combinational logic circuit 510 may be configured to enable the various processes described herein. Combinatorial logic circuitry 510 may include a finite state machine including combinatorial logic 512 configured to receive data associated with a surgical instrument or tool at input 514, process the data through combinatorial logic 512, and provide output 516.

Fig. 12 illustrates a sequential logic circuit 520 configured to control aspects of a surgical instrument or tool according to one aspect of the present disclosure. Sequential logic circuit 520 or combinational logic 522 may be configured to enable the various processes described herein. Sequential logic circuit 520 may comprise a finite state machine. Sequential logic circuitry 520 may include, for example, combinatorial logic 522, at least one memory circuit 524, and a clock 529. The at least one memory circuit 524 may store the current state of the finite state machine. In some cases, the sequential logic circuit 520 may be synchronous or asynchronous. The combinational logic 522 is configured to receive data associated with a surgical instrument or tool from the inputs 526, process the data through the combinational logic 522, and provide the outputs 528. In other aspects, a circuit may comprise a combination of a processor (e.g., processor 502, fig. 13) and a finite state machine to implement various processes herein. In other aspects, the finite state machine may comprise a combination of combinational logic circuitry (e.g., combinational logic circuitry 510, fig. 14) and sequential logic circuitry 520.

In one aspect, the ultrasonic or high frequency current generator of the surgical system 1000 may be configured to digitally generate an electrical signal waveform such that it is desirable to digitize the waveform using a predetermined number of phase points stored in a look-up table. The phase points may be stored in tables defined in memory, a Field Programmable Gate Array (FPGA), or any suitable non-volatile memory. Fig. 13 illustrates one aspect of the basic architecture of a digital synthesis circuit, such as a Direct Digital Synthesis (DDS) circuit 4100, configured to be capable of generating multiple wave shapes of electrical signal waveforms. The generator software and digital controls may command the FPGA to scan for addresses in a lookup table 4104, which lookup table 4104 in turn provides varying digital input values to the DAC circuit 4108 feeding the power amplifier. The addresses may be scanned according to the frequency of interest. Various types of waveforms can be generated using this lookup table 4104, which can be fed simultaneously into tissue or transducers, RF electrodes, multiple transducers, multiple RF electrodes, or a combination of RF and ultrasonic instruments. Further, multiple lookup tables 4104 representing multiple wave shapes can be created, stored, and applied to the tissue from the generator.

The waveform signal may be configured to be capable of controlling at least one of an output current, an output voltage, or an output power of the ultrasound transducer and/or the RF electrode or multiples thereof (e.g., two or more ultrasound transducers and/or two or more RF electrodes). Additionally, where the surgical instrument includes an ultrasonic component, the waveform signal may be configured to drive at least two vibration modes of an ultrasonic transducer of the at least one surgical instrument. Accordingly, the generator may be configured to provide a waveform signal to the at least one surgical instrument, wherein the waveform signal corresponds to at least one wave shape of the plurality of wave shapes in the table. In addition, the waveform signals provided to the two surgical instruments may include two or more wave shapes. The table may include information associated with a plurality of waveform shapes, and the table may be stored within the generator. In one aspect or example, the table may be a direct digital synthesis table that may be stored in the FPGA of the generator. The table may be addressed in any manner that facilitates classification of waveform shapes. According to one aspect, the table (which may be a direct digital synthesis table) is addressed according to the frequency of the waveform signal. Additionally, information associated with the plurality of waveform shapes may be stored as digital information in a table.

The analog electrical signal waveform can be configured to control at least one of an output current, an output voltage, or an output power of the ultrasound transducer and/or the RF electrode or multiples thereof (e.g., two or more ultrasound transducers and/or two or more RF electrodes). Additionally, where the surgical instrument includes an ultrasonic component, the analog electrical signal waveform can be configured to drive at least two vibration modes of an ultrasonic transducer of the at least one surgical instrument. Accordingly, the generator circuit may be configured to provide an analog electrical signal waveform to at least one surgical instrument, wherein the analog electrical signal waveform corresponds to at least one wave shape of the plurality of wave shapes stored in the lookup table 4104. In addition, the analog electrical signal waveforms provided to the two surgical instruments may include two or more wave shapes. The lookup table 4104 may include information associated with a plurality of waveform shapes, and the lookup table 4104 may be stored within the generator circuit or the surgical instrument. In one aspect or example, the lookup table 4104 can be a direct digital synthesis table that can be stored in the generator circuit or FPGA of the surgical instrument. The lookup table 4104 may be addressed in any manner that facilitates classification of waveform shapes. According to one aspect, the lookup table 4104 (which may be a direct digital synthesis table) is addressed according to the frequency of the desired analog electrical signal waveform. In addition, information associated with the plurality of waveform shapes may be stored as digital information in the lookup table 4104.

As digital technology is widely used in instruments and communication systems, digital control methods for generating multiple frequencies from a reference frequency source have evolved and are referred to as direct digital synthesis. The infrastructure is shown in fig. 13. In this simplified block diagram, the DDS circuit is coupled to a processor, controller, or logic device of the generator circuit and to a memory circuit located in the generator circuit of the surgical system 1000. The DDS circuit 4100 includes an address counter 4102, a lookup table 4104, a register 4106, a DAC circuit 4108, and a filter 4112. Stable clock fcIs received by an address counter 4102, and register 4106 drives a Programmable Read Only Memory (PROM) that stores one or more integer cycles of a sine wave (or other arbitrary waveform) in a lookup table 4104. As the address counter 4102 steps through memory locations, the values stored in the lookup table 4104 are written to a register 4106, which register 4106 is coupled to a DAC circuit 4108. The corresponding digital amplitude of the signal at the memory location of the lookup table 4104 drives the DAC circuit 4108, which DAC circuit 4108 in turn generates an analog output signal 4110. The spectral purity of the analog output signal 4110 is primarily determined by the DAC circuit 4108. The phase noise being substantially the reference clock f cPhase noise of (2). The first analog output signal 4110 output from the DAC circuit 4108 is filtered by a filter 4112, and the second analog output signal 4114 output by the filter 4112 is provided to an amplifier, the output of which is coupled to the output of the generator circuit. The second analog output signal having a frequency fOutput of

Because the DDS circuit 4100 is a sampled data system, the problems involved in sampling must be considered: quantization noise, aliasing, filtering, etc. For example, higher order harmonics of the DAC circuit 4108 output frequency are folded back into the Nyquist bandwidth so that they are not filterable, while higher order harmonics of the output of a Phase Locked Loop (PLL) based synthesizer may be filtered. The lookup table 4104 contains an integer number of cycles of signal data. By varying the frequency f of the reference clockcOr by reprogramming the PROM to change the final output frequency fOutput of

The DDS circuit 4100 may include a plurality of lookup tables 4104, wherein the lookup tables 4104 store waveforms represented by a predetermined number of samples, wherein the samples define a predetermined shape of the waveform. Accordingly, multiple waveforms having unique shapes may be stored in multiple lookup tables 4104 to provide different tissue treatments based on instrument settings or tissue feedback. Examples of waveforms include high crest factor RF electrical signal waveforms for surface tissue coagulation, low crest factor RF electrical signal waveforms for deeper tissue penetration, and electrical signal waveforms that promote effective touch coagulation. In one aspect, the DDS circuit 4100 may create multiple waveform-shaped look-up tables 4104 and switch between different wave shapes stored in the individual look-up tables 4104 based on desired tissue effects and/or tissue feedback during the tissue treatment process (e.g., based on "on-the-fly" or virtual real-time of user or sensor input). Thus, switching between waveforms may be based on, for example, tissue impedance and other factors. In other aspects, the lookup table 4104 can store electrical signal waveforms shaped to maximize the power delivered into the tissue per cycle (i.e., trapezoidal or square wave). In other aspects, the lookup table 4104 can store waveforms synchronized in a manner that maximizes power delivery for the multi-function surgical instrument of the surgical system 1000 when delivering the RF drive signal and the ultrasonic drive signal. In other aspects, the lookup table 4104 can store electrical signal waveforms to drive ultrasound energy and RF therapy energy, and/or sub-therapy energy, simultaneously while maintaining ultrasound lock. The customized waveforms and their tissue effects specific to the different instruments may be stored in non-volatile memory of the generator circuit or in non-volatile memory (e.g., EEPROM) of the surgical system 1000 and extracted when the multifunctional surgical instrument is connected to the generator circuit. An example of an exponentially decaying sinusoid as used in many high crest factor "coag" waveforms is shown in FIG. 15.

A more flexible and efficient implementation of the DDS circuit 4100 employs a digital circuit known as a digitally controlled oscillator (NCO). A block diagram of a more flexible and efficient digital synthesis circuit, such as DDS circuit 4200, is shown in fig. 14. In this simplified block diagram, DDS circuit 4200 is coupled to a processor, controller, or logic device of a generator and is connected toA memory circuit located in either the generator or in a surgical instrument of the surgical system 1000. The DDS circuit 4200 includes a load register 4202, a parallel delta phase register 4204, an adder circuit 4216, a phase register 4208, a look-up table 4210 (phase to amplitude converter), a DAC circuit 4212, and a filter 4214. The adder circuit 4216 and phase register 4208 form part of the phase accumulator 4206. Clock frequency fcIs applied to the phase register 4208 and the DAC circuit 4212. The load register 4202 receives the signal f designating the output frequency as the reference clock frequencycFractional tuning words of (a). The output of load register 4202 is provided to parallel delta phase register 4204 as a tuning word M.

