车辆用清洁系统

文档序号:957675 发布日期:2020-10-30 浏览:10次 >En<

阅读说明:本技术 车辆用清洁系统 (Cleaning system for vehicle ) 是由 阪井健 佐藤诚晃 河村和贵 于 2019-03-15 设计创作,主要内容包括:车辆用清洁系统(100)具有:作为获取车辆的外部的信息的外部传感器(6)的前LiDAR(6f)及前摄像头(6c);具有喷出清洗液并清洗前LiDAR(6f)的前LiDAR清洁器(103)及清洗前摄像头(6c)的前摄像头清洁器(109a)的清洁单元(110);贮存清洗液的前储存箱(111);控制清洁单元(110)的清洁控制部(116)。清洁控制部(116)构成为,在前储存箱(111)内的清洗液为规定量以下的情况下,能够将剩余量不足预测信号输出至控制车辆的行驶的车辆控制部(3)。(A vehicle cleaning system (100) is provided with: a front LiDAR (6f) and a front camera (6c) as an external sensor (6) for acquiring information outside the vehicle; a cleaning unit (110) having a front LiDAR cleaner (103) that ejects a cleaning liquid and cleans a front LiDAR (6f), and a front camera cleaner (109a) that cleans a front camera (6 c); a front storage tank (111) for storing the cleaning liquid; a cleaning control unit (116) for controlling the cleaning unit (110). The cleaning control unit (116) is configured to be capable of outputting a remaining amount shortage prediction signal to a vehicle control unit (3) that controls the travel of the vehicle when the cleaning liquid in the front reservoir tank (111) is a predetermined amount or less.)

车辆用清洁系统

技术领域

本公开涉及车辆用清洁系统。

背景技术

通过专利文献1等已知有向搭载于车辆的传感器等喷出清洗液的车辆用清洁器。

现有技术文献

专利文献

专利文献1:(日本国)特开2016-187990号公报

发明内容

发明所要解决的问题

但是,在能够执行手动驾驶模式和自动驾驶模式的自动驾驶车辆中,期望良好地维持与自动驾驶模式相关的传感器的灵敏度。因此,有时自动驾驶车辆中也搭载通过自动清洗模式能够清洗外部传感器等传感器的车辆用清洁器。这种车辆用清洁器优选在自动驾驶模式下的行驶中贮存有充分剩余量的清洗液。

但是,在将车辆用清洁器在自动清洗模式下执行的情况下,使用者难以获取车辆用清洁器的清洗液的消耗量的信息。如果因清洗液的剩余量不足而无法清洗外部传感器导致外部传感器不干净,则车辆控制部难以基于可靠性高的外部信息执行自动驾驶模式。

另一方面,在能够清洗传感器的车辆用清洁系统中,在储存箱内的清洗液的剩余量变少的情况下,存在希望继续用于维持传感器的灵敏度的清洗且节省清洗液的要求。

因此,本公开的第一目的在于,提供一种车辆用清洁系统,其能够预防清洁器的清洗液成为剩余量不足。

另外,本公开的第二目的在于,提供一种车辆用清洁系统,能够边继续清洗传感器,边节省清洁器的清洗液。

用于解决问题的技术方案

为了实现上述第一目的,本公开的一个方面提供一种车辆用清洁系统,其具有:

外部传感器,其获取车辆的外部的信息;

清洁单元,其具有喷出清洗液且清洗所述外部传感器的清洁器;

储存箱,其贮存所述清洗液;

清洁控制部,其控制所述清洁单元;

所述清洁控制部构成为,在所述储存箱内的所述清洗液为规定量以下的情况下,能够将剩余量不足预测信号输出至控制车辆的行驶的车辆控制部。

另外,为了实现所述第二目的,本公开的一个方面提供一种车辆用清洁系统,其具有:

外部传感器,其获取车辆的外部的信息;

清洁单元,其具有喷出清洗液且清洗所述外部传感器的清洁器;

储存箱,其贮存所述清洗液;

清洁控制部,其控制所述清洁单元;

就所述清洁控制部而言,

在所述储存箱内的所述清洗液的剩余量比规定量多的情况下,使所述清洁器在第一模式下工作,

在所述储存箱内的所述清洗液的剩余量为所述规定量以下的情况下,使所述清洁器通过所述清洗液的喷出量比所述第一模式少的第二模式进行工作。

发明效果

根据本公开的一个方面,能够提供车辆用清洁系统,其能够预防清洁器的清洗液成为剩余量不足。

根据本公开的一个方面,能够提供车辆用清洁系统,其能够边继续清洗传感器,边节省清洁器的清洗液。

附图说明

图1是搭载了本公开的第一实施方式及第二实施方式的车辆用清洁系统的车辆的俯视图。

图2是第一实施方式及第二实施方式的车辆系统的框图。

图3是第一实施方式及第二实施方式的车辆用清洁系统的示意图。

图4是本公开的第一实施方式及第二实施方式的车辆用清洁系统的主要部的框图。

图5是本公开的第一实施方式的车辆用清洁系统执行的流程图。

图6是本公开的第二实施方式的车辆用清洁系统执行的流程图。

具体实施方式

(第一实施方式)

以下,参照附图说明本公开的第一实施方式。需要说明的是,为了便于说明,有时本附图中表示的各部件的尺寸与实际的各部件的尺寸不同。

另外,在本实施方式的说明中,为了便于说明,适当提及“左右方向”、“前后方向”、“上下方向”。这些方向是对图1所示的车辆1而设定的相对的方向。在此,“上下方向”是包含“上方向”及“下方向”的方向。“前后方向”是包含“前方向”及“后方向”的方向。“左右方向”是包含“左方向”及“右方向”的方向。

