Gpi锚定抗原的增强的免疫原性

文档序号:957856 发布日期:2020-10-30 浏览:1次 >En<

阅读说明:本技术 Gpi锚定抗原的增强的免疫原性 (Enhanced immunogenicity of GPI-anchored antigens ) 是由 K·尼亚齐 W·塔德罗斯 A·辛 于 2019-01-15 设计创作,主要内容包括:本申请提出了通过修饰TAA的蛋白质部分以包括跨膜结构域和运输信号而允许针对GPI锚定肿瘤相关抗原的免疫应答增强的组合物和方法,所述运输信号将经修饰的蛋白质引导至内体或溶酶体区室。最优选地,所述经修饰的蛋白质将不再具有GPI锚或GPI连接序列。(The present application presents compositions and methods that allow for enhanced immune responses to GPI-anchored tumor-associated antigens by modifying the protein portion of the TAA to include a transmembrane domain and a trafficking signal that directs the modified protein to an endosomal or lysosomal compartment. Most preferably, the modified protein will no longer have a GPI-anchor or GPI-linking sequence.)

GPI锚定抗原的增强的免疫原性

本申请要求18年01月17日提交的序列号为62/618,087的我们共同未决的美国临时申请的优先权。

技术领域

本发明的领域是增强抗原免疫原性的组合物和方法,特别是涉及在癌症治疗中增强GPI锚定抗原的免疫原性的多种组合物和方法。

背景技术

背景描述包括可用于理解本发明的信息。并不承认本文提供的任何信息是现有技术或与当前要求保护的发明相关,也不承认具体地或隐含地提到的任何出版物是现有技术。

本文中的所有出版物和专利申请都通过引用并入,其程度如同每个单独的出版物或专利申请被具体地且单独地指明通过引用并入一样。在并入的参考文献中的术语的定义或用法与本文提供的该术语的定义不一致或相反时,适用本文提供的该术语的定义,而不适用该术语在该参考文献中的定义。

靶向患者和肿瘤特异性抗原(新表位)的癌症免疫疗法中已取得了重大进步。尽管有希望,但是鉴定合适的抗原和随后产生定制的治疗组合物既费时又昂贵。或者,免疫疗法也可以靶向特定肿瘤共有的抗原(即,肿瘤相关抗原(TAA))。但是,并不是所有的TAA在不同的患者组中都同样有效,并且由于糖磷脂酰肌醇(GPI)锚定在细胞膜上,几种TAA作为免疫原性实体往往完全无效,图1示意性地说明了GPI锚的结构。

不幸的是,各种TAA是GPI锚定蛋白质,尤其包括CEA(癌胚抗原,通常与上皮癌有关)、PSCA(***干细胞抗原)、间皮素(通常与间皮瘤,卵巢和胰腺腺癌有关)和尿激酶纤溶酶原激活物受体(通常与许多癌症,例如胃癌中侵袭性癌症的生长和转移有关),因此通常不会成为癌症免疫疗法的有效靶标。

尽管从概念上可以从蛋白质上去除膜锚,因此在大多数情况下经修饰的蛋白质都不会转移到细胞表面,因此无法发挥适当的功能。另一方面,膜锚定糖蛋白质的某些磷脂锚可被跨膜结构域取代,如显示的粘菌盘基网柄菌。但是,这样的取代显著减少了在细胞表面上的停留时间(CellBiol[细胞生物学]第124卷,第1和2期,1994年1月,205-215),因此经修饰的蛋白质不太可能与抗体结合。

因此,即使各种TAA可以在概念上充当许多癌症共有的治疗靶标,因此可以消除对个性化治疗的需求,并非所有TAA都具有足够的免疫原性。因此,需要提供改进的组合物和方法,其增强TAA,尤其是GPI锚定TAA的免疫原性。

发明内容

本发明的主题涉及各种免疫治疗组合物和方法,其中修饰了GPI锚定抗原,使得修饰的抗原将不再与GPI部分偶联,而是包括一个或多个跨膜结构域和源自或改编自将抗原运输到内体或溶酶体系统的蛋白质的胞质尾序列(例如CD1a、CD1c、Lamp1部分)。此类修饰的抗原导致CD4+刺激增加(相对于未修饰的GPI锚定抗原),并且还导致(多功能)CD8和T细胞的刺激增加。