DDS circuit 4200 includes generating a clock frequency fcThe sampling clock, the phase accumulator 4206, and the look-up table 4210 (e.g., a phase-to-amplitude converter). Each clock cycle f cThe contents of phase accumulator 4206 are updated once. When the time of the phase accumulator 4206 is updated, the number M stored in the parallel delta phase register 4204 is added to the number in the phase register 4208 by the adder circuit 4216. Assume that the number in the parallel delta phase register 4204 is 00.. 01 and the initial contents of the phase accumulator 4206 is 00.. 00. The phase accumulator 4206 updates 00.. 01 every clock cycle. If the phase accumulator 4206 is 32 bits wide, 232 clock cycles (over 40 hundred million) are required before the phase accumulator 4206 returns to 00.

The truncated output 4218 of the phase accumulator 4206 is provided to a phase-to-amplitude converter look-up table 4210, and the output of the look-up table 4210 is coupled to a DAC circuit 4212. The truncated output 4218 of the phase accumulator 4206 serves as the address for the sine (or cosine) look-up table. The addresses in the look-up table correspond to phase points on the sine wave from 0 deg. to 360 deg.. The look-up table 4210 contains the corresponding digital amplitude information for one complete cycle of the sine wave. Thus, the lookup table 4210 maps the phase information from the phase accumulator 4206 to a digital magnitude word, which in turn drives the DAC circuit 4212. The output of the DAC circuit is a first analog signal 4220 and is filtered by a filter 4214. The output of the filter 4214 is a second analog signal 4222, which is provided to a power amplifier coupled to the output of the generator circuit.

In one aspect, the electrical signal waveform may be digitized as 1024(210) phase points, but the wave shape may be digitized as any suitable number of 2n phase points in the range 256(28) to 281,474,976,710,656(248), where n is a positive integer, as shown in table 1. The waveform of the electrical signal can be represented as Ann) Wherein the normalized amplitude A at point nnBy the phase angle theta of a phase point called point nnAnd (4) showing. The number of discrete phase points, n, determines the tuning resolution of the DDS circuit 4200 (as well as the DDS circuit 4100 shown in fig. 13).

Table 1 specifies the electrical signal waveforms digitized into a plurality of phase points.

Figure BDA0002672394010000561

TABLE 1

The generator circuit algorithm and digital control circuit scan for addresses in a look-up table 4210, which look-up table 4210 in turn provides varying digital input values to a DAC circuit 4212 feeding a filter 4214 and a power amplifier. The addresses may be scanned according to the frequency of interest. Using a look-up table, various types of shapes can be generated that can be converted to analog output signals by the DAC circuit 4212, filtered by the filter 4214, amplified by a power amplifier coupled to the output of the generator circuit, and fed to tissue in the form of RF energy or to an ultrasound transducer, and applied to tissue in the form of ultrasonic vibrations that deliver energy to tissue in the form of heat. The output of the amplifier may be applied to, for example, an RF electrode, to multiple RF electrodes simultaneously, to an ultrasound transducer, to multiple ultrasound transducers simultaneously, or to a combination of RF and ultrasound transducers. In addition, multiple waveform tables may be created, stored, and applied to tissue from the generator circuit.

Referring back to fig. 13, for n-32 and M-1, the phase accumulator 4206 steps through 232 possible outputs before it overflows and restarts. The corresponding output wave frequency is equal to the input clock frequency divided by 232. If M is 2, the phase register 1708 "rolls over" twice as fast and the output frequency is doubled. This can be summarized as follows.

For a phase accumulator 4206 configured to be able to accumulate n bits (n is typically in the range of 24 to 32 in most DDS systems, but as previously mentioned n can be selected from a wide range of options), there is 2nA possible phase point. The digital word M in the increment phase register represents the amount by which the phase accumulator increments per clock cycle. If f iscAt the clock frequency, the frequency of the output sinusoid is equal to:

the above equation is referred to as the DDS "tuning equation". Note that the frequency resolution of the system is equal to

Figure BDA0002672394010000571

For n-32, the resolution is greater than forty parts per billion. In one aspect of the DDS circuit 4200, not all bits from the phase accumulator 4206 are passed to the lookup table 4210, but are truncated leaving, for example, the first 13 to 15 Most Significant Bits (MSBs). This reduces the size of the look-up table 4210 and does not affect the frequency resolution. Phase truncation adds only a small but acceptable amount of phase noise to the final output.

The electrical signal waveform may be characterized by current, voltage, or power at a predetermined frequency. Additionally, where any of the surgical instruments of the surgical system 1000 includes an ultrasonic component, the electrical signal waveform can be configured to drive at least two vibration modes of the ultrasonic transducer of at least one of the surgical instruments. Accordingly, the generator circuit may be configured to provide an electrical signal waveform to at least one surgical instrument, wherein the electrical signal waveform is characterized by a predetermined waveform shape stored in the look-up table 4210 (or look-up table 4104 of fig. 13). Further, the electrical signal waveform may be a combination of two or more wave shapes. The lookup table 4210 may include information associated with a plurality of waveform shapes. In one aspect or example, the look-up table 4210 may be generated by the DDS circuit 4200 and may be referred to as a direct digital synthesis table. The DDS works by first storing a large number of repeating waveforms in on-board memory. The cycles of the waveform (sine, triangle, square, arbitrary) may be represented by a predetermined number of phase points as shown in table 1 and stored into memory. Once the waveform is stored in memory, it can be generated at a very precise frequency. The direct digital synthesis table may be stored in a non-volatile memory of the generator circuit and/or may be implemented with FPGA circuitry in the generator circuit. The lookup table 4210 may be addressed by any suitable technique that facilitates classification of waveform shapes. According to one aspect, the look-up table 4210 is addressed according to the frequency of the electrical signal waveform. Additionally, information associated with the plurality of waveform shapes may be stored in memory as digital information or as part of the lookup table 4210.

In one aspect, the generator circuit can be configured to provide electrical signal waveforms to at least two surgical instruments simultaneously. The generator circuit may also be configured to simultaneously provide an electrical signal waveform to two surgical instruments via an output channel of the generator circuit, the electrical signal waveform being characterizable by two or more waveforms. For example, in one aspect, the electrical signal waveform includes a first electrical signal (e.g., an ultrasonic drive signal) for driving the ultrasonic transducer, a second RF drive signal, and/or combinations thereof. Further, the electrical signal waveform may include a plurality of ultrasonic drive signals, a plurality of RF drive signals, and/or a combination of a plurality of ultrasonic drive signals and RF drive signals.

Further, a method of operating a generator circuit according to the present disclosure includes generating an electrical signal waveform and providing the generated electrical signal waveform to any of the surgical instruments of the surgical system 1000, wherein generating the electrical signal waveform includes receiving information associated with the electrical signal waveform from a memory. The generated electrical signal waveform includes at least one wave shape. Further, providing the generated electrical signal waveform to at least one surgical instrument includes providing the electrical signal waveform to at least two surgical instruments simultaneously.

A generator circuit as described herein may allow for the generation of various types of direct digital synthesis tables. Examples of wave shapes of RF/electrosurgical signals generated by the generator circuit suitable for treating a variety of tissues include RF signals with high crest factors (which can be used for surface coagulation in RF mode), low crest factor RF signals (which can be used for deeper tissue penetration), and waveforms that promote effective touch coagulation. The generator circuit may also employ a direct digital synthesis look-up table 4210 to generate a plurality of wave shapes, and may rapidly switch between particular wave shapes based on desired tissue effects. Switching may be based on tissue impedance and/or other factors.

In addition to the traditional sine/cosine wave shapes, the generator circuit may also be configured to produce one or more wave shapes (i.e., trapezoidal or square waves) that maximize the power into the tissue in each cycle. The generator circuit may provide one or more wave shapes that are synchronized to maximize power delivered to the load and maintain ultrasonic lock when the RF signal and the ultrasonic signal are driven simultaneously, provided that the generator circuit includes a circuit topology that is capable of driving the RF signal and the ultrasonic signal simultaneously. Additionally, customized waveform shapes specific to the instrument and its tissue effects may be stored in non-volatile memory (NVM) or instrument EEPROM and may be extracted when any of the surgical instruments of surgical system 1000 are connected to the generator circuit.