图1是搭载了第一实施方式的车辆用清洁系统100(以下,也称为清洁系统100)的车辆1的俯视图。车辆1具备清洁系统100。在第一实施方式中,车辆1是能够在自动驾驶模式下行驶的汽车。

首先,参照图2对车辆1的车辆系统2进行说明。图2表示车辆系统2的框图。如图2所示,车辆系统2具备:车辆控制部3、内部传感器5、外部传感器6、灯具7、HMI8(Human MachineInterface,人机界面)、GPS9(Global Positioning System,全球定位系统)、无线通信部10、地图信息存储部11。车辆系统2还具备:转向致动器(actuator)12、转向装置13、制动致动器14、制动装置15、加速致动器16、加速装置17。

车辆控制部3由电子控制单元(ECU)构成。车辆控制部3由CPU(CentralProcessing Unit,中央处理单元)等处理器、存储有各种车辆控制程序的ROM(Read OnlyMemory,只读存储器)、暂时地存储各种车辆控制数据的RAM(Random Access Memory,随机存取存储器)构成。处理器构成为,将从存储于ROM的各种车辆控制程序所指定的程序在RAM上展开,并通过与RAM的协同工作而执行各种处理。车辆控制部3构成为控制车辆1的行驶。

灯具7是设置于车辆1的前部的前大灯或位置灯、设置于车辆1的后部的后组合灯、设置于车辆的前部或侧部的转向信号灯、使行人或其它车辆的驾驶员知晓本车辆的状况的各种灯具等的至少一个。

HMI8由接收来自使用者的输入操作的输入部和将行驶信息等向使用者输出的输出部构成。输入部包含:方向盘、加速踏板、制动踏板、切换车辆1的驾驶模式的驾驶模式切换开关等。输出部是显示各种行驶信息的显示屏。

内部传感器5是能够获取本车辆的信息的传感器。内部传感器5是例如加速度传感器、车速传感器、车轮速度传感器以及陀螺仪传感器等的至少一个。内部传感器5构成为,获取包含车辆1的行驶状态的本车辆的信息,并将该信息输出至车辆控制部3。

内部传感器5也可以具备检测HMI8的位移的传感器、检测使用者是否就座于座位的就座传感器、检测使用者的面部的方向的面部朝向传感器、检测在车内是否有人的人体传感器等。

外部传感器6是能够获取本车辆外部的信息的传感器。外部传感器是例如摄像头、雷达、LiDAR、GPS9、无线通信部10等的至少一个。外部传感器6构成为,获取包含车辆1的周边环境(其它车辆、行人、道路形状、交通标识、障碍物等)的本车辆外部的信息,并将该信息输出至车辆控制部3。或者,外部传感器6也可以具备检测天气状态的天气传感器、检测车辆1的周边环境的照度的照度传感器等。

摄像头是例如包含CCD(Charge-Coupled Device,电荷耦合器件)、CMOS(互补型MOS)等拍摄元件的摄像头。摄像头是检测可见光的摄像头、检测红外线的红外线摄像头。

雷达是毫米波雷达、微波雷达或激光雷达等。

LiDAR是Light Detection and Ranging或Laser Imaging Detection andRanging的简称。LiDAR通常是向其前方射出非可见光,基于出射光和返回光而获取直到物体的距离、物体的形状、物体的材质等信息的传感器。

作为外部传感器6的一种的GPS9构成为,通过测定多个人造卫星相对于作为本车辆的车辆1的距离,而获取车辆1的当前位置信息,并将该获取到的当前位置信息输出至车辆控制部3。作为外部传感器6一种的无线通信部10构成为,从其它车辆接收处于车辆1周围的其他车辆的行驶信息,并且将车辆1的行驶信息发送至其他车辆(车车间通信)。另外,无线通信部10构成为,从信号机或标识灯等基础设施接收基础设施信息,并且将车辆1的行驶信息发送至基础设施(路车间通信)。地图信息存储部11是存储有地图信息的硬盘驱动器等外部存储装置,构成为将地图信息输出至车辆控制部3。

车辆控制部3构成为供方向盘、加速踏板、制动踏板这样的对由使用者操作的操作件的位移进行检测的内部传感器5的输出、车速传感器或车轮速度传感器、加速度传感器、偏航率传感器等的对车辆的状态进行检测的内部传感器5的输出、获取车辆1外部的信息的外部传感器6的输出。车辆控制部3构成为,基于这些输出而生成转向控制信号、加速控制信号及制动控制信号,并根据需要控制(加工)这些信号。

转向致动器12构成为,从车辆控制部3接收转向控制信号,并基于接收到的转向控制信号控制转向装置13。制动致动器14构成为,从车辆控制部3接收制动控制信号,并基于接收到的制动控制信号控制制动装置15。加速致动器16构成为,从车辆控制部3接收加速控制信号,并基于接收到的加速控制信号控制加速装置17。

车辆1能够在自动驾驶模式和手动驾驶模式下进行行驶。车辆控制部3能够选择地执行自动驾驶模式和手动驾驶模式。

在自动驾驶模式中,车辆控制部3根据获取车辆1的外部信息的外部传感器6的输出而自动地生成转向控制信号、加速控制信号及制动控制信号。车辆控制部3与对使用者能够操作的操作件的位移进行检测的内部传感器5的输出无关,根据外部传感器6的输出自动地生成转向控制信号、加速控制信号及制动控制信号。