在本发明主题的一个方面,发明人考虑了一种重组杂合蛋白质,其包含与至少一个跨膜结构域和运输元件偶联的抗原部分。在优选的方面,抗原部分是GPI锚定蛋白质的至少一部分,并且运输元件将重组杂合蛋白质引导至亚细胞位置(通常为循环内体、分选内体或溶酶体)。

例如,合适的GPI锚定蛋白质是TAA,尤其包括CEA、PSCA、间皮素和尿激酶纤溶酶原激活物受体,以及与非癌症疾病相关的蛋白质(例如布氏锥虫(Trypanosomabrucei)的变体表面蛋白质或朊病毒蛋白质)。在其他实例中,抗原部分缺乏功能性GPI锚定信号,和/或跨膜结构域包含T细胞受体、CD28、CD3ε、CD45、CD4、CD5、CD8(例如,CD8α、CD8β)、CD9、CD16、CD22、CD33、CD37、CD64、CD80、CD86、CD134、CD137、CD154、KIRDS2、OX40、CD2、CD27、LFA-1(CD11a、CD18)、ICOS(CD278)、4-1BB(CD137)、GITR、CD40、BAFFR、HVEM(LIGHTR)、SLAMF7、NKp80(KLRF1)、CD160、CD19、IL2Rβ、IL2Rγ、IL7Rα、ITGA1、VLA1、CD49a、ITGA4、IA4、CD49D、ITGA6、VLA-6、CD49f、ITGAD、CD11d、ITGAE、CD103、ITGAL、CD11a、LFA-1、ITGAM、CD11b、ITGAX、CD11c、ITGB1、CD29、ITGB2、CD18、LFA-1、ITGB7、TNFR2、DNAM1(CD226)、SLAMF4(CD244,2B4)、CD84、CEACAM1、CRTAM、Ly9(CD229)、CD160(BY55)、PSGL1、CD100(SEMA4D)、SLAMF6(NTB-A,Ly108)、SLAM(SLAMF1、CD150、IPO-3)、BLAME(SLAMF8)、SELPLG(CD162)、LTBR或PAG/Cbp的α、β或ζ链的跨膜结构域的至少一部分。

尽管不限于本发明的主题,但跨膜结构域优选与抗原部分的C端框内结合(使用或不使用肽接头),并且最优选地包括CD1a、CD1c或Lamp1的内体运输元件。此外,通常优选的是,运输元件与跨膜结构域的C端框内结合。

在本发明主题的另一个考虑的方面,发明人还考虑了重组核酸,其包含编码如本文考虑的杂合蛋白质的序列区段,其可操作地连接至启动子以驱动杂合蛋白质的表达。最典型地,重组核酸是病毒表达载体(例如,腺病毒表达载体,优选缺失E1和E2b基因),并且启动子是组成型启动子或诱导型启动子(例如,可通过低氧、IFN-γ或IL-8诱导)。另外,考虑的重组核酸可进一步包含序列,该序列编码共刺激分子、免疫刺激细胞因子、对检查点抑制进行干扰或下调的蛋白质、和佐剂多肽中的至少一种。

适合的共刺激分子包括OX40L、4-1BBL、CD80、CD86、CD30、CD40、CD30L、CD40L、ICOS-L、、B7-H3、B7-H4、CD70、GITR-L、TIM-3、TIM-4、CD48、CD58、TL1A、ICAM-1和LFA3,而考虑的免疫刺激细胞因子包括IL-2、IL-12、IL-15、IL-15超激动剂(ALT803)、IL-21、IPS1和LMP1,适合的进行干扰的蛋白质包括针对CTLA-4、PD-1、TIM1受体、2B4和/或CD160的抗体或拮抗剂。考虑的佐剂多肽是钙网蛋白质或其具有佐剂活性的部分,或HMGB1或其具有佐剂活性的部分。

从不同的角度来看,发明人还考虑了包含本文提出的重组核酸的重组病毒,尤其是复制缺陷型病毒(例如,缺失E1和E2b基因的腺病毒)。同样,还考虑了包含本文提出的重组核酸的重组抗原呈递细胞。

在本发明主题的又一方面,发明人还考虑增加GPI锚定蛋白质的抗原性的方法,该方法包括修饰GPI锚定蛋白质的蛋白质部分以包括至少一个跨膜结构域和运输元件的步骤,其中该运输元件将经修饰的蛋白质引导至亚细胞位置(例如,循环内体、分选内体或溶酶体)。关于GPI锚定蛋白质,优选该蛋白质是TAA(例如,CEA、PSCA、间皮素和尿激酶纤溶酶原激活物受体),或与非癌症疾病相关的蛋白质,任选地为布氏锥虫的变体表面蛋白质或朊病毒蛋白质。