The DDS circuit 4200 may include a plurality of lookup tables 4104, where the lookup tables 4210 store waveforms represented by a predetermined number of phase points (which may also be referred to as samples), where the phase points define a predetermined shape of the waveform. Accordingly, multiple waveforms having unique shapes may be stored in multiple look-up tables 4210 to provide different tissue treatments based on instrument settings or tissue feedback. Examples of waveforms include high crest factor RF electrical signal waveforms for surface tissue coagulation, low crest factor RF electrical signal waveforms for deeper tissue penetration, and electrical signal waveforms that promote effective touch coagulation. In one aspect, the DDS circuit 4200 may create multiple waveform-shaped look-up tables 4210 and switch between different wave shapes stored in different look-up tables 4210 based on desired tissue effects and/or tissue feedback during a tissue treatment process (e.g., "on-the-fly" or virtual real-time based on user or sensor input). Thus, switching between waveforms may be based on, for example, tissue impedance and other factors. In other aspects, the lookup table 4210 may store an electrical signal waveform shaped to maximize the power delivered into the tissue per cycle (i.e., a trapezoidal or square wave). In other aspects, the look-up table 4210 may store waveform shapes that are synchronized in such a way that they maximize power delivery by either of the surgical instruments of the surgical system 1000 when delivering the RF signal and the ultrasonic drive signal. In other aspects, the lookup table 4210 may store electrical signal waveforms to drive the ultrasound energy and the RF therapy energy, and/or sub-therapy energy simultaneously, while maintaining ultrasound lock. Generally, the output wave shape may be in the form of a sine wave, cosine wave, pulse wave, square wave, or the like. However, more complex and customized waveforms specific to different instruments and their tissue effects may be stored in non-volatile memory of the generator circuit or non-volatile memory (e.g., EEPROM) of the surgical instrument and extracted upon connecting the surgical instrument to the generator circuit. One example of a custom wave shape is an exponentially decaying sinusoid as used in many high crest factor "coag" waveforms, as shown in fig. 43.

Fig. 15 illustrates one cycle of a discrete-time digital electrical signal waveform 4300 (shown superimposed on the discrete-time digital electrical signal waveform 4300 for comparison) of an analog waveform 4304, in accordance with at least one aspect of the present disclosure. The horizontal axis represents time (t), while the vertical axis represents digital phase points. The digital electrical signal waveform 4300 is a digital discrete-time version of, for example, a desired analog waveform 4304. A digital electrical signal waveform 4300 is generated by storing a magnitude phase point 4302, which represents a cycle or period ToPer clock cycle TclkThe amplitude of (c). Digital electrical signal waveform 4300 is passed through any suitable digital processing circuitry for one period ToThe above is generated. The amplitude phase point being storedA digital word in a memory circuit. In the examples shown in fig. 41, 42, the digital word is a six-bit word capable of storing magnitude phase points at a resolution of 26 bits or 64 bits. It should be understood that the examples shown in fig. 13, 14 are for exemplary purposes and that in actual implementations, the resolution may be higher. In a cycle ToThe digital amplitude phase points 4302 above are stored in memory as a string in look-up tables 4104, 4210, as described in connection with, for example, fig. 13, 14. To generate an analog version of analog waveform 4304, clock cycle T from memory clkFrom 0 to ToThe amplitude phase points 4302 are read in turn and converted by DAC circuits 4108, 4212, also described in connection with fig. 13, 14. The amplitude phase point 4302 of the digital electrical signal waveform 4300 may be adjusted from 0 to ToAdditional cycles are generated by repeating the reading as many cycles or periods as desired. A smooth analog version of the analog waveform 4304 is achieved by filtering the output of the DAC circuits 4108, 4212 with filters 4112, 4214 (fig. 13 and 14). The filtered analog output signals 4114, 4222 (fig. 13 and 14) are applied to the input of the power amplifier.

Fig. 16 is a diagram of a control system 12950 that may be implemented as a nested PID feedback controller. A PID controller is a control loop feedback mechanism (controller) that is used to continuously calculate an error value as the difference between a desired set point and a measured process variable and apply corrections based on proportional, integral, and derivative terms (sometimes denoted P, I and D, respectively). The nested PID controller feedback control system 12950 includes a primary controller 12952 in a primary (outer) feedback loop 12954 and a secondary controller 12955 in a secondary (inner) feedback loop 12956. The primary controller 12952 can be a PID controller 12972 as shown in fig. 17 and the secondary controller 12955 can also be a PID controller 12972 as shown in fig. 17. The main controller 12952 controls the main process 12958 and the secondary controller 12955 controls the secondary process 12960. The output 12966 of the master process 12958 is the slave master set point SP 1The first summer 12962 is subtracted. First summer 12962 generates a single sum output signal that is applied to main controller 12952. The output of the main controller 12952 is the secondary setpoint SP2. Secondary stageThe output 12968 of the process 12960 is the slave secondary set point SP2The second summer 12964 is subtracted.

Fig. 17 illustrates a PID feedback control system 12970 in accordance with an aspect of the present disclosure. Either the primary controller 12952 or the secondary controller 12955, or both, can be implemented as a PID controller 12972. In one aspect, the PID controller 12972 may include a proportional element 12974(P), an integral element 12976(I), and a derivative element 12978 (D). The outputs of the P element 12974, I element 12976, and D element 12978 are summed by a summer 12986, which summer 12986 provides a control variable μ (t) to the process 12980. The output of process 12980 is a process variable y (t). Summer 12984 calculates the difference between the desired set point r (t) and the measured process variable y (t). The PID controller 12972 continuously calculates an error value e (t) (e.g., the difference between the closing force threshold and the measured closing force) as the difference between the desired set point r (t) (e.g., the closing force threshold) and the measured process variable y (t) (e.g., the speed and direction of the closed tube), and applies corrections based on the proportional, integral, and derivative terms calculated by the proportional element 12974(P), the integral element 12976(I), and the derivative element 12978(D), respectively. The PID controller 12972 attempts to minimize the error e (t) over time by adjusting the control variable μ (t) (e.g., the speed and direction of the closed tube).

The "P" element 12974 calculates the current value of the error according to a PID algorithm. For example, if the error is large and positive, then the control output will also be large and positive. According to the present disclosure, the error term e (t) is different between the desired closing force and the measured closing force of the closure tube. The "I" element 12976 calculates a past value of the error. For example, if the current output is not strong enough, the integral of the error will accumulate over time and the controller will respond by applying a stronger action. The "D" element 12978 calculates the future probable trend for this error based on its current rate of change. For example, continuing the above P example, when a large positive control output successfully brings the error closer to zero, it also places the process in the path of the most recent future large negative error. In this case, the derivative becomes negative and the D module reduces the strength of the action to prevent this overshoot.

It should be understood that other variables and set points may be monitored and controlled according to the feedback control systems 12950, 12970. For example, the adaptive closing member speed control algorithm described herein may measure at least two of the following parameters: firing member travel position, firing member load, cutting element displacement, cutting element velocity, closure tube travel position, closure tube load, and the like.

Fig. 18 is an alternative system 132000 for controlling the frequency of and detecting the impedance of an ultrasound electromechanical system 132002 in accordance with at least one aspect of the present disclosure. The system 132000 can be incorporated into a generator. The processor 132004 coupled to the memory 132026 programs the programmable counter 132006 to tune to the output frequency f of the ultrasound electromechanical system 132002o. The input frequency is generated by a crystal oscillator 132008 and input into a fixed counter 132010 to scale the frequency to an appropriate value. The outputs of the fixed counter 132010 and the programmable counter 132006 are applied to a phase/frequency detector 132012. The output of the phase/frequency detector 132012 is applied to an amplifier/active filter circuit 132014 to generate a tuning voltage V applied to a voltage controlled oscillator 132016(VCO)t. VCO132016 outputs frequency foApplied to the ultrasound transducer portion of the ultrasound electromechanical system 132002, which is modeled as an equivalent circuit as shown herein. The voltage and current signals applied to the ultrasonic transducer are monitored by a voltage sensor 132018 and a current sensor 132020.

The outputs of the voltage sensor 132018 and the current sensor 13020 are applied to another phase/frequency detector 132022 to determine the phase angle between the voltage and current as measured by the voltage sensor 132018 and the current sensor 13020. The output of the phase/frequency detector 132022 is applied to one channel of a high-speed analog-to-digital converter 132024(ADC) and provided through it to the processor 132004. Optionally, the outputs of the voltage sensor 132018 and the current sensor 132020 may be applied to respective channels of the dual-channel ADC 132024 and provided to the processor 132004 for zero crossing, FFT, or other algorithms described herein for determining the phase angle between the voltage signal and the current signal applied to the ultrasound electromechanical system 132002.

Optionally tuning the voltage Vt(the voltage and the output frequency foProportional) may be fed back to the processor 132004 via the ADC 132024. This will provide the output frequency f to the processor 132004oA proportional feedback signal, and the feedback can be used to adjust and control the output frequency fo

Assessing the status of the jaws (pad burn-through, nail, broken knife, bone in the jaws, tissue in the jaws)

The challenge of ultrasonic energy delivery is that applying ultrasonic sound on the wrong material or the wrong tissue can cause device failure, such as burn through of the clamp arm pads or fracture of the ultrasonic blade. It is also desirable to detect what is in and the state of the jaws of an end effector of an ultrasonic device without adding additional sensors in the jaws. Positioning the sensor in the jaws of an ultrasonic end effector has challenges in terms of reliability, cost, and complexity.