例如,在自动驾驶模式中,车辆控制部3基于前摄像头6c获取到的车辆1的前方的周边环境信息、GPS9的当前位置信息、存储于地图信息存储部11的地图信息等,自动地生成转向控制信号、加速控制信号及制动控制信号。在自动驾驶模式中,车辆1不依赖使用者地进行驾驶。

在手动驾驶模式中,车辆控制部3通常与外部传感器6的输出无关地生成转向控制信号、加速控制信号及制动控制信号。即,在手动驾驶模式中,车辆控制部3通常与外部传感器6的输出无关地,基于使用者的方向盘的操作而生成转向控制信号。车辆控制部3通常与外部传感器6的输出无关地,基于使用者的加速踏板的操作而生成加速控制信号。车辆控制部3与外部传感器6的输出无关地,基于使用者的制动踏板的操作而生成制动控制信号。在手动驾驶模式中,车辆1通常由使用者驾驶。

需要说明的是,在手动驾驶模式中,车辆控制部3也可以执行根据例如作为内部传感器5的车轮速度传感器的输出控制制动控制信号的防抱死制动控制。另外,在手动驾驶模式中,车辆控制部3也可以执行根据作为内部传感器5的转向角传感器、车轮速度传感器、偏航率传感器的输出,控制转向控制信号、加速控制信号、制动控制信号的至少一个的防侧滑控制(Electric Stability Control)、牵引控制等。

或者,在手动驾驶模式中,车辆控制部3也可以在紧急时执行根据前摄像头6c等外部传感器6的输出生成转向控制信号和制动控制信号的预碰撞控制或碰撞避免控制。这样,在手动驾驶模式中,车辆控制部3也可以在紧急时,根据外部传感器6的输出生成转向控制信号、加速控制信号及制动控制信号的至少一个。

在手动驾驶模式中,通常生成转向控制信号、加速控制信号及制动控制信号的触发器是使用者操作的方向盘、加速踏板、制动踏板这样的操作件的位移。在手动驾驶模式中,车辆控制部3通常也可以根据内部传感器5或外部传感器6的输出控制(加工)由操作件的位移生成的转向控制信号、加速控制信号及制动控制信号这样的信号。在本实施方式中,根据内部传感器5或外部传感器6的输出辅助使用者的驾驶的所谓的辅助驾驶模式是手动驾驶模式的一种形态。

如果根据2018年当前已知的自动驾驶模式的等级0~5的定义,则本实施方式的自动驾驶模式相当于等级3~5(除紧急时等),本实施方式的手动驾驶模式相当于等级0~2。

返回图1,车辆1作为外部传感器6具有前LiDAR6f、后LiDAR6b、右LiDAR6r、左LiDAR6l、前摄像头6c、后摄像头6d。前LiDAR6f构成为,获取车辆1的前方的信息。后LiDAR6b构成为,获取车辆1的后方的信息。右LiDAR6r构成为,获取车辆1的右方的信息。左LiDAR6l构成为,获取车辆1的左方的信息。前摄像头6c构成为,获取车辆1的前方的信息。后摄像头6d构成为,获取车辆1的后方的信息。

需要说明的是,在图1所示的例子中,表示了如下例子,即,前LiDAR6f设置于车辆1的前部,后LiDAR6b设置于车辆1的后部,右LiDAR6r设置于车辆1的右部,左LiDAR6l设置于车辆1的左部,但本公开不限于该例。例如也可以在车辆1的顶部集中配置前LiDAR、后LiDAR、右LiDAR、左LiDAR。

车辆1作为灯具7具有右前大灯7r和左前大灯7l。右前大灯7r设置于车辆1的前部中的右部,左前大灯7l设置于车辆1的前部中的左部。右前大灯7r设置于比左前大灯7l靠右方的位置。

车辆1具有前车窗1f和后车窗1b。

车辆1具有本公开的实施方式的清洁系统100。清洁系统100是使用清洗介质除去附着于清洗对象物上的水滴、泥或尘埃等异物的系统。在本实施方式中,清洁系统100具有:前车窗洗涤器(以后,称为前WW)101、后车窗洗涤器(以后,称为后WW)102、前LiDAR清洁器(以后,称为前LC)103、后LiDAR清洁器(以后,称为后LC)104、右LiDAR清洁器(以后,称为右LC)105、左LiDAR清洁器(以后,称为左LC)106、右前大灯清洁器(以后,称为右HC)107、左前大灯清洁器(以后,称为左HC)108、前摄像头清洁器109a、后摄像头清洁器109b。各个清洁器101~109a、109b具有一个以上的喷嘴,从喷嘴向清洗对象物喷出清洗液或空气这样的清洗介质。需要说明的是,有时将各个清洁器101~109a、109b称为清洁单元110。另外,有时将前LC103、后LC104、右LC105、左LC106、前摄像头清洁器109a、后摄像头清洁器109b称为传感器清洁器。

前WW101能够清洗前车窗1f。后WW102能够清洗后车窗1b。前LC103能够清洗前LiDAR6f。后LC104能够清洗后LiDAR6b。右LC105能够清洗右LiDAR6r。左LC106能够清洗左LiDAR6l。右HC107能够清洗右前大灯7r。左HC108能够清洗左前大灯7l。前摄像头清洁器109a能够清洗前摄像头6c。后摄像头清洁器109b能够清洗后摄像头6d。

