一种生物医用植入锆合金及制备方法

文档序号:1053629 发布日期:2020-10-13 浏览:48次 >En<

阅读说明:本技术 一种生物医用植入锆合金及制备方法 (Biomedical implanted zirconium alloy and preparation method thereof ) 是由 陈锋 罗聪 武祥为 于 2020-05-20 设计创作,主要内容包括:本发明涉及一种生物医用植入锆合金及制备方法,所述合金的组份及重量百分比为:Nb:30-44wt%;Ti:5-10wt%;O:0.10-0.15wt%;余量为Zr。合金制备的具体步骤是:采用高真空非自耗电弧炉熔炼获得成分均匀的合金铸锭,经热锻成棒材后在900-1000℃固溶处理,保温时间为30-60min,随后水冷至室温,得到单一β-Zr组织。与传统的生物医用植入材料Ti-6Al-4V合金相比,本发明合金具有高强度、低弹性模量、高塑性和高耐蚀性等优点,生物相容性和力学相容性更优异,十分适合制作需大塑性变形加工的高性能生物医用植入部件。(The invention relates to a biomedical implanted zirconium alloy and a preparation method thereof, wherein the alloy comprises the following components in percentage by weight: nb: 30-44 wt%; ti: 5-10 wt%; o: 0.10-0.15 wt%; the balance being Zr. The preparation method of the alloy comprises the following specific steps: smelting by adopting a high-vacuum non-consumable arc furnace to obtain an alloy ingot with uniform components, carrying out hot forging to obtain a bar, carrying out solution treatment at the temperature of 900-1000 ℃, keeping the temperature for 30-60min, and then carrying out water cooling to room temperature to obtain a single beta-Zr structure. Compared with the traditional biomedical implant material Ti-6Al-4V alloy, the alloy has the advantages of high strength, low elastic modulus, high plasticity, high corrosion resistance and the like, has more excellent biocompatibility and mechanical compatibility, and is very suitable for manufacturing high-performance biomedical implant parts needing large plastic deformation processing.)

一种生物医用植入锆合金及制备方法

技术领域

本发明属于新材料设计制备技术领域,涉及一种具有高强度、低弹性模量、高塑性和高耐蚀性的生物医用植入锆合金及其制备方法。

背景技术

近年来,随着社会的发展和人类生活水平的提高,人们对于安全、可靠的生物医用植入体的需求日益增加。目前,钛及其合金由于其优异的力学性能以及在人体体液环境中的高耐蚀性,是人工关节和牙种植体等人体硬组织修复与替代的首选材料。常见的钛基植入材料有Ti-6Al-4V,其抗拉强度为895MPa-930MPa,延伸率约为10%,是当前应用最广泛的种植材料,但存在以下问题:(1)合金含对人体有害的V、Al元素,尤其是V有细胞毒性,长期使用存在安全隐患。(2)合金的弹性模量(110GPa)远高于人体骨骼模量(10-30GPa),弹性模量的严重失配使植入体与骨骼的界面产生“应力屏蔽效应”,长期使用将导致植入体无菌松动,缩短使用寿命。(3)合金在人体体液环境中的耐蚀性明显低于含Nb和Zr等元素的钛合金(戴世娟等,新型医用Ti-35Nb-4Sn-6Mo-9Zr和Ti-35Nb-1.3Mo-3.7Zr合金在林格溶液中的电化学腐蚀行为,稀有金属材料与工程,2014,43:91-95),其耐蚀性有待进一步提升,以延长植入体的服役寿命。(4)人工关节等植入体形状复杂,通常需要大塑性变形加工,但Ti-6Al-4V的塑性变形能力还嫌不足,影响产品的加工效率和质量。