因此,发明人还考虑了一种治疗表达GPI锚定肿瘤相关抗原的肿瘤的方法,该方法包括施用包含考虑的重组杂合蛋白质的基于细胞的疫苗组合物的步骤,或施用包含考虑的重组核酸的组合物的基于DNA或RNA的疫苗的步骤。

例如,合适的基于细胞的疫苗组合物可包含患者的多个重组自体细胞(优选抗原呈递细胞),或可包含重组酵母或细菌细胞。类似地,基于DNA或RNA的疫苗组合物可以包含重组腺病毒。因此,考虑的药物组合物可包含本文提出的重组病毒或重组抗原呈递细胞(通常配制用于输液)。从不同的角度来看,发明人还考虑了本文提出的重组病毒在治疗癌症中的用途,以及本文提出的重组核酸在制备用于治疗癌症的疫苗组合物中的用途。

从以下对优选实施例的详细描述以及附图中,本发明主题的各种目的、特征、方面和优点将变得更加明显,在附图中相同的数字表示相同的组成部分。

附图说明

图1是示例性GPI锚定蛋白质的示意图。

图2A是根据本发明主题的示例性免疫方案/示意图的示意图。

图2B是用于修饰的CEA的重组构建体的示例性示意图。

图3显示了遵循图2A的免疫方案的CD4+脾细胞的示例性结果。

图4显示了遵循图2A的免疫方案的CD8+脾细胞的示例性结果。

图5显示了遵循图2A的免疫方案的示例性ELISA结果。

具体实施方式

发明人现已发现,可以对GPI锚定膜蛋白,特别是与疾病相关的GPI锚定膜蛋白进行基因修饰,以增强其免疫原性并使这些抗原成为免疫治疗的合适靶标。值得注意的是,通过修饰蛋白质以使其进入MHCII途径,可以实现鲁棒的CD4+细胞激活,从而实现交叉呈递,并通过CD4“辅助”功能支持CD8+细胞的生长。当GPI锚定膜蛋白是TAA,如CEA时(在上皮癌中非常普遍),这种方法特别有利。由于GPI锚,CEA通常不是以其天然构型刺激CD8T细胞的治疗有效抗原。然而,本文提出的GPI锚定膜蛋白的修饰实质上增加了免疫原性,因此可以使GPI锚定膜蛋白成为治疗靶标。

例如,并且如下文更详细地讨论的,通过用跨膜结构域和源自进入内体系统的蛋白质(例如,CD1a、CD1c、Lamp1)的细胞质尾序列代替CEA上的GPI锚,发明人证明了这种经修饰的蛋白质可增加CD4T细胞响应(例如,以抗原特异性IFNγ分泌细胞的频率和TNF-α/IFN-γ分泌多功能T细胞的频率评估,它们是抗击癌症的理想免疫亚型)。最值得注意的是,使用本文提出的修饰将CEA靶向内体系统也刺激了IFN-γ分泌CD8T细胞的数量以及这些细胞的多功能性。容易理解,这些发现与其他TAA有关,例如间皮素、PSCA和尿激酶纤溶酶原激活物受体、病原体编码的GPI锚定蛋白质,甚至是这样的GPI锚定蛋白质:像在自身免疫中一样,希望通过包含免疫抑制因子来产生针对该蛋白质的免疫抑制响应(例如IL-10、TGF-β等)。可以使用生物信息学分析容易地鉴定其他合适的GPI锚定蛋白质和连接信号(参见例如Bioinformatics[生物信息学]2005,第21卷第9期,2005,第1846-1852页;BMCBioinformatics[BMC生物信息学]2008,9:392),而已知的GPI锚定蛋白质可以从各种公共可访问的数据库中检索(例如,URL:uniprot.org)。

因此,发明人通常考虑了GPI锚定蛋白质的基因修饰,尤其是疾病相关的GPI锚定蛋白质,其中GPI锚定被一个或多个跨膜结构域取代,并且其中经修饰的蛋白质还包括将这样产生的重组杂合蛋白引导至有利于MHC-II呈递的亚细胞位置的运输元件,尤其是循环内体、分选内体或溶酶体。最典型地但非必须地,可以通过去除GPI锚信号序列或通过修饰GPI锚信号序列(例如,替换一个或多个氨基酸来实现GPI锚的替换以消除GPI锚修饰或降低其效率)。但是,在不太优选的方面,GPI修饰也可以通过在蛋白质的C末端添加一个肽接头,然后跨膜结构域,或在该蛋白质的C末端添加跨膜结构域来完成(此处:无需***接头)。