图3是清洁系统100的示意图。清洁系统100除了清洁器101~109a、109b之外,还具有前储存箱111、前泵112、后储存箱113、后泵114、清洁控制部116。以下,有时将前储存箱111及后储存箱113称为储存箱。

清洁控制部116构成为,通过自动清洗模式使传感器清洁器103~106、109a、109b进行工作。自动清洗模式是指不依赖根据使用者的操作输出信号的清洁器开关(省略图示)输出的信号地,使传感器清洁器103~106、109a、109b进行工作的模式。

前储存箱111将前储存箱111内的清洗液供给至前WW101、前LC103、右LC105、左LC106、右HC107、左HC108、前摄像头清洁器109a。后储存箱113将后储存箱113内的清洗液供给至后WW102、后LC104、后摄像头清洁器109b。

前WW101、前LC103、右LC105、左LC106、右HC107、左HC108、前摄像头清洁器109a经由前泵112与前储存箱111连接。前泵112将贮存于前储存箱111的清洗液输送至前WW101、前LC103、右LC105、左LC106、右HC107、左HC108、前摄像头清洁器109a。

后WW102、后LC104、后摄像头清洁器109b经由后泵114与后储存箱113连接。后泵114将贮存于后储存箱113的清洗液输送至后WW102、后LC104、后摄像头清洁器109b。

在各个清洁器101~109a、109b设置有使喷嘴为打开状态并使清洗液喷出至清洗对象物的致动器。设置于各个清洁器101~109a、109b的致动器与清洁控制部116电连接。另外,清洁控制部116也与前泵112、后泵114、车辆控制部3电连接。

图4是清洁系统100的主要部分的框图。如图4所示,清洁系统100具有清洗外部传感器6的清洁单元110、控制该清洁单元110的动作的清洁控制部116。需要说明的是,图4中,作为清洁单元110,仅表示前LC103和前摄像头清洁器109a,但如图3所示,清洁系统100当然具有其它清洁单元110。

清洁控制部116构成为控制各个清洁单元110。清洁控制部116由例如至少一个电子控制单元(ECU:Electronic Control Unit,电子控制单元)构成。电子控制单元也可以包含:包含一个以上的处理器和一个以上的存储器的至少一个微型控制器、包含晶体管等有源元件及无源元件的其它电子电路。处理器是例如CPU(Central Processing Unit,中央处理单元)、MPU(Micro Processing Unit,微处理单元)和/或GPU(Graphics ProcessingUnit,图形处理单元)。CPU也可以由多个CPU核构成。GPU也可以由多个GPU核构成。存储器包含ROM(Read Only Memory,只读存储器)和RAM(Random Access Memory,随机存取存储器)。在ROM中也可以存储有清洁单元110的控制程序。

处理器也可以构成为,将从存储于ROM的程序组指定的程序在RAM上展开,并通过与RAM的协同工作来执行各种处理。另外,电子控制单元(ECU)也可以由ASIC(ApplicationSpecific Integrated Circuit,应用型专用集成电路)或FPGA(Field-ProgramammableGate Array,现场可编程门阵列)等集成电路(硬件资源)构成。另外,电子控制单元也可以由至少一个微型控制器与集成电路的组合构成。

另外,在本实施方式中,车辆用清洁系统100具有能够检测外部传感器6是否洁净的污垢传感器(省略图示)。污垢传感器构成为,在例如外部传感器6的灵敏度比预定的阈值低的情况下,判定为外部传感器6污染,并将污垢信号发送至清洁控制部116。污垢传感器也可以是与外部传感器6分开具备的传感器,也可以是外部传感器6本身具有判定污染的功能的外部传感器6兼用的传感器。

在此,为了维持外部传感器6的灵敏度,期望想要获取车辆用清洁系统100的清洗液的剩余量的信息。特别是在传感器清洁器103~106、109a、109b通过自动清洗模式进行工作的情况下,难以获取消耗多少清洗液的信息。另外,在通过自动驾驶模式行驶的车辆1中,期望良好地维持外部传感器6的灵敏度,因此,传感器清洁器103~106、109a、109b的工作频率变得比前WW101、后WW102等的工作频率多,传感器清洁器103~106、109a、109b的储存箱的清洗液的消耗量变多。为了车辆控制部3基于可靠性高的外部信息执行自动驾驶模式,需要防止由于清洗液的剩余量不足而无法清洗外部传感器的状态,因此,特别是在自动驾驶模式中需要了解清洗液的剩余量在不久的将来不足的情况。

因此,本实施方式的车辆用清洁系统100具有将清洁器的清洗液在不久的将来成为剩余量不足的情况通知给使用者的结构。

清洁系统100作为获取清洗液的剩余量的信息的结构,具有剩余量传感器。如图4所示,清洁系统100作为剩余量传感器具有:检测前储存箱111内的清洗液的剩余量的前储存箱剩余量传感器120、检测后储存箱113内的清洗液的剩余量的后储存箱剩余量传感器(省略图示)。前储存箱剩余量传感器120及后储存箱剩余量传感器分别构成为,与清洁控制部116电连接,并将检测到的清洗液的剩余量的信息输出至清洁控制部116。

前储存箱剩余量传感器120和后储存箱剩余量传感器为相同的结构,因此,以下,对前储存箱剩余量传感器120进行说明,并省略后储存箱剩余量传感器的说明。

前储存箱剩余量传感器120设置于前储存箱111内。在本例中,前储存箱剩余量传感器120检测前储存箱111内的清洗液的绝对量。前储存箱111内的清洗液的剩余量通过例如如下检测,即,检测前储存箱111内的清洗液的液面,基于该液面的检测结果特定清洗液的剩余量的绝对量(例如100ml)。