In accordance with at least one aspect of the present disclosure, an ultrasonic spectral smart knife algorithm technique may be employed based on the impedance of an ultrasonic transducer configured to drive an ultrasonic transducer knifeTo assess the status of the jaws (burning through of the clamping arm pads, staples, broken knife, bone in the jaws, tissue in the jaws, back cut when the jaws are closed, etc.). Plotting impedance Z g(t)Amplitude | Z | and phaseAs a function of the frequency f.

Dynamic mechanical analysis (DMA, also known as dynamic mechanical spectroscopy or simply mechanical spectroscopy) is a technique used to study and characterize materials. A sinusoidal stress is applied to the material and the strain in the material is measured so that the complex modulus of the material can be determined. Spectroscopy as applied to ultrasound devices involves exciting the tip of an ultrasonic blade by frequency scanning (complex signal or conventional frequency scanning) and measuring the resulting complex impedance at each frequency. Complex impedance measurements of the ultrasound transducer over a range of frequencies are used in a classifier or model to infer characteristics of the ultrasound end effector. In one aspect, the present disclosure provides a technique for determining the state of an ultrasonic end effector (clamp arm, jaws) to drive automation in an ultrasonic device, such as disabling power to protect the device, performing adaptive algorithms, retrieving information, identifying tissue, and the like.

FIG. 19 is an illustration of an optical spectrum 132030 of an ultrasonic device having a plurality of different states and conditions of an end effector, wherein the impedance Z is according to at least one aspect of the present disclosureg(t)Amplitude | Z | and phase

Figure BDA0002672394010000624

Plotted as a function of frequency f. Spectrogram 132030 is plotted in three-dimensional space, with frequency (Hz) plotted along the x-axis, phase (Rad) plotted along the y-axis, and amplitude (ohm) plotted along the z-axis.

Spectral analysis of different jaw engagements and device conditions over a range of frequencies for different conditions and conditions can produce different complex impedance signatures (fingerprints). When rendered, each state or condition has a different characteristic pattern in 3D space. These characteristic patterns can be used to assess the condition and state of the end effector. Fig. 19 shows spectra of air 132032, clamp arm pad 132034, oil tanned 132036, nail 132038, and broken knife 132040. The oil tanned leather 132036 can be used to characterize different types of tissues.

The spectral pattern 132030 may be evaluated by applying a low power electrical signal to the ultrasound transducer to produce a non-therapeutic excitation of the ultrasound blade. The low power electrical signal may be applied in the form of a sweep or complex Fourier series to measure impedance across the ultrasound transducer using FFT over a series (sweep) or parallel (complex signal) frequency range

Method for classifying new data

For each feature pattern, the parameter lines may be fitted to the data used for training using a polynomial, fourier series, or any other form of parametric equation that is convenient. A new data point is then received and classified by using the euclidean vertical distance from the new data point to the trajectory that has been fitted to the feature pattern training data. The vertical distance of the new data point to each trajectory (each trajectory representing a different state or condition) is used to assign the point to a certain state or condition.

The probability distribution of the distance of each point in the training data to the fitted curve can be used to evaluate the probability of a correctly classified new data point. This essentially constructs a two-dimensional probability distribution in a plane perpendicular to the fitted trajectory at each new data point of the fitted trajectory. The new data points may then be included in the training set based on their probability of correct classification to form an adaptive learning classifier that can easily detect high frequency changes in state, but can accommodate deviations in system performance that occur slowly, such as device dirtying or pad wear.

FIG. 20 is a graphical representation of a graph 132042 of a set of 3D training data sets (S) with an ultrasound transducer impedance Z, in accordance with at least one aspect of the present disclosureg(t)Amplitude | Z | and phase

Figure BDA0002672394010000637

Plotted as a function of frequency f. The 3D training data set (S) curve 132042 is graphically depicted in three-dimensional space with phase (Rad) plotted along the x-axis, frequency (Hz) plotted along the y-axis, magnitude (ohm) plotted along the z-axis, and a parametric fourier series fitted to the 3D training data set (S). The method for data classification is based on a 3D training data set (S0 for generating graph 132042).

The parametric fourier series fitted to the 3D training data set (S) is defined by:

For new pointsFrom

Figure BDA0002672394010000633

To

Figure BDA0002672394010000634

The vertical distance of (a) is:

Figure BDA0002672394010000635

when:

Figure BDA0002672394010000636

then:

D=D

the probability distribution of D can be used to evaluate data points belonging to group SThe probability of (c).

Control of

Based on the classification of the data measured before, during, or after activation of the ultrasound transducer/blade, a variety of automated tasks and safety measures may be implemented. Similarly, the state of the tissue located in the end effector and the temperature of the ultrasonic blade may also be inferred to some extent and used to better inform the user of the state of the ultrasonic device or protect critical structures, etc. TEMPERATURE CONTROL of an ULTRASONIC blade is described IN commonly owned U.S. provisional patent application No. 62/640,417 entitled "TEMPERATURE CONTROL IN ULTRASONIC SYSTEM DEVICE AND CONTROL SYSTEM heater," filed on 8/3/2018, which is incorporated herein by reference IN its entirety.

Similarly, power delivery may be reduced when the ultrasonic blade is most likely contacting the clamp arm pad (e.g., no tissue therebetween), or if the ultrasonic blade is likely to have broken or the ultrasonic blade is likely to contact metal (e.g., staples). Further, if the jaws are closed and no tissue is detected between the ultrasonic blade and the clamp arm pad, a reverse cut is not allowed.

Integrating other data to improve classification

The system can be used in conjunction with other information provided by sensors, users, patient indices, environmental factors, etc., by combining data from the process with the above data using probability functions and kalman filters. Given a large number of uncertain measurements of different confidence levels, the kalman filter determines the maximum likelihood of a state or condition occurring. Since the method allows assigning probabilities to newly classified data points, the information of the algorithm can be implemented with other measurements or estimates in the kalman filter.

Fig. 21 is a logic flow diagram 132044 depicting a control program or logic configuration for determining jaw condition based on a complex impedance signature pattern (fingerprint) in accordance with at least one aspect of the present disclosure. Prior to determining jaw conditions based on the complex impedance signature pattern (fingerprint), the database is populated with a reference complex impedance signature pattern or training data set (S) characterizing various jaw conditions, including but not limited to air 132032, clamp arm pad 132034, oil tanned 132036, staples 132038, broken knife 132040, and a variety of tissue types and conditions as shown in fig. 32. Oil tanned (dry or wet, full byte or terminal) can be used to characterize different types of tissue. Data points for generating a reference complex impedance signature pattern or training data set (S) are obtained as follows: the method includes scanning a drive frequency within a predetermined range of frequencies from below resonance to above resonance by applying sub-treatment drive signals to the ultrasound transducer, measuring complex impedance at each frequency and recording data points. The data points are then fitted to a curve using a variety of numerical methods, including polynomial curve fitting, fourier series, and/or parametric equations. A parametric fourier series fit to a reference complex impedance signature pattern or training data set (S) is described herein.

Once the reference complex impedance signature pattern or training data set (S) is generated, the ultrasound instrument measures new data points, classifies the new points, and determines whether the new data points should be added to the reference complex impedance signature pattern or training data set (S).

Turning now to the logic flow of FIG. 21In one aspect, the control circuit measures 132046 a complex impedance of the ultrasound transducer, where the complex impedance is defined asThe control circuit receives 132048 the complex impedance measurement data points and compares 132050 the complex impedance measurement data points to data points in a reference complex impedance signature pattern. The control circuit classifies 132052 the complex impedance measurement data points based on the results of the comparative analysis and specifies 132054 a state or condition of the end effector based on the results of the comparative analysis.

In one aspect, the control circuit receives the reference complex impedance signature pattern from a database or memory coupled to the processor. In one aspect, the control circuit generates a reference complex impedance signature pattern as follows. A drive circuit coupled to the control circuit applies a non-therapeutic drive signal to the ultrasound transducer, the non-therapeutic drive signal beginning at an initial frequency, ending at a final frequency, and at a plurality of frequencies between the initial frequency and the final frequency. The control circuit measures the impedance of the ultrasonic transducer at each frequency and stores a data point corresponding to each impedance measurement. The control circuit curve fits the plurality of data points to generate a three-dimensional curve representing a reference complex impedance signature, wherein the magnitude | Z | and phase Plotted as a function of frequency f. The curve fitting includes polynomial curve fitting, fourier series, and/or parametric equations.

In one aspect, the control circuit receives a new impedance measurement data point and classifies the new impedance measurement data point using the euclidean vertical distance from the new impedance measurement data point to the trajectory that has been fitted to the reference complex impedance feature pattern. The control circuit evaluates the probability of correctly classifying the new impedance measurement data point. The control circuit adds the new impedance measurement data point to the reference complex impedance signature pattern based on the evaluated probability of correctly classifying the new impedance measurement data point. In one aspect, the control circuit classifies data based on a training data set (S), wherein the training data set (S) includes a plurality of complex impedance measurement data, and a curve is fitted to the training data set (S) using a parametric fourier series, wherein S is defined herein, and wherein a probability distribution is used to evaluate the probability of new impedance measurement data points belonging to group S.