与人体具有良好生物相容性的元素包括Zr、Ti、Nb、Ta、Mo、Sn等,其中,Zr的性能最为优异。相关研究表明(Kuroda D,Niinomi M,Morinaga M,et al,Design and mechanicalproperties of newβtype titanium alloys for implant materials,Mater Sci Eng A,1998,243(1-2):244-249),在相对细胞增值率方面,Zr优于Ti,且Nb、Ti、Zr的生物相容性逐渐增加,表明Zr更有利于骨细胞的粘附生长。

目前,通过添加Nb、Ti等生物相容性元素的方法已制备出一些具有低弹性模量(良好力学相容性)的生物医用锆基合金。例如Pengfei Chui研发的Zr4Ti13Nb合金(PengfeiChui.Near b-type Zr-Nb-Ti biomedical alloys with high strength and lowModulus,Vacuum,2017,143:54-58),压缩测试的屈服强度为774MPa,弹性模量为27MPa,压缩率为45.8%,其强度偏低,塑性并不突出。Sertan Ozan研发的Zr32Ti38Ta8Nb合金(Sertan Ozan,Jixing Lin,New Ti-Ta-Zr-Nb alloys with ultrahigh strength forpotential orthopedic implant applications,Journal of the Mechanical Behaviorof Biomedical Materials,2017,75:119-127),压缩测试的屈服强度为1317MPa,弹性模量为73MPa,压缩率为22~36%,其塑性明显偏低;此外,该合金因含有高含量的贵重元素Ta,合金成本高昂。

合金的耐蚀性通常采用电化学方法评价,在其相关参数中,开路电位Φocp和腐蚀电位Φcorr越高,腐蚀电流Icorr和钝化电流Ipass越低,意味着合金的耐蚀性越强。目前关于生物医用锆基合金耐蚀性的研究非常少,主要围绕添加Zr、Nb的钛合金展开。Xuehui Yan研发的Zr22Ti18Nb合金(Xuehui Yan,Yong Zhang.A body-centere d cubic Zr50Ti35Nb15medium-entropy alloy with unique properties,Scripta Materialia,2020,178:329-333),其退火组织为β相,Φcorr为-422mV,Icorr为310nA/cm2,Ipass为0.336μA/cm2,其耐蚀性总体上与纯钛和Ti-6Al-4V合金相当;其抗拉强度为703MPa,屈服强度为657MPa,弹性模量为62GPa,延伸率为21.9%,合金强度明显偏低。Nilson T.C.研发的Ti13Nb13Zr合金(NilsonT.C.Oliveira,Elivelton A.Ferreira,Corrosion resistance of anodic oxides onthe Ti–50Zr and Ti–13Nb–13Zr alloys,Electrochimica Acta,2006,51:2068-2075),采用870℃固溶+500℃时效获得α+β双相组织,Φocp为-296mV,Φcorr为-825mV,从数据看,耐蚀性不如纯钛和Ti-6Al-4V合金;其抗拉强度为851MPa,屈服强度为739MPa,弹性模量为80GPa,延伸率为14%,可见合金强度偏低,而弹性模量偏高。戴世娟研发的Ti35Nb9Zr6Mo4Sn合金(戴世娟,新型医用β钛合金的设计与组织性能研究,东南大学博士学位论文,2014,44-45,85-90),固溶组织为β相,Φcorr为-230mV,Icorr为251nA/cm2,耐蚀性相较于同步测试的Ti-6Al-4V有一定优势;其抗拉强度为814MPa,屈服强度为787MPa,弹性模量为66GPa,延伸率为11%,可见其强度偏低,延伸率与Ti-6Al-4V相比也没有优势。

综上所述,可见当前植入锆合金的研究还难以取得高强度、低模量、高耐蚀性及高塑性的匹配。

植入体要在人体中服役至少20年,而高强度和高塑性(有利于提高疲劳强度)以及优异的耐蚀性均有利于延长植入体的服役寿命,另一方面,人工关节等植入体形状复杂,通常需要大塑性变形进行加工制备(轧制、弯折、挤压、冷墩、搓丝等)。因此,基于现有Ti-6Al-4V合金的不足,研发一种生物相容性和力学相容性更优异的,具有高强度、低弹性模量、高塑性和高耐蚀性的新型医用植入合金材料将具有重要的应用价值。