需要说明的是,前储存箱剩余量传感器120也可以是检测前储存箱111内的清洗液的相对量的传感器。清洗液的相对量是例如清洗液的剩余量相对于前储存箱111的满容量的比例,在满容量为2000ml且清洗液的剩余量为100ml的情况下为5%。

清洁系统100构成为,将清洗液的剩余量变少通知给车辆控制部3。具体而言,清洁控制部116构成为,在储存箱内的清洗液为规定量以下的情况下,判定为清洗液的剩余量在不久的将来不足,生成剩余量不足预测信号,并将该剩余量不足预测信号输出至车辆控制部3。

在此,规定量由储存箱内的清洗液的绝对量、清洗液的剩余量相对于储存箱的满容量的比例、清洁器的工作次数、基于清洗液的消耗预测而特定的清洗液的能够使用的剩余时间、相对于行驶预定距离或行驶预定时间的清洗液的能够使用的剩余量的至少一项决定。

由储存箱内的清洗液的绝对量决定的规定量为例如100ml等的液量。由清洗液的剩余量相对于储存箱的满容量的比例决定的规定量为例如储存箱的满容量的10%。

在规定量由清洁器的工作次数决定的情况下,也可以不使用前储存箱剩余量传感器120那样的分体的传感器,清洁控制部116推定清洗液的剩余量。例如,清洁控制部116也可以根据清洁器101~109a、109b的工作次数,推定储存箱的清洗液的剩余量。由清洁器101~109a、109b的工作次数决定的规定量是例如由相对于预先存储于清洁控制部116的前储存箱111的满容量的清洁器的最大工作次数减去清洁器101~109a、109b的实际工作次数而推定的能够工作次数(例如2000次)。

规定量也可以基于清洗液的消耗预测由清洁控制部116决定。清洗液的消耗预测也可以使用与过去的清洗液的消耗量相关的信息及将来的行驶预定信息来决定。

与过去的清洗液的消耗量相关的信息是,例如过去10小时的清洗液的消耗量为100ml,过去一个月的清洗液的消耗量为100ml,过去100km的行驶中消耗的清洗液为消耗量100ml等。例如,在过去10小时的清洗液的消耗量为100ml,且前储存箱111内的清洗液的剩余量为200ml的情况下,基于清洗液的消耗预测而特定的清洗液的能够使用的剩余时间为20小时。

将来的行驶预定信息也可以基于使用者在汽车导航系统中设定的信息来决定。将来的行驶预定信息是例如汽车导航系统中的直到目的地的行驶预定距离(例如200km)、直到目的地的行驶预定时间(例如2小时30分钟)。例如,在过去100km的行驶中的清洗液的消耗量信息为100ml,在汽车导航系统中指定的行驶预定距离为200km的情况下,相对于行驶预定距离的清洗液的能够使用的剩余量为200ml。

从清洁控制部116获取到剩余量不足预测信号的车辆控制部3向使用者通知清洗液的剩余量在不久的将来不足。清洗液的剩余量在不久的将来不足的通知也可以是例如警告灯的点亮、“相对于行驶预定距离的清洗液不足”等的文字或声音。警告灯及文字信息的显示也可以显示于例如设置于车内的监视器(省略图示)。

另外,在车辆1执行自动驾驶模式的情况下,获取到剩余量不足预测信号的车辆控制部3向使用者通知解除自动驾驶模式。在车辆1不执行自动驾驶模式的情况下,获取到剩余量不足预测信号的车辆控制部3向使用者通知无法执行自动驾驶模式。向使用者的通知与清洗液的剩余量在不久的将来不足的通知一样,能够通过“清洗液不足。解除自动驾驶模式。”的声音或警告蜂鸣声、灯的点亮、解除自动驾驶模式的意思的文字显示等进行。

车辆1在解除由车辆控制部3进行的自动驾驶模式的通知之后,解除自动驾驶模式,并且切换成由使用者进行的手动驾驶模式。这样,在解除自动驾驶模式之前进行解除自动驾驶模式的通知,因此,车辆1适当转换成由使用者进行的手动驾驶并继续行驶。

图5是清洁控制部116执行的流程图。如图5所示,清洁控制部116获取储存箱内的清洗液的剩余量的信息(步骤S01)。例如,清洁控制部116从设置于前储存箱111的前储存箱剩余量传感器120,获取前储存箱111内的清洗液的剩余量的绝对量为100ml的信息。

接着,清洁控制部116比较规定量的信息和获取到的清洗液的剩余量。例如,在规定量为50ml的情况下,清洁控制部116比较获取到的清洗液的绝对量100ml和规定量50ml。在该情况下,获取到的清洗液的剩余量比规定量多(步骤S02:No),因此,清洁控制部116返回至步骤S01,并获取储存箱内的清洗液的剩余量。

另一方面,在规定量为例如200ml的情况下,清洁控制部116比较获取到的清洗液的剩余量100ml和规定量200ml。清洁控制部116获取到的清洗液的剩余量的信息为规定量以下(步骤S02:Yes),因此,清洁控制部116判定为前储存箱111内的清洗液的剩余量在不久的将来不足。判定为清洗液的剩余量在不久的将来不足的清洁控制部116生成剩余量不足预测信号。清洁控制部116向车辆控制部3输出剩余量不足预测信号(步骤S03)。