Model-based jaw classifier states

There has been interest in classifying the substances (including the type and condition of tissue) located within the jaws of an ultrasound device. In various aspects, it may be shown that such classification is possible with high data sampling and fine pattern recognition. The method is based on impedance as a function of frequency (where amplitude, phase and frequency are plotted in 3D, the pattern looks like the bands shown in fig. 19 and 20) and the logic flow diagram of fig. 21. The present disclosure provides an alternative smart-knife algorithm approach based on a mature model for piezoelectric transducers.

For example, an equivalent electrical lumped parameter model is known to be an accurate model of a physical piezoelectric transducer. It is based on the Mittag-Leffler expansion of the tangent near the mechanical resonance. When the complex impedance or complex admittance is plotted as a relationship between the imaginary and real components, a circle is formed. Fig. 22 is a graph 132056 of complex impedance plotted as a relationship between an imaginary component and a real component of a piezoelectric vibrator, in accordance with at least one aspect of the present disclosure. Fig. 23 is a circular diagram 132058 of complex admittances plotted as a relationship between an imaginary component and a real component of a piezoelectric vibrator, in accordance with at least one aspect of the present disclosure. The circles depicted in fig. 22 and 23 are taken from the IEEE177 standard, which is incorporated by reference herein in its entirety. Tables 1-4 are taken from the IEEE177 standard and are disclosed herein for completeness.

When sweeping from frequencies below resonance to above resonance, a circle is formed. Instead of stretching the circle in 3D, the circle is identified and the radius (r) and offset (a, b) of the circle are evaluated. These values are then compared with the established values for the given situation. These conditions may be: 1) open jaws and nothing, 2) end bite, 3) jaw full bite with staples. If the scan generates multiple resonances, then there will be a different characteristic circle for each resonance. If the resonances diverge, each circle will be drawn before the next. Rather than fitting a series of approximations to the 3D curve, a circle is used to fit the data. The radius (r) and offset (a, b) may be calculated using a processor programmed to perform a variety of mathematical or numerical techniques described below. These values may be evaluated by capturing an image of the circle, and using image processing techniques to evaluate the radius (r) and offset (a, b) defining the circle.

FIG. 24 is a circular diagram 132060 of the complex admittances of a 55.5kHz ultrasonic piezoelectric transducer with lumped parameter inputs and outputs specified below. The values of the lumped-parameter model are used to generate the complex admittance. A moderate load was applied in the model. The resulting admittance circles generated in MathCad are shown in fig. 24. When the frequency is swept from 54kHz to 58kHz, a circular pattern 132060 is formed.

The lumped parameter input values are:

Co=3.0nF

Cs=8.22pF

Ls=1.0H

Rs=450Ω

the model output based on the inputs is:

the output values were used to plot a circle 132060 shown in fig. 24. Circle 132060 has a radius (r) and center 132062 is offset (a, b) from origin 132064 as follows:

r=1.012*103

a=1.013*103

b=-954.585

in accordance with at least one aspect of the present disclosure, the sums A-E specified below are required to evaluate the circular 132060 plot of the example given in FIG. 24. There are several algorithms to calculate the fit to the circle. The circle is defined by its radius (r) and center offset (a, b) from the origin:

r2=(x-a)2+(y-b)2

the modified least squares method (Umbach and Jones) is convenient because there are simple closed form solutions to a, b and r.

Figure BDA0002672394010000683

The insert symbol on the variable "a" represents the evaluation of the true value. A. B, C, D and E are the sums of various products calculated from the data. For completeness, they are included herein as follows:

Figure BDA0002672394010000684

Figure BDA0002672394010000685

Z1, i is the first vector of real components, called conductance;

z2, i is a second vector of imaginary components called susceptances; and is

Z3, i is a third vector representing the frequency at which the admittance is calculated.

The present disclosure will be applicable to ultrasound systems and possibly to electrosurgical systems, even if the electrosurgical system does not rely on resonance.

Fig. 25-29 show images taken from an impedance analyzer showing impedance/admittance plots of an ultrasonic device with loaded end effector jaws in various open or closed configurations. According to at least one aspect of the present disclosure, the circle graph in solid line form depicts the impedance, and the circle graph in dashed line form depicts the admittance. For example, an impedance/admittance chart is generated by connecting an ultrasound device to an impedance analyzer. The display of the impedance analyzer is set to complex impedance and complex admittance, which may be selected from the front panel of the impedance analyzer. For example, as described below in connection with fig. 25, an initial display may be obtained with the jaws of the ultrasonic end effector in an open position and the ultrasonic device in an unloaded state. The automatically zoomed display function of the impedance analyzer can be used to generate complex impedance and admittance charts. The same display is used for subsequent operation of the ultrasound device with different load conditions, as shown in subsequent figures 25-29. The data file can be uploaded using a LabVIEW application. In another technique, a display image may be captured with a camera, such as a smartphone camera (like iPhone or Android). As such, the image of the display may include some "keystone distortion" and may generally appear nonparallel to the screen. Using this technique, the circle trace on the display will appear distorted in the captured image. With this method, material located in the jaws of an ultrasonic end effector can be classified.

The complex impedance and complex admittance are the inverse of each other. It is not possible to add any new information by observing both. Another consideration includes determining how sensitive to noise the complex impedance or complex admittance is to be used.

In the examples shown in fig. 25 to 29, the range of the impedance analyzer is set to capture only the primary resonance. By scanning over a wider range of frequencies, more resonances may be encountered and multiple circular plots may be formed. The equivalent circuit of an ultrasonic transducer can be modeled by a first "dynamic" branch with an inductance Ls, a resistance Rs and a capacitance Cs (which define the electromechanical properties of the resonator) connected in series, and a second capacitive branch with a static capacitance C0. In the impedance/admittance diagrams shown in the following fig. 25 to 29, the values of the components of the equivalent circuit are:

Ls=L1=1.1068H

Rs=R1=311.352Ω

Cs=C1=7.43265pF

C0=C0=3.64026nF

the oscillator voltage applied to the ultrasonic transducer was 500mV, sweeping the frequency from 55kHz to 56 kHz. The impedance (Z) is scaled to 200 Ω/div and the admittance (Y) is scaled to 500 μ S/div. Measurements of values that can characterize the impedance (Z) and admittance (Y) histograms may be obtained at locations on the histograms indicated by the impedance cursor and the admittance cursor.

The state of the jaw is as follows: open and no load

Fig. 25 is a graphical display 132066 of an impedance analyzer illustrating complex impedance (Z)/admittance (Y) plots 132068, 132070 of an ultrasound device with jaws open and no load, where the plot 132068 in solid line depicts the complex impedance and the plot 132070 in dashed line depicts the complex admittance, according to at least one aspect of the present disclosure. The oscillator voltage applied to the ultrasonic transducer was 500mV, sweeping the frequency from 55kHz to 56 kHz. The impedance (Z) is scaled to 200 Ω/div and the admittance (Y) is scaled to 500 μ S/div. Measurements of values that may characterize the complex impedance (Z) and complex admittance (Y) charts 132068, 132070 may be obtained at locations on the charts 132068, 132070 indicated by the impedance cursor 132072 and admittance cursor 132074. Thus, the impedance cursor 132072 is located at a portion of the impedance circle map 132068 equal to about 55.55kHz and the admittance cursor 132074 is located at a portion of the admittance circle map 132070 equal to about 55.29 kHz. As depicted in fig. 25, the position of the impedance cursor 132072 corresponds to the following values:

R=1.66026Ω

X=-697.309Ω

where R is the resistance (real value) and X is the reactance (imaginary value). Similarly, the position of the admittance cursor 132074 corresponds to the following values:

G=64.0322μS

B=1.63007mS

where G is the conductance (real value) and B is the susceptance (imaginary value).

The state of the jaw is as follows: is clamped on dry oil tanned leather

Fig. 26 is a graphical display 132076 of an impedance analyzer illustrating complex impedance (Z)/admittance (Y) graphs 132078, 132080 of an ultrasonic device with jaws of an end effector clamped on dry oil tanned leather, wherein the impedance graph 132078 is shown in solid lines and the admittance graph 132080 is shown in dashed lines, according to at least one aspect of the present disclosure. The voltage applied to the ultrasonic transducer was 500mV, sweeping the frequency from 55kHz to 56 kHz. The impedance (Z) is scaled to 200 Ω/div and the admittance (Y) is scaled to 500 μ S/div.

Measurements of values that may characterize the complex impedance (Z) and complex admittance (Y) charts 132078, 132080 may be obtained at locations on the charts 132078, 132080 indicated by the impedance cursor 132082 and admittance cursor 132084. Thus, the impedance cursor 132082 is located at a portion of the impedance circle map 132078 equal to about 55.68kHz and the admittance cursor 132084 is located at a portion of the admittance circle map 132080 equal to about 55.29 kHz. As depicted in fig. 26, the position of the impedance cursor 132082 corresponds to the following values:

R=434.577Ω

X=-758.772Ω

where R is the resistance (real value) and X is the reactance (imaginary value).