关于考虑的跨膜蛋白,应该认识到许多结构域在本文中被认为是合适的,并且经修饰的蛋白质可以包含一个或多个(例如,两个、三个、四个、六个等)跨膜结构域。例如,各种受体酪氨酸激酶、细胞因子受体、受体鸟苷酸环化酶和受体丝氨酸/苏氨酸蛋白激酶包含单个跨膜结构域。在其他实例中,某些离子通道和腺苷酸环化酶具有六个跨膜结构域,并且所选的细胞表面受体包含七个跨膜结构域。示例性的跨膜蛋白包括胰岛素受体、***受体、人生长激素受体、各种葡萄糖转运蛋白,转铁蛋白受体、表皮生长因子受体、LDL受体、瘦素受体、各种白介素受体(例如,IL-1受体、IL-2受体等)。

最通常地,考虑的跨膜结构域将包含约20个连续的疏水氨基酸,其后可以是带电荷的氨基酸。在本领域中已知许多跨膜结构域,并且认为所有它们都适用于本文。例如,预期的跨膜结构域可以包含T细胞受体、CD28、CD3ε、CD45、CD4、CD5、CD8(例如,CD8α、CD8β)、CD9、CD16、CD22、CD33、CD37、CD64、CD80、CD86、CD134、CD137、CD154、KIRDS2、OX40、CD2、CD27、LFA-1(CD11a、CD18)、ICOS(CD278)、4-1BB(CD137)、GITR、CD40、BAFFR、HVEM(LIGHTR)、SLAMF7、NKp80(KLRF1)、CD160、CD19、IL2Rβ、IL2Rγ、IL7Rα、ITGA1、VLA1、CD49a、ITGA4、IA4、CD49D、ITGA6、VLA-6、CD49f、ITGAD、CD11d、ITGAE、CD103、ITGAL、CD11a、LFA-1、ITGAM、CD11b、ITGAX、CD11c、ITGB1、CD29、ITGB2、CD18、LFA-1、ITGB7、TNFR2、DNAM1(CD226)、SLAMF4(CD244,2B4)、CD84、CEACAM1、CRTAM、Ly9(CD229)、CD160(BY55)、PSGL1、CD100(SEMA4D)、SLAMF6(NTB-A,Ly108)、SLAM(SLAMF1、CD150、IPO-3)、BLAME(SLAMF8)、SELPLG(CD162)、LTBR或PAG/Cbp的α、β或ζ链的一个或多个跨膜区域。

当需要多个跨膜结构域时,应注意杂合蛋白质可具有至少两个、三个、四个或五个或六个跨膜结构域,或包含至少约10至35个,更优选约15至30个或20至25个氨基酸残基,并且与已知的跨膜结构域具有至少约60%、70%、80%、90%、95%、99%或100%同源性的区域。如将容易理解的,跨膜结构域可以通过使用分析相关蛋白质的二级结构、疏水性和/或拓扑的预测方法对已知氨基酸序列进行计算分析来鉴定(参见例如,Biochemistry[生物化学](1994)33:3038-3049)。此外,在考虑的杂合蛋白具有多个跨膜结构域的情况下,单个跨膜结构域通常将经由细胞内/细胞外环彼此偶联,该细胞内/细胞外环可以由约5至100个氨基酸形成。合成的跨膜结构域可包含疏水氨基酸(例如,F、W、V)的重复单元。最后,应当理解,尽管通常优选使用跨膜结构域,但是在至少一些实施方案中也可以省略跨膜结构域。

关于合适的运输元件,考虑的优选元件包括CD1b前导序列、CD1a尾、CD1c尾和LAMP1跨膜序列。例如,如更详细地在下文中显示,使用LAMP1-TM(跨膜)序列可以实现溶酶体靶向;而循环内体可以经由CD1a尾靶向序列来靶向;并且分选内体可以经由CD1c尾靶向序列来靶向。