这样,根据本实施方式的车辆用清洁系统100,清洁控制部116构成为,在储存箱内的清洗液为规定量以下的情况下将剩余量不足预测信号输出至车辆控制部3。因此,能够向使用者通知用于使清洁器103~106、109a、109b工作的清洗液的剩余量在不久的将来不足。

也就是说,如果由于清洗液的剩余量不足,无法清洗外部传感器6而外部传感器6不洁净,则车辆控制部3难以基于可靠性高的外部信息执行自动驾驶模式。与本实施方式的车辆用清洁系统100不同,在没有输出剩余量不足预测信号的结构的车辆中,使用者必须判断清洁器的清洗液的剩余量。在该情况下,使用者难以了解清洁器的清洗液的剩余量在不久的将来不足。

对此,根据本实施方式的车辆用清洁系统100,在清洗液为规定量以下的情况下,输出剩余量不足预测信号,因此,能够了解清洁器103~106、109a、109b的清洗液的剩余量在不久的将来不足。这样,能够可靠地认识到用于将外部传感器6保持成洁净的清洗液在不久的将来不足,因此,能够在补充不足的清洗液后进行行驶等确保了清洗液的剩余量的状态下进行行驶。由此,能够预防清洁器的清洗液成为剩余量不足。

另外,根据本实施方式的车辆用清洁系统100,成为清洗液的剩余量在不久的将来不足的判定基准的规定量由储存箱内的清洗液的绝对量、清洗液的剩余量相对于储存箱的满容量的比例、清洁器的工作次数、基于清洗液的消耗预测而特定的清洗液的能够使用的剩余时间、相对于行驶预定距离或行驶预定时间的清洗液的能够使用的剩余量的至少一项决定。因此,能够适当特定储存箱内的剩余量,并进行清洁器的清洗液的剩余量是否在不久的将来不足的判定。

另外,根据本实施方式的车辆用清洁系统100,具有检测储存箱内的清洗液的剩余量的前储存箱剩余量传感器120及后储存箱剩余量传感器,因此,能够直接检测前储存箱111内及后储存箱113内的清洗液的剩余量并获取剩余量的信息。使用这样获取到的剩余量的信息,能够进行清洁器的清洗液的剩余量是否在不久的将来不足的判定。

另外,根据本实施方式的车辆用清洁系统100,清洁控制部116构成为,向车辆控制部3输出剩余量不足预测信号,使车辆控制部3从自动驾驶模式切换成手动驾驶模式。因此,防止在清洗液的剩余量不足而无法将外部传感器6维持成洁净状态的状态下执行自动驾驶模式。

(第二实施方式)

接着,参照图1~图4及图6说明本公开的第二实施方式的车辆用清洁系统100A。对具有与第一实施方式的车辆用清洁系统100的构成要件实际上相同的结构及功能的第二实施方式的车辆用清洁系统100A的构成要件标注与第一实施方式相同的参照标记,并省略重复的说明。

在车辆用清洁系统100A中,期望在储存箱内的清洗液的剩余量变少的情况下想要节省清洗液。特别是为了车辆控制部3基于可靠性高的外部信息执行自动驾驶模式,期望良好地维持外部传感器6的灵敏度。为了维持该外部传感器6的灵敏度,在清洗液的剩余量变少的情况下,期望想要根据清洗液的剩余量调整清洗液的喷出量。

因此,第二实施方式的车辆用清洁系统100A具有获取储存箱内的清洗液的剩余量的结构及能够根据清洗液的剩余量调整清洗液的喷出量的结构。

清洁系统100A根据储存箱内的清洗液的剩余量使清洁器101~109a、109b进行工作。具体而言,清洁控制部116在储存箱内的清洗液的剩余量比规定量多的情况下,使清洁器101~109a、109b在第一模式下工作,在储存箱内的清洗液的剩余量为规定量以下的情况下,使清洁器101~109a、109b在清洗液的喷出量比第一模式少的第二模式下工作。

规定量与第一实施方式的清洗液的剩余量的规定量一样,由储存箱内的清洗液的绝对量、清洗液的剩余量相对于储存箱的满容量的比例、清洁器101~109a、109b的工作次数、基于清洗液的消耗预测而特定的清洗液的能够使用的剩余时间、相对于行驶预定距离或行驶预定时间的清洗液的能够使用的剩余量的至少一项决定。

第一模式是在清洗液的剩余量比规定量多的状态下使用的模式。在该第一模式中,清洁控制部116喷出车辆用清洁系统100A的通常喷出量的清洗液并清洗外部传感器6。例如,在第一模式中,清洁控制部116以一次清洗中喷出3ml清洗液的方式,使清洁器101~109a、109b工作。

第二模式是在清洗液的剩余量为规定量以下的情况下使用的模式。清洗液的剩余量为规定量以下的情况是为了确保用于继续清洗外部传感器6的清洗液的剩余量,想要抑制清洗液的喷出量的状态。因此,第二模式中,清洁控制部116以比第一模式的清洗液的喷出量少的喷出量使清洁器101~109a、109b工作。例如,在一次清洗中第一模式的清洗液的喷出量为3ml的情况下,一次清洗中第二模式的清洗液的喷出量为1ml。

图6是清洁控制部116执行的流程图。如图6所示,清洁控制部116从车辆控制部3或使用者的操作获取清洁器工作信号(步骤S11)。例如,清洁控制部116在执行自动清洗模式中,从车辆控制部3获取用于清洗外部传感器6的清洁器工作信号。