Similarly, the position of the admittance cursor 132084 corresponds to the following values:

G=85.1712μS

B=1.49569mS

Where G is the conductance (real value) and B is the susceptance (imaginary value).

The state of the jaw is as follows: the ends being clamped on wet oil-tanned leather

Fig. 27 is a graphical display 132086 of an impedance analyzer showing complex impedance (Z)/admittance (Y) graphs 132098, 132090 of an ultrasonic device with jaw tips clamped on wet oil tanned leather, wherein the impedance graph 132088 is shown in solid lines and the admittance graph 132090 is shown in dashed lines, according to at least one aspect of the present disclosure. The voltage applied to the ultrasonic transducer was 500mV, sweeping the frequency from 55kHz to 56 kHz. The impedance (Z) is scaled to 200 Ω/div and the admittance (Y) is scaled to 500 μ S/div.

Measurements of values that may characterize the complex impedance (Z) and complex admittance (Y) charts 132088, 132090 may be obtained at locations on the charts 132088, 132090 indicated by the impedance cursor 132092 and admittance cursor 132094. Thus, the impedance cursor 132092 is located at a portion of the impedance circle map 132088 equal to about 55.68kHz and the admittance cursor 132094 is located at a portion of the admittance circle map 132090 equal to about 55.29 kHz. As depicted in fig. 28, the impedance cursor 132092 corresponds to the following values:

R=445.259Ω

X=-750.082Ω

where R is the resistance (real value) and X is the reactance (imaginary value). Similarly, admittance cursor 132094 corresponds to the following values:

G=96.2179μS

B=1.50236mS

Where G is the conductance (real value) and B is the susceptance (imaginary value).

The state of the jaw is as follows: is completely clamped on wet oil-tanned leather

Fig. 28 is a graphical display 132096 of an impedance analyzer showing complex impedance (Z)/admittance (Y) graphs 132098, 132100 of an ultrasonic device with jaws fully clamped on wet oil tanned leather, where the impedance graph 132098 is shown in solid lines and the admittance graph 132100 is shown in dashed lines, according to at least one aspect of the present disclosure. The voltage applied to the ultrasonic transducer was 500mV, sweeping the frequency from 55kHz to 56 kHz. The impedance (Z) is scaled to 200 Ω/div and the admittance (Y) is scaled to 500 μ S/div.

Measurements of values that may characterize the impedance and admittance circle maps 132098, 132100 may be obtained at locations on the circle maps 132098, 1332100 indicated by the impedance cursor 13212 and the admittance cursor 132104. Thus, the impedance cursor 132102 is located at a portion of the impedance circle map 132098 equal to approximately 55.63kHz and the admittance cursor 132104 is located at a portion of the admittance circle map 132100 equal to approximately 55.29 kHz. As depicted in fig. 28, the impedance cursor 132102 corresponds to the value of the resistance R (real value, not shown) and the value of the reactance X (imaginary value, also not shown).

Similarly, admittance cursor 132104 corresponds to the following values:

G=137.272μS

B=1.48481nS

Where G is the conductance (real value) and B is the susceptance (imaginary value).

The state of the jaw is as follows: open and no load

Fig. 29 is a graphical display 132106 of an impedance analyzer showing an impedance (Z)/admittance (Y) circle, wherein frequencies from 48kHz to 62kHz are swept to capture multiple resonances of an ultrasonic device with open jaws and no load, wherein the area indicated by the rectangle 132108 shown in dashed lines is to facilitate viewing of the impedance circle 132110a, 132110b, 132110c and admittance circle 132112a, 132112b, 132112c shown in solid lines, according to at least one aspect of the present disclosure. The voltage applied to the ultrasonic transducer was 500mV and the frequency was swept from 48kHz to 62 kHz. The impedance (Z) is on a scale of 500 Ω/div and the admittance (Y) is on a scale of 500 μ S/div.

Measurements that may characterize the values of the impedance and admittance circle maps 132110a-c, 132112a-c may be obtained at the locations indicated by the impedance cursor 132114 and the admittance cursor 132116 on the impedance and admittance circle maps 132110a-c, 132112 a-c. Thus, the impedance cursor 132114 is located at a portion of the impedance circle diagrams 132110a-c equal to approximately 55.52kHz and the admittance cursor 132116 is located at a portion of the admittance circle diagrams 132112a-c equal to approximately 59.55 kHz. As depicted in fig. 29, the impedance cursor 132114 corresponds to the following values:

R=1.86163kΩ

X=-536.229Ω

Where R is the resistance (real value) and X is the reactance (imaginary value). Similarly, admittance cursor 132116 corresponds to the following values:

G=649.956μS

B=2.51975mS

where G is the conductance (real value) and B is the susceptance (imaginary value).

Since there are only 400 samples over the entire scan range of the impedance analyzer, there are only a few points about resonance. Therefore, the circle on the right side becomes irregular. But this is only because of the impedance analyzer and the settings used to cover multiple resonances.

When there are multiple resonances, more information is available to improve the classifier. A circular map 132110a-c, 132112a-c fit can be calculated for each resonance encountered to keep the algorithm running fast. Thus, once there is an intersection of complex admittances (representing a circle) during the scan, a fit can be calculated.

Benefits include data-based in-jaw classifiers and well-known models of ultrasound systems. The counting and characterization of circles is well known in the visual system. Therefore, data processing is easy. For example, there is a closed form solution where the radius of the circle and the axis offset can be calculated. This technique may be relatively fast.

Table 2 is a list of symbols (from the IEEE 177 standard) for lumped parameter models of piezoelectric transducers.

Figure BDA0002672394010000751

Figure BDA0002672394010000761

TABLE 2

Table 3 is a list of symbols for the transmission network (from the IEEE 177 standard).

Indicates the root of the plant; the multiple roots are ignored.

TABLE 3

Table 4 is a solution list (from the IEEE 177 standard) for various eigenfrequencies.

Solutions for various characteristic frequencies

Indicates the root of the plant; neglecting multiple roots

TABLE 4

Table 5 shows the loss of the three types of piezoelectric materials.

Figure BDA0002672394010000781

Ratio Q desired for various types of piezoelectric vibratorsrMinimum value of/r Table 5

Table 6 shows the jaw condition, i.e., the estimated parameters of the circle based on the real-time measured values of the complex impedance/admittance, radius (Re) and offset (ae and Be) of the circle represented by the measured variables Re, Ge, Xe, Be, and the parameters of the reference circle map based on the real-time measured values of the complex impedance/admittance, radius (rr) and offset (ar, br) of the reference circle represented by the reference variables Rref, Gref, Xref, Bref, as described in fig. 25 to 29. These values are then compared with the established values for the given situation. These conditions may be: 1) open jaws and nothing, 2) end bite, 3) jaw full bite with staples. The equivalent circuit of the ultrasonic transducer was modeled as follows, and the frequency was swept from 55kHz to 56 kHz:

Ls=L1=1.1068H

Rs=R1=311.352Ω

Cs-C1-7.43265 pF, and

C0=C0=3.64026nF

TABLE 6

In use, the ultrasonic generator sweeps the frequency, records the measured variables, and determines the estimated values Re, Ge, Xe, Be. These estimates are then compared to reference variables Rref, Gref, Xref, Bref stored in memory (e.g., in a look-up table) and jaw condition is determined. The reference jaw conditions shown in table 6 are merely examples. More or fewer reference jaw conditions may be classified and stored in memory. These variables can be used to estimate the radius and offset of the impedance/admittance circle.

Fig. 30 is a logic flow diagram 132120 depicting a process of control procedure or logic configuration to determine jaw condition based on evaluated values of radius (r) and offset (a, b) of the impedance/admittance circle, in accordance with at least one aspect of the present disclosure. Initially, a database or look-up table is populated with reference values based on reference jaw conditions as described in connection with fig. 25-29 and table 6. A reference jaw condition is set and the frequency is swept from a value below resonance to a value above resonance. The reference values Rref, Gref, Xref, Bref defining the corresponding impedance/admittance chart are stored in a database or look-up table. During use, the control circuit of the generator or instrument, under the control of a control program or logic configuration, causes 132122 the frequency to be swept from below resonance to above resonance. The control circuit measures and records 132124 the variables Re, Ge, Xe, Be defining the corresponding impedance/admittance chart (e.g., stores them in memory) and compares 132126 them to reference values Rref, Gref, Xref, Bref stored in a database or look-up table. The control circuitry determines 132128 (e.g., evaluates) an end effector jaw condition based on the comparison.