在特定的实施方案中,本发明的免疫原性肽还包含氨基酸序列(或另一种有机化合物),该氨基酸序列促进该肽被摄入(晚期)内体中以在CD1d决定簇内加工和呈递。晚期内体靶向是由存在于蛋白质的细胞质尾区中的信号介导的,并且对应于公认的肽基序,例如基于双亮氨酸的基序、基于酪氨酸的基序或所谓的酸性簇基序。符号o代表具有庞大的疏水性侧链的氨基酸残基,例如Phe、Tyr和Trp。晚期的内体靶向序列允许通过CD1d分子加工和有效呈递抗原来源的T细胞表位。这样的内体靶向序列包含在例如gp75蛋白质(JCellBiol[细胞生物学杂志]130,807-820)、人CD3γ蛋白质HLA-BMβ(J.Immunol.[免疫学杂志](1996)157,1017-1027),DEC205受体的胞质尾区(JCellBiol[细胞生物学杂志](2000)151,673-683)中。在Bonifacio和Traub综述中(Annu.Rev.Biochem.[生物化学年度综述](2003)72,395-447)公开了用作对内体的分选信号的肽的其他实例。另可参见Front Biosci[生物科学前沿]2009。

从不同的角度来看,本文考虑的杂交蛋白质包括将导致将优先把杂交蛋白质运输到所需的亚细胞位置输的运输信号(例如,所有表达的杂合蛋白中至少有70%、更通常是至少80%、最通常是至少90%在目标亚细胞区室中)。因此,在本发明主题的预期方面,信号和/或前导肽可用于将新表位和/或多表位运输至内体或溶酶体区室。因此,还应该认识到,可以使用靶向前序列和/或靶向肽。可以将靶向肽的前序列添加至N末端和/或C末端,并且典型地包含在6-136个之间的碱性氨基酸和疏水性氨基酸。在过氧化物酶体靶向的情况下,靶向序列可以在C末端处。可以使用其他信号(例如,信号斑),并且包括在肽序列中分离并在适当的肽折叠后起作用的序列元件。

另外,诸如糖基化的蛋白质修饰可以诱导靶向。在其他适合的靶向信号中,诸位发明人考虑过氧化物酶体靶向信号1(PTS1)(C末端三肽),和过氧化物酶体靶向信号2(PTS2)(是位于N末端附近的九肽)。另外,还可以通过蛋白质的胞质溶胶结构域内的信号来介导蛋白质向内体和溶酶体的分拣,这些信号通常包含短的线性序列。一些信号称为基于酪氨酸的分类信号或基于双亮氨酸的信号。所有这些信号都被与膜的胞质溶胶表面***相关的蛋白质外壳的成分所识别。其他已知信号被衔接蛋白(AP)复合体AP-1、AP-2、AP-3和AP-4识别为具有特征性特异性,然而其他信号仍被另一个称为GGA的衔接蛋白家族识别。

应当进一步理解的是,在一些实施方案中,跨膜结构域和运输序列可以通过接头与抗原偶联,该接头优选是包含5至50个氨基酸的柔性接头。例如,考虑的接头包括柔性甘氨酸/丝氨酸接头和刚性接头。本领域已知多种接头序列(参见例如Adv Drug Deliv Rev.[先进药物递送综述]2013年10月15日;65(10):1357-1369),并且所有这些接头均被认为适用于本文。

在另外考虑的实施方案中,也可以修饰重组杂合蛋白以促进向细胞质区室的运输或保留(其可能不一定需要一个或多个特定序列元件)。例如,在至少一些方面,可以添加N或C末端细胞质保留信号,包括SNAP-25、突触融合蛋白、突触蛋白、突触小分子蛋白、囊泡相关膜蛋白(VAMP)、突触囊泡糖蛋白(SV2)、高亲和力胆碱转运蛋白、神经毒素,电压门控钙通道、乙酰胆碱酯酶和NOTCH的胞质保留信号。因此,应当理解,肽可以被路由至特定的细胞区室,从而通过MHC-I或MHC-II实现优先或甚至特异性的呈递。

还可以通过增加一个或多个重组泛素化基序(单/多)泛素化来实现本文提出的重组杂合蛋白的抗原性增加。有许多本领域已知的基序,并且所有这些基序都被认为适合在本文中使用(参见例如Proteins[蛋白质]2010年2月1日;78(2):365-380)。

尽管不限于本发明的主题,但是经修饰的蛋白质通常将在体外或体内从适当构建的重组核酸表达,并且特别合适的重组核酸包括质粒和病毒核酸。在使用病毒核酸的情况下,特别优选通过病毒感染患者或患者细胞来递送核酸。因此,可以将考虑的组合物作为重组病毒、酵母或细菌疫苗,或作为多种(通常是不同的)蛋白质或杂合多肽的混合物来施用。在其他考虑的病毒表达载体和病毒中,特别考虑了腺病毒载体和病毒(例如,E2b缺失的AdV)。