接着,清洁控制部116获取储存箱内的清洗液的剩余量信息(步骤S12)。例如,清洁控制部116从设置于前储存箱111的前储存箱剩余量传感器120,获取前储存箱111内的清洗液的剩余量的绝对量为100ml时的信息。需要说明的是,也可以不使用前储存箱剩余量传感器120,而基于清洁器101~109a、109b的工作次数等,清洁控制部116计算并推定前储存箱111内的剩余量。

接着,清洁控制部116判定前储存箱111内的清洗液的剩余量是否与0相等(步骤S13)。

在前储存箱111的内的清洗液的剩余量为0的情况下(步骤S13:Yes),清洁控制部116不进行由清洗液进行的清洗。在该情况下,从清洁器103~109a、109b喷出空气,进行外部传感器6的清洗。

在前储存箱111内的清洗液的剩余量不是0的情况下(步骤S13:No),清洁控制部116进行前储存箱111内的剩余量是否为规定量以下的判定(步骤S14)。

在前储存箱111内的清洗液的剩余量比规定量多的情况下(步骤S14:No),清洁控制部116使101~109a、109b通过第一模式工作(步骤S15)。

例如,在步骤S12中获取到的剩余量为100ml,且规定量为50ml的情况下,剩余量不是规定量以下(步骤S14:No),因此,清洁控制部116使清洁器101~109a、109b通过第一模式工作(步骤S15)。

另一方面,在前储存箱111内的清洗液的剩余量为规定量以下的情况下(步骤S14:Yes),清洁控制部116使清洁器101~109a、109b通过第二模式进行工作(步骤S16)。

例如,在步骤S12中获取到的剩余量为100ml,且规定量为200ml的情况下,清洗液的剩余量为规定量以下(步骤S14:Yes),因此,清洁控制部116以第二模式使清洁器101~109a、109b进行工作(步骤S16)。

这样,根据本实施方式的车辆用清洁系统100A,清洁控制部116在储存箱内的剩余量比规定量多的情况下,使清洁器101~109a、109b以第一模式工作,在储存箱内的剩余量为规定量以下的情况下,使清洁器101~109a、109b以清洗液的喷出量比第一模式少的第二模式工作。因此,在储存箱内的清洗液为规定量以下的情况下,能够边继续外部传感器6的清洗,边抑制清洗液的喷出量。由此,能够节省储存箱内的清洗液。

也就是说,如果由于清洗液的剩余量不足,无法清洗外部传感器6而外部传感器6不洁净,则车辆控制部3难以基于可靠性高的外部信息执行自动驾驶模式。与本实施方式的车辆用清洁系统100A不同,在不具备第一模式及第二模式而以恒定的清洗液的喷出量使清洁器工作的清洁系统中,在想要节省清洁器的清洗液的情况下,使用者为了抑制清洁器的清洗液必须通过手动减少清洁器的工作次数、或者控制无法调整喷出量的自动清洗模式的执行。但是,在这种调节中,难以边继续用于将外部传感器保持成洁净的清洗,边节省清洗液。

对此,根据本实施方式的车辆用清洁系统100A,在储存箱内的清洗液的剩余量比规定量多的情况下,清洁控制部116使清洁器101~109a、109b通过第一模式进行工作。在储存箱内的清洗液的剩余量为规定量以下的情况下,清洁控制部116使清洁器101~109a、109b通过清洗液的喷出量比第一模式少的第二模式进行工作。因此,能够边使用用于将外部传感器6保持成洁净的清洗液,边节省清洗液的剩余量。

另外,根据本实施方式的车辆用清洁系统100A,成为第一模式、第二模式的判定基准的规定量由储存箱内的清洗液的绝对量、清洗液的剩余量相对于储存箱的满容量的比例、清洁器101~109a、109b的工作次数、基于清洗液的消耗预测而特定的清洗液的能够使用的剩余时间、相对于行驶预定距离或行驶预定时间的清洗液的能够使用的剩余量的至少一项决定。因此,能够适当特定储存箱内的剩余量,并以第一模式、第二模式中适当的模式使清洁器101~109a、109b进行工作。

另外,根据本实施方式的车辆用清洁系统100A,具有检测储存箱内的清洗液的剩余量的前储存箱剩余量传感器120及后储存箱剩余量传感器,因此,能够直接检测前储存箱111内及后储存箱113内的清洗液的剩余量并获取剩余量的信息。使用这样获取到的剩余量的信息,能够选择第一模式、第二模式中适当的模式。

<各种变形例>

以上,对本公开的实施方式进行了说明,但当然本公开的技术范围不应由本实施方式的说明限定性地解释。本实施方式仅为一例,理解的是本领域技术人员能够在权利要求书所记载的发明的范围内进行各种实施方式的变更。本发明的技术范围应基于权利要求书所记载的发明的范围及其等同的范围决定。

在上述的各实施方式中,说明了清洁控制部116执行自动清洗模式的例子,但清洁控制部116也可以执行通过手动使清洁器101~109a、109b工作的手动模式。

在上述的各实施方式中,作为清洗外部传感器6的清洁器,说明了清洗LiDAR6f、6b、6r、6l、前摄像头6c及后摄像头6d的传感器清洁器103~106、109a、109b,但本公开不限于此。清洁系统100也可以具有清洗雷达的清洁器等,来代替传感器清洁器103~106、109a、109b,也可以同时具有传感器清洁器103~106、109a、109b。