Detection of large blood vessels during parenchymal dissection using a smart knife

During a hepatectomy procedure, the surgeon risks cutting large blood vessels, which are hidden inside the parenchyma being dissected and therefore cannot be seen. Fig. 31-36 of the present disclosure outline the application of a "smart blade" (e.g., an ultrasonic blade with feedback to provide jaw content identification) that can detect differences between parenchymal tissue and large blood vessels within parenchymal tissue by using the magnitude and phase of impedance measurements over a sweep frequency range. During the parenchymal dissection surgery, blood vessels may be detected using the following techniques: THE smart BLADE algorithm techniques for assessing THE STATE OF or classifying THE JAWs OF an ULTRASONIC device, entitled "ESTIMATING THE STATE OF THE JAW (PAD BURN THROUGH, STAPLES, BROKEN BLADE, BONE IN JAW, TISSUE IN JAW)" described IN connection with FIGS. 19-21 and/or THE "STATE OF CLASSIFIER BASED MODEL" described IN FIGS. 22-30, and/or THE techniques for assessing THE temperature OF an ULTRASONIC BLADE described IN related U.S. provisional patent application No. 62/640,417 entitled "TEMPERATURE OPERATION IN ULTRASONIC DEVICE AND CONTROL SYSTEM THEREFOR" to Nott et al, which is incorporated herein by reference IN its entirety.

During hepatectomy and dissection of other vascular parenchymal tissue, the surgeon cannot see the blood vessels embedded within the parenchyma along the dissection plane. This can result in the surgeon cutting the large blood vessel without sealing, resulting in excessive bleeding that causes the patient to lose blood and stress the surgeon. Fig. 31-36 describe a solution that provides a method of detecting large blood vessels embedded in parenchymal tissue without using a smart ultrasonic blade application to visualize the large blood vessels.

The ultrasound devices described herein may be employed to accomplish the following vascular tests prior to initiating the hepatectomy and dissection procedures. The control circuit of the generator or ultrasound device initiates a frequency sweep from below resonance to above resonance of the electromechanical ultrasound system to enable measurement of the amplitude and phase of the impedance. The results were plotted on a 3D curve as described in connection with fig. 19-21. The resulting 3D curve will have a particular form when the ultrasonic blade is in contact with parenchymal tissue, and the resulting 3D curve will have other forms when the ultrasonic blade is in contact with tissue other than parenchymal tissue, as described below.

When the ultrasonic blade contacts a large blood vessel, the frequency sweep generates a different 3D curve. When the ultrasonic blade contacts a blood vessel, the control circuit compares the test frequency sweep of the new (blood vessel) curve with the frequency sweep of the old (parenchymal) curve and identifies the new (blood vessel) curve as different from the old (parenchymal) curve. Based on the comparison, the control circuitry enables the ultrasound device to take action to prevent cutting into the large blood vessel and to notify the surgeon whether the large blood vessel is on or in contact with the ultrasonic blade.

The various actions that the ultrasound device may take may include, but are not limited to, changing the therapeutic output of the device to prevent cutting of the blood vessel or changing the tone emitted by the generator to notify the surgeon that a blood vessel has been detected, or a combination thereof.

Alternatively, aspects of the technique may be applied to blood that detects whether a blood vessel is cut, allowing a surgeon to quickly seal the blood vessel even if the cut blood vessel is not visible.

Fig. 31 is a diagram 132340 of a hepatectomy 132350 in which blood vessels 132354 (fig. 32) are embedded in parenchymal tissue, according to at least one aspect of the present disclosure. An ultrasonic instrument 132342 including an ultrasonic blade 132344 and a clamp arm 132346 is shown cutting into the liver 132348 to form a cut 132350. The ultrasonic instrument 132342 is coupled to a generator 132352 that controls the delivery of energy to the ultrasonic instrument 132342. One or both of the generator 132252 or the ultrasonic instrument 132342 include control circuitry configured to be capable of executing the advanced smart knife algorithm discussed herein.

Fig. 32 is a view 132356 of an ultrasonic blade 132344 during a procedure to cut through parenchyma without contacting a blood vessel 132354 embedded in a liver 132348 in accordance with at least one aspect of the present disclosure. During the ablation procedure, the control circuitry monitors the impedance, amplitude, and phase of the signal driving the ultrasonic transducer to assess the state of the jaws, e.g., the state of the ultrasonic blade 132344, as shown in fig. 33A and 33B. Thus, when the ultrasonic blade 132344 cuts the liver 132348, the ultrasonic transducer produces a first response, and when the ultrasonic blade 132344 contacts the embedded blood vessel 132354, the ultrasonic transducer produces a second response, which is associated with the type of embedded blood vessel 132354 as described herein in connection with fig. 19-30.

Fig. 33A and 33B are graphical representations 132360 of ultrasound transducer impedance magnitude/phase with a substantial curve 132362 shown in bold lines in accordance with at least one aspect of the present disclosure. Fig. 33A is a three-dimensional view, and fig. 33B is a two-dimensional view. These curves are generated according to, for example, FIGS. 19-21 and THE associated description entitled "ESTIMATING THE STATE OF THE JAW (PAD BURNTHROUGH, STAPLES, BROKEN BLADE, BONE IN JAW, TISSUE IN JAW". alternatively, techniques for assessing THE STATE OF or classifying THE JAWs OF an ultrasound device, entitled "STATE OF CLASSIFIER BASEDON MODE" described IN connection with FIGS. 22-30, and/or techniques for assessing THE TEMPERATURE OF an ultrasound BLADE, described IN THE associated U.S. provisional patent application No. 62/640,417 entitled "TEMPERATURE CONTROL IN TRANSSONIC DEVICE AND CONTROL SYSTEM THEREFOR" may be employed.

Fig. 34 is a view 132364 of an ultrasonic blade 132344 during dissection through parenchyma and contact of a blood vessel 132354 embedded in a liver 132348, in accordance with at least one aspect of the present disclosure. When the ultrasonic blade 132344 transects the parenchyma of the liver 132348, the ultrasonic blade 132344 contacts the blood vessel 132354 at location 132366 and thus shifts the resonant frequency of the ultrasonic transducer, as shown in fig. 35A and 35B. The control circuit monitors the impedance, amplitude, and phase of the signal driving the ultrasound transducer to assess the state of the jaws, e.g., the state of the ultrasonic blade 132344 when contacting the blood vessel 132354, as shown in fig. 35A and 35B.

Fig. 35A and 35B are graphical representations 132370 of ultrasound transducer impedance magnitude/phase with a large vessel curve 132372 shown in bold lines, in accordance with at least one aspect of the present disclosure. Fig. 35A is a three-dimensional diagram, and fig. 35B is a two-dimensional diagram. These curves are generated according to FIGS. 19-21 and THE associated description entitled "ESTIMATING THE STATE OF THE JAW (PAD BURN THROUGH, STAPLES, BROKEN BLADE, BONE IN JAW, TISSUE IN JAW.) alternatively, techniques for assessing THE STATE OF or classifying THE JAWs OF an ULTRASONIC device, described IN connection with FIGS. 22-30, entitled" STATE OF CLASSIFIER BASED MODE ", and/or techniques for assessing THE temperature OF an ULTRASONIC BLADE, described IN THE associated U.S. provisional patent application No. 62/640,417 entitled" TEMPERATURE CONTROL IN TRANSSONIC DEVICE AND CONTROL SYSTEM THEREFOR ", may be employed.

Fig. 36 is a logic flow diagram 132380 depicting a control procedure or logic configuration for a process of treating tissue in parenchyma when a blood vessel is detected as shown in fig. 34-35B, in accordance with at least one aspect of the present disclosure. According to this procedure, the following techniques are used: techniques for assessing or classifying the STATE OF the JAWs OF an ultrasound device, described IN connection with FIGS. 19-21 and/or IN related U.S. provisional patent application No. 62/640,417 entitled "ESTIMATING THE STATE OF THEJAW (PAD BURN THROUGH, STAPLES, BROKEN BLADE, BONE IN JAW, TISSUE IN JAW" and/or IN FIGS. 22-30 entitled "STATE OF CLASSIFIER ON MODEL", and/or the technique for assessing the TEMPERATURE OF an ultrasound BLADE described IN related U.S. provisional patent application No. 62/640,417 entitled "TEMPERATURE CONTROL INDUSTROSONIC DEVICE AND ROL SYSTEM THEREFOR", the CONTROL circuit determines whether a blood vessel 132354 is located ON the ultrasound BLADE 132344 or IN contact with the ultrasound BLADE 132344. if the CONTROL circuit detects a blood vessel 132382, the CONTROL circuit stops 132384 cutting energy, switches to a lower power level 132386, and sends a warning message or warning to the user 132388 The message or alarm may include lighting, sounding, activating a buzzer, etc. If no blood vessel 132354 is detected, the ablation process continues 132390.

While several forms have been illustrated and described, it is not the intention of the applicants to restrict or limit the scope of the appended claims to such detail. Numerous modifications, changes, variations, substitutions, combinations, and equivalents of these forms can be made without departing from the scope of the present disclosure, and will occur to those skilled in the art. Further, the structure of each element associated with the described forms may alternatively be described as a means for providing the function performed by the element. In addition, where materials for certain components are disclosed, other materials may also be used. It is, therefore, to be understood that the foregoing detailed description and appended claims are intended to cover all such modifications, combinations and variations as fall within the scope of the disclosed forms of the invention. It is intended that the following claims cover all such modifications, changes, variations, substitutions, modifications, and equivalents.