从不同的角度来看,应当理解,本文提出的组合物和方法将以促进MHC-II呈递的方式递送免疫原性差的抗原。实际上,可以有利地定制此类经修饰的蛋白质以实现各种特异性免疫反应,包括增强的CD4+免疫应答和惊人的增强的CD8+免疫应答。另外,可以将考虑的杂合蛋白质与其他免疫刺激组合物(优选可以在相同的重组核酸上编码)共表达或共施用。例如,可以构建重组核酸,其包括编码共刺激分子、免疫刺激细胞因子和对检查点抑制进行干扰或下调的蛋白质中的一种或多种的表达盒。适合的共刺激分子包括OX40L、4-1BBL、CD80、CD86、CD30、CD40、CD30L、CD40L、ICOS-L、、B7-H3、B7-H4、CD70、GITR-L、TIM-3、TIM-4、CD48、CD58、TL1A、ICAM-1和LFA3,适合的免疫刺激细胞因子包括IL-2、IL-12、IL-15、IL-15超激动剂(ALT803)、IL-21、IPS1和LMP1。在进一步考虑的方面,干扰检查点抑制的优选蛋白质包括CTLA-4、PD-1、TIM1受体、2B4或CD160的抗体或拮抗剂。同样,附加编码的信号包括蛋白质佐剂,如钙网蛋白或HMBG蛋白(或其片段)

因此,在本发明主题的示例性优选方面,癌症免疫疗法可以使用重组腺病毒,其具有有效载荷,其中修饰的TAA具有缺失的或不起作用的GPI锚序列,并且还包括如上所述的跨膜结构域和运输信号。无论重组病毒的类型如何,预期可以将该病毒用于在离体或体内感染患者(或非患者)细胞。例如,可以将该病毒皮下或静脉内注射,或可以经鼻内或经吸入施用以此感染患者细胞(并且尤其是抗原呈递细胞)。可替代地,可以在体内感染患者的(或来自同种异体来源)免疫感受态细胞(例如,NK细胞、T细胞、巨噬细胞、树突状细胞等),并然后输送至患者。可替代地,免疫疗法不必依赖病毒,但可以受到使用RNA或DNA,或导致新表位(例如,作为单一肽,串联小基因等)在所希望的细胞(并且尤其是免疫感受态细胞)中表达的其他重组载体,用核酸转染或疫苗接种的影响。

最典型地,所希望的核酸序列(用于从病毒感染的细胞表达)在本领域熟知的合适调节元件的控制下。例如,适合的启动子元件包括组成型强启动子(例如,SV40、CMV、UBC、EF1A、PGK、CAGG启动子),但诱导型启动子也被认为适合用于本文,特别是在对于肿瘤微环境典型的诱导条件下。例如,诱导型启动子包括对缺氧敏感的启动子和对TGF-β或IL-8敏感的启动子(例如,经由TRAF、JNK、Erk,或其他应答元件启动子)。在其他实例中,合适的诱导型启动子包括四环素诱导型启动子、粘液病毒抗性1(Mx1)启动子等。可替代地,应当理解,癌症疫苗组合物不必限于如上所述的腺病毒构建体,而是可以包括重组酵母和细菌以及与载体偶联的重组蛋白质。

在表达构建体是病毒表达构建体(例如,腺病毒,并且尤其是具有E1和E2b缺失的AdV)的情况下,然后预期重组病毒在药物组合物中可以单独地或组合地用作治疗性疫苗,该药物组合物典型地被配制为无菌可注射组合物,其中病毒滴度为106-1013个病毒颗粒/剂量单位,并且更典型地在109-1012个病毒颗粒/剂量单位。可替代地,可以离体采用病毒感染患者(或其他HLA匹配的)细胞,并且然后将如此感染的细胞输送给患者。在其他实例中,用病毒治疗患者可以伴随同种异体移植的或自体的自然杀伤细胞或T细胞,它们呈裸露形式或带有嵌合抗原受体且表达靶向新表位的抗体、新表位、肿瘤相关抗原或与该病毒相同的有效负载。包括患者衍生的NK-92细胞系的自然杀伤细胞还可以表达CD16,并且可以与抗体偶联。