需要说明的是,LiDAR6f、6b、6r、6l等外部传感器6有时具有检测面和覆盖检测面的罩。清洗外部传感器6的清洁器也可以构成为清洗检测面,也可以构成为清洗覆盖传感器的罩。

清洁系统100喷出的清洗液包含水或洗涤剂。向前车窗1f、后车窗1b、右前大灯7r、左前大灯7l、前LiDAR6f、后LiDAR6b、右LiDAR6r、左LiDAR6l、前摄像头6c、后摄像头6d各自喷出的清洗介质也可以相同不同,也可以相同。

需要说明的是,在上述的各实施方式中,说明了清洁器101、103、105~109a与前储存箱111连接,且清洁器102、104、109b与后储存箱113连接的例子,但本公开不限于此。

清洁器101~109a、109b也可以连接于单个的储存箱。清洁器101~109a、109b也可以分别连接于相互不同的储存箱。

或者,清洁器101~109a、109b也可以连接于对按其清洗对象的种类共同的储存箱。例如,也可以构成为,前LC103、后LC104、右LC105、左LC106连接于共同的第一储存箱,右HC107、左HC108连接于与第一储存箱不同的第二储存箱。

或者,清洁器101~109a、109b也可以连接于按其清洗对象的配置位置共同的储存箱。例如,也可以构成为,前WW101、前LC103、前摄像头清洁器109a连接于共同的前储存箱,右LC105和右HC107连接于共同的右储存箱,后WW102、后LC104、后摄像头清洁器109b连接于共同的后储存箱,左LC106和左HC108连接于共同的左储存箱。

另外,在上述的各实施方式中,说明了通过使设置于清洁器101~109a、109b的致动器工作而从清洁器101~109a、109b喷出清洗介质的例子,但本公开不限于此。

也可以构成为,在清洁器101~109a、109b各自设置有常闭阀,以储存箱与清洁器101~109a、109b之间一直成为高压的方式使泵工作,清洁控制部116打开设置于清洁器101~109a、109b的阀,由此,从清洁器101~109a、109b喷出清洗介质。

或者,也可以构成为,清洁器101~109a、109b各自分别连接于单独的泵,清洁控制部116单独地控制各个泵,由此,控制清洗介质从清洁器101~109a、109b的喷出。在该情况下,清洁器101~109a、109b各自也可以连接于相互不同的储存箱,也可以连接于共同的储存箱。

在清洁器101~109a、109b的喷嘴设置有喷出清洗介质的一个以上的喷出孔。在清洁器101~109a、109b的喷嘴也可以设置有喷出清洗液的一个以上的喷出孔和喷出空气的一个以上的喷出孔。

各个清洁器101~109a、109b也可以分别单独地设置,也可以将多个进行单元化而构成。例如,也可以将右LC105和右HC107构成为单个的单元。在该情况下,相对于右前大灯7r和右LiDAR6r为一体化的方式,也可以将右LC105和右HC107构成为单个的单元。

另外,单的个控制单元也可以构成为,作为清洁控制部116和车辆控制部3双方发挥作用。

在上述第二实施方式中,以绝对量(ml)说明了第一模式、第二模式的喷出量,但第一模式、第二模式的工作方式不限于上述的示例。例如,在每一秒钟的喷出量恒定的情况下,也可以设定为,第一模式将清洗液喷出3秒钟,第二模式将清洗液喷出1秒钟。另外,在每一次的喷出量恒定的情况下,也可以设定为,第一模式将清洗液喷出3次,第二模式将清洗液喷出一次。另外,也可以设定为,通过使第一模式为每一次的喷出量2ml且喷出3次、使第二模式为每一次的喷出量1ml且喷出一次等喷出量(ml等)、喷出时间(秒等)及喷出次数(次)的至少两项以上的组合,使第一模式的喷出量和第二模式的喷出量不同。

另外,第一模式、第二模式中,除了清洗液的喷出之外,也可以喷出空气(清洗介质)。例如,在每一秒的清洗液及空气的喷出量恒定的情况下,也可以设定为,第一模式将清洗液喷出3秒钟及将空气喷出3秒钟,第二模式将清洗液喷出1秒钟及将空气喷出1秒钟。

另外,第二模式只要是清洗液的喷出量比第一模式少的模式即可,也可以设为不喷出清洗液的模式。例如,在每一秒的清洗液及空气的喷出量恒定的情况下,也可以设定为,第一模式将清洗液喷出1秒钟及将空气喷出1秒钟,第二模式不喷出清洗液而将空气喷出2秒钟。

另外,在上述第二实施方式中,以第一模式及第二模式的两种模式为例进行了说明,但模式的工作方式不限于上述。例如,清洁控制部也可以通过清洗液的剩余量比上述第一模式少、清洗液的剩余量比上述第二模式多的第三模式使清洁器101~109a、109b工作等,通过多个模式使清洁器101~109a、109b进行工作。

另外,上述第二实施方式中,说明了获取到清洁器工作信号后判定第一模式、第二模式的例子,但清洁器工作信号的获取的时机不限于上述的例子。例如清洁控制部116也可以在选择第一模式、第二模式的任一模式后,获取清洁器工作信号。

本申请基于2018年3月19日申请的日本国发明专利申请(特愿2018-51234号)和2018年3月19日申请的日本国发明专利申请(特愿2018-51235号),其内容作为参照引用于此。

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:车辆用的带清洁器的传感器系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!