The foregoing detailed description has set forth various forms of the devices and/or methods via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. Those skilled in the art will recognize that some aspects of the forms disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the electronic circuitry and/or writing the code for the software and or hardware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as one or more program products in a variety of forms, and that an exemplary form of the subject matter described herein applies regardless of the particular type of signal bearing media used to actually carry out the distribution.

Instructions for programming logic to perform the various disclosed aspects may be stored within a memory within a system, such as a Dynamic Random Access Memory (DRAM), cache, flash memory, or other memory. Further, the instructions may be distributed via a network or by other computer readable media. Thus, a machine-readable medium may include a mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer), but is not limited to, floppy diskettes, optical disks, read-only memories (CD-ROMs), magneto-optical disks, read-only memories (ROMs), Random Access Memories (RAMs), erasable programmable read-only memories (EPROMs), electrically erasable programmable read-only memories (EEPROMs), magnetic or optical cards, flash memory, or a tangible, machine-readable storage device used in transmitting information over the internet via electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.). Thus, a non-transitory computer-readable medium includes any type of tangible machine-readable medium suitable for storing or transmitting electronic instructions or information in a form readable by a machine (e.g., a computer).

As used in any aspect herein, the term "control circuitry" can refer to, for example, hardwired circuitry, programmable circuitry (e.g., a computer processor that includes one or more separate instruction processing cores, processing units, processors, microcontrollers, microcontroller units, controllers, Digital Signal Processors (DSPs), Programmable Logic Devices (PLDs), Programmable Logic Arrays (PLAs), Field Programmable Gate Arrays (FPGAs)), state machine circuitry, firmware that stores instructions executed by programmable circuitry, and any combination thereof. The control circuitry may be implemented collectively or individually as circuitry that forms part of a larger system, e.g., an Integrated Circuit (IC), an Application Specific Integrated Circuit (ASIC), a system on a chip (SoC), a desktop computer, a laptop computer, a tablet computer, a server, a smartphone, etc. Thus, as used herein, "control circuitry" includes, but is not limited to, electronic circuitry having at least one discrete circuit, electronic circuitry having at least one integrated circuit, electronic circuitry having at least one application specific integrated circuit, electronic circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program that implements, at least in part, the methods and/or apparatus described herein, or a microprocessor configured by a computer program that implements, at least in part, the methods and/or apparatus described herein), electronic circuitry forming a memory device (e.g., forming a random access memory), and/or electronic circuitry forming a communication device (e.g., a modem, a communication switch, or an optoelectronic device). Those skilled in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion, or some combination thereof.

As used in any aspect herein, the term "logic" may refer to an application, software, firmware, and/or circuitry configured to be capable of performing any of the foregoing operations. The software may be embodied as a software package, code, instructions, instruction sets, and/or data recorded on a non-transitory computer-readable storage medium. Firmware may be embodied as code, instructions or instruction sets and/or data that are hard-coded (e.g., non-volatile) in a memory device.

As used in any aspect herein, the terms "component," "system," "module," and the like can refer to a computer-related entity, either hardware, a combination of hardware and software, or software in execution.

An "algorithm," as used in any aspect herein, is a self-consistent sequence of steps leading to a desired result, wherein "step" refers to the manipulation of physical quantities and/or logical states, which may (but are not necessarily) take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. And are used to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or conditions.

The network may comprise a packet switched network. The communication devices may be capable of communicating with each other using the selected packet switched network communication protocol. One exemplary communication protocol may include an ethernet communication protocol that may allow communication using the transmission control protocol/internet protocol (TCP/IP). The ethernet protocol may conform to or be compatible with the ethernet Standard entitled "IEEE 802.3 Standard" and/or higher versions of the Standard, promulgated by the Institute of Electrical and Electronics Engineers (IEEE) at 12 months 2008. Alternatively or additionally, the communication devices may be capable of communicating with each other using an x.25 communication protocol. The x.25 communication protocol may conform to or conform to standards promulgated by the international telecommunication union, telecommunication standardization sector (ITU-T). Alternatively or additionally, the communication devices may be capable of communicating with each other using a frame relay communication protocol. The frame relay communication protocol may conform to or conform to standards promulgated by the international committee for telephone and telephone negotiations (CCITT) and/or the American National Standards Institute (ANSI). Alternatively or additionally, the transceivers may be capable of communicating with each other using an Asynchronous Transfer Mode (ATM) communication protocol. The ATM communication protocol may conform to or be compatible with the ATM standard entitled "ATM-MPLS Network Interworking 2.0" promulgated by the ATM forum at 8 months 2001 and/or higher versions of that standard. Of course, different and/or later-developed connection-oriented network communication protocols are also contemplated herein.

Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the above disclosure, discussions utilizing terms such as "processing," "computing," "calculating," "determining," "displaying" or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.

One or more components may be referred to herein as "configured to be able," "configurable to be able," "operable/operable," "adapted/adaptable," "capable," "conformable/conformable," or the like. Those skilled in the art will recognize that "configured to be able to" may generally encompass components in an active state and/or components in an inactive state and/or components in a standby state unless the context indicates otherwise.

The terms "proximal" and "distal" are used herein with respect to a clinician manipulating a handle portion of a surgical instrument. The term "proximal" refers to the portion closest to the clinician and the term "distal" refers to the portion located away from the clinician. It will be further appreciated that for simplicity and clarity, spatial terms such as "vertical," "horizontal," "up," and "down" may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.

Those skilled in the art will recognize that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as "open" terms (e.g., the term "including" should be interpreted as "including but not limited to," the term "having" should be interpreted as "having at least," the term "includes" should be interpreted as "includes but is not limited to," etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claims. The use of such phrases should not be construed, however, to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an" (e.g.,

"a" and/or "an" should generally be construed to mean "at least one" or "one or more"); this also applies to the use of definite articles used to introduce claim recitations.

In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of "two recitations," without other modifiers, typically means at least two recitations, or two or more recitations). Further, in those instances where a convention analogous to "at least one of A, B and C, etc." is used, in general such construction is intended to have a meaning that one of skill in the art would understand the convention (e.g., "a system having at least one of A, B and C" would include, but not be limited to, systems having a alone, B alone, C, A and B together alone, a and C together, B and C together, and/or A, B and C together, etc.). In those instances where a convention analogous to "A, B or at least one of C, etc." is used, in general such construction is intended to have a meaning that one of skill in the art would understand the convention (e.g., "a system having at least one of A, B or C" would include but not be limited to systems having a alone, B alone, C, A and B together alone, a and C together, B and C together, and/or A, B and C together, etc.). It will also be understood by those within the art that, in general, disjunctive words and/or phrases having two or more alternative terms, whether appearing in the detailed description, claims, or drawings, should be understood to encompass the possibility of including one of the terms, either of the terms, or both terms, unless the context indicates otherwise. For example, the phrase "a or B" will generally be understood to include the possibility of "a" or "B" or "a and B".

Those skilled in the art will appreciate from the appended claims that the operations recited therein may generally be performed in any order. Additionally, while the various operational flow diagrams are listed in one or more sequences, it should be understood that the various operations may be performed in other sequences than the illustrated sequences, or may be performed concurrently. Examples of such alternative orderings may include overlapping, interleaved, interrupted, reordered, incremental, preliminary, complementary, simultaneous, reverse, or other altered orderings, unless context dictates otherwise. Furthermore, unless the context dictates otherwise, terms like "responsive," "related," or other past adjectives are generally not intended to exclude such variations.

It is worthy to note that any reference to "an aspect," "an example" means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, the appearances of the phrases "in one aspect," "in an example" in various places throughout this specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more aspects.

Any patent applications, patents, non-patent publications or other published materials mentioned in this specification and/or listed in any application data sheet are herein incorporated by reference, to the extent that the incorporated materials are not inconsistent herewith. Thus, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

In summary, a number of benefits resulting from employing the concepts described herein have been described. The foregoing detailed description of one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The form or forms selected and described are to be illustrative of the principles and practical applications to thereby enable one of ordinary skill in the art to utilize the various forms and modifications as are suited to the particular use contemplated. The claims as filed herewith are intended to define the full scope.

Various aspects of the subject matter described herein are set forth in the following numbered examples:

embodiment 1. a method of delivering energy to an ultrasound device, the ultrasound device comprising an electromechanical ultrasound system defined by a predetermined resonant frequency, the electromechanical ultrasound system further comprising an ultrasound transducer coupled to an ultrasonic blade, the method comprising:

applying, by a processor or control circuit, energy to the ultrasonic blade at a first power level P1 via the ultrasonic transducer coupled to the ultrasonic blade;

measuring, by the processor or the control circuit, a complex impedance of the ultrasound transducer;

receiving, by the processor or the control circuit, a complex impedance feedback data point;

comparing, by the processor or the control circuit, the complex impedance feedback data points to a reference complex impedance signature pattern; and

determining, by the processor or the control circuit, that the ultrasonic blade is contacting a blood vessel based on a result of the comparison. Embodiment 2. the method of embodiment 1, further comprising:

disabling, by the processor or the control circuit, power applied to the ultrasound transducer; and

switching, by the processor or the control circuit, to a second power level P2 that is lower than the first power level P1.

99页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:可互换贴标签板

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!