在需要时,可以采用基于新表位的(例如,如WO 2016/172722中所述针对新表位的合成抗体),单独地或与自体或同种异体NK细胞,并且尤其是haNK细胞或taNK细胞(例如,二者均可从NantKwest公司,9920杰弗逊大街卡尔弗城(Jefferson Blvd.Culver City),加利福尼亚州90232商购)组合的另外的治疗模式。在采用haNK或taNK细胞的情况下,特别优选的是,haNK细胞在CD16变体上携带与所治疗的患者的新表位结合的重组抗体,并且在采用taNK细胞的情况下,优选的是taNK细胞的嵌合抗原受体与所治疗的患者的新表位结合。另外的治疗模式还可以不依赖新表位,并且尤其优选的模式包括基于细胞(例如激活的NK细胞(例如,aNK细胞,可从NantKwest公司,9920杰弗逊大街卡尔弗城,加利福尼亚州90232商购))的疗法;以及非基于细胞的疗法(例如,化学疗法和/或放射疗法)。在仍进一步考虑的方面,可以单独地或与一种或多种检查点抑制剂(例如,伊匹木单抗、纳武单抗等)组合施用免疫刺激细胞因子(并且尤其是IL-2、IL15和IL-21)。

类似地,仍进一步考虑,另外的药物干预可以包括施用一种或多种抑制免疫抑制性细胞(并且尤其是MDSC、Treg和M2巨噬细胞)的药物。因此,适合的药物包括IL-8或干扰素-γ抑制剂或结合IL-8或干扰素-γ的抗体;以及使MDSC失活的药物(例如,NO抑制剂、精氨酸酶抑制剂、ROS抑制剂);阻断细胞发育或分化为MDSC的药物(例如,IL-12、VEGF抑制剂、双膦酸盐);或对MDSC有毒性的药剂(例如,吉西他滨、顺铂、5-FU)。同样,可以使用诸如环磷酰胺、达利珠单抗和抗GITR或抗OX40抗体的药物来抑制Treg。

为了触发应力信号的过表达或转录,还考虑可以使用低剂量方案,优选以节律的方式对患者进行化学疗法和/或放射。例如,通常优选这样的治疗将使用有效影响蛋白质表达、细胞***和细胞周期中至少一种的剂量,优选诱导细胞凋亡或至少诱导或增加应激相关基因的表达(并且特别是NKG2D配体)。因此,在另外考虑的方面,这种治疗将包括使用一种或多种化学治疗剂的低剂量治疗。最典型地,针对化学治疗剂,低剂量治疗的暴露量将是LD50或IC50的等于或小于70%、等于或小于50%、等于或小于40%、等于或小于30%、等于或小于20%、等于或小于10%、或等于或小于5%。另外地,在有利的情况下,这种低剂量方案可以按如例如在US7758891、US7771751、US7780984、US7981445和US8034375中所述的节律方式进行。

关于在这种低剂量方案中使用的特定药物,可以考虑所有化学治疗剂都是合适的。在其他适合的药物中,激酶抑制剂、受体激动剂和拮抗剂、抗代谢药物、细胞抑制剂和细胞毒性药物在本文中均被考虑。然而,特别优选的药剂包括那些被鉴定为干扰或抑制驱动肿瘤生长或发育的途径组分的试剂。可以使用例如WO 2011/139345和WO 2013/062505中所述的对组学数据的途径分析来鉴定适合的药物。最值得注意地,如此获得的肿瘤细胞中应激相关基因的表达将导致NKG2D、NKP30、NKP44和/或NKP46配体的表面呈递,该表面呈递进而激活NK细胞以特异性破坏肿瘤细胞。因此,应理解可以将低剂量化学疗法用作肿瘤细胞中的触发物,以表达和展示压力相关的蛋白质,这进而将触发NK细胞激活和/或NK细胞介导的肿瘤细胞杀伤。另外地,NK细胞介导的杀伤将与细胞内肿瘤特异性抗原的释放相关联,这被认为可以进一步增强免疫应答。

实例

发明人制备了各种腺病毒表达构建体,其包含空有效载荷(第1组)、CEA有效载荷(第2组)、CEA-CD1c有效载荷(第3组)、CEA-LAMP1有效载荷(第4组)、CEA-CD1a有效载荷(第5组)。如图2A所示,每两周一次初免/加强方案对小鼠进行免疫,每次注射使用1010个病毒颗粒。在第35天对所有小鼠实施安乐死,并收集脾细胞和外周血。图2B示意性地描绘了在图2A的方案中使用的重组构建体。

图3提供了关于CD4+脾细胞的示例性结果。左图显示了响应于培养基(左)、无关肽(SIVnef肽,中间)和CEA肽(右)的而观察到的ICS刺激IFNγ+CD4+细胞的比例。不出所料,没有发现培养基和无关蛋白质对CD4+细胞有明显的刺激作用。但是,当暴露于CEA肽时,所有带有CEA的腺病毒构建体均会产生显著应答,在向内/溶酶体区室运输的情况下,应答则大大增强。同样,IFNγ+TNFα+CD4+细胞的比例随向内/溶酶体区室运输而显著增加(右图)。

甚至更值得注意的是,当使用相同的实验观察CD8+细胞时,发明人发现IFNγ+CD8+以及IFNγ+TNFα+CD8+细胞在向内膜/溶酶体区室运输的情况下,细胞明显增加,从图4可以看出。相对于单独的CEA肽腺病毒递送,这种增强特别明显。实际上,在重组杂合蛋白靶向内体和/或溶酶体途径(通常是MHC-I呈递的途径)的情况下,反应性CD8+细胞的显著增加是特别出乎意料的。尽管不限于本发明的主题,但可以考虑本文提出的重组杂合蛋白质会有利地经历交叉呈递型抗原加工。因此,应当理解,所考虑的系统和方法不仅大大增强了针对原本难以靶向的抗原(GPI锚定的抗原)的免疫应答,而且还增加了多功能CD4+和CD8+细胞的比例。有利地,如图5中描绘抗CEA ELISA的图所示,所有免疫的动物也能够产生大量抗体。

在上述实验中使用了以下序列,其中前导肽显示为下划线,跨膜结构域显示为粗体,内体靶向序列显示为斜体。按照图2A的免疫方案,将所有序列亚克隆到缺失E2b的腺病毒AdV中并从其表达,所述腺病毒AdV经皮下注射入小鼠。

Figure BDA0002589964770000151

如本文所使用的,术语“施用”药物组合物或药物是指直接和间接施用药物组合物或药物,其中直接施用药物组合物或药物典型地通过健康护理专业人员(例如,医师、护士等)进行,并且其中间接施用包括向健康护理专业人员提供药物组合物或药物或使健康护理专业人员可用药物组合物或药物以用于直接施用(例如,经由注射、输注、口服递送、局部递送等)。最优选地,重组病毒经由皮下或真皮下注射施用。然而,在其他预期的方面,施用还可以是静脉内注射。可替代地或另外地,可以从患者的细胞中分离抗原呈递细胞或使其生长,在体外感染,并然后输送至患者。因此,应理解,可以将考虑的系统和方法视为用于高度个性化癌症治疗的完整药物探索系统(例如,药物探索、治疗方案、验证等)。

本文中对值的范围的描述仅旨在用作单独提及落入该范围内的每个单独值的简写方法。除非在本文中另有说明,将每个单独的值并入说明书中,如同其在本文中单独引用一样。本文所述的所有方法都能够以任何合适的顺序进行,除非本文另外指示或另外与上下文明显矛盾。关于本文某些实施例而提供的任何和所有实例或示例性语言(如“例如”)的应用仅旨在更好地说明本发明,而不对另外要求保护的本发明范围做出限制。说明书中的语言不应当被解释为指示任何未要求保护的要素为实践本发明所必需的。

对于本领域技术人员应当清楚的是,在不脱离本文的发明构思的情况下,除了已经描述的那些之外,更多修改是可能的。因此,本发明主题仅受限于所附权利要求的范围。此外,在解释说明书和权利要求时,所有术语应当以与上下文一致的尽可能广泛的方式解释。特别地,术语“包含”(“comprises”和“comprising”)应当被解释为以非排他性方式提及要素、组分或步骤,从而指示所提及的要素、组分或步骤可以与未明确提及的其他要素、组分或步骤一起存在、或使用、或组合。在说明书权利要求书提及选自由A、B、C……和N组成的组的某物的至少一种的情况下,该文字应当被解释为只需要该组中的一个要素,而不是A加N、或B加N等。

Figure IDA0002589964830000011

Figure IDA0002589964830000031

Figure IDA0002589964830000041

Figure IDA0002589964830000081

Figure IDA0002589964830000111

Figure IDA0002589964830000131

Figure IDA0002589964830000141

34页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:使用WNT激动剂和生物活性脂质用于生成和扩增心肌细胞的试剂和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!