发明内容

技术问题:本发明的目的在于提供一种具有高强度、低弹性模量、高塑性和高耐腐蚀的生物医用植入锆合金材料及其制备方法,合金具备优异的生物相容性和力学相容性,十分适合制作需大塑性变形加工的高性能生物医用植入部件。

技术方案:本发明涉及一种生物医用植入锆合金及制备方法,其组份以重量百分比计算为:

Nb:30-44wt%;

Ti:5-10wt%;

O:0.10-0.15wt%;

余量为Zr。

其中,

锆合金在林格溶液中的开路电位:-197~-235mV;腐蚀电位:-206~-255mV;腐蚀电流:11.6~51.6nA/cm2;钝化电流:0.83~1.76μA/cm2

所述林格溶液的配比为:氯化钠9g/L+氯化钾0.42g/L+氯化钙0.25g/L,其余为去离子水;pH=7.2±0.1,温度控制在25±1℃。

锆合金的压缩屈服强度:1083~1213MPa;压缩弹性模量:70~75GPa;压缩率:>85.1%。

本发明的一种生物医用植入锆合金的制备方法包括以下步骤:

第一步:根据锆合金成分,以Zr、Nb、Ti、TiO2为原料按比例配制各原料;

第二步:将配好的原料置于磁搅拌高真空非自耗电弧炉中反复熔炼,得到成分均匀的铸锭;

第三步:将铸锭热锻成棒材,经固溶处理后投入水中淬火冷却,得到单一β-Zr组织的生物医用植入锆合金。

所述Zr、Nb、Ti、TiO2原材料,纯度均为99.9wt%以上。

所述热锻,加热温度为600-700℃,变形量为60-80%,在空气中进行。

所述固溶处理,加热温度为900-1000℃,保温时间为30-60min。

有益效果:

1、通过Zr、Nb、Ti含量的合理组合,并采用高温固溶及淬火处理,确保合金为单一β相,避免因第二相析出引起的电极电位差导致的微观电池腐蚀。高温固溶处理还能提高β组织均匀性,消除缺陷,进一步保证合金具有优异的塑性加工性能。

2、综合考虑Nb、Ti含量对β锆合金弹性模量的影响及其对锆合金耐蚀性的影响,确定了Zr、Nb、Ti含量的合理组合,使合金具有低弹性模量和高耐蚀性。

3、在锆合金中,氧作为一种间隙元素,可使β锆产生晶格畸变,还能细化β组织。添加少量的氧可显著提高合金强度,而对弹性模量和塑性的影响不大。

4、与目前最为广泛使用的Ti-6Al-4V合金相比,本发明合金的生物相容性、力学相容性及耐蚀性明显更优,具备高强度(压缩屈服强度为1083~1213MPa)、低弹性模量(70~75GPa)和超高塑性(压缩率>85.1%)的特点,十分适合制作需大塑性变形加工的高性能生物医用植入部件。

附图说明

图1为Zr40Nb5Ti0.1O合金试样的压缩应力-应变曲线(局部),可见其压缩屈服强度为1175MPa。

图2为Zr40Nb5Ti0.1O合金试样压缩前后的对比照片,可见其压缩率可以达到90%以上。

图3为Zr40Nb5Ti0.1O合金与纯钛和Ti-6Al-4V合金在林格溶液中的开路电位。

图4为Zr40Nb5Ti0.1O合金与纯钛和Ti-6Al-4V合金在林格溶液中的极化曲线。

图5a和图5b分别为Zr40Nb5Ti0.1O合金与纯钛在林格溶液中腐蚀后的表面形貌对比,可见本发明合金的耐蚀性明显优于纯钛。

具体实施方式

本发明基于以下思路来设计和制备高强度、低弹性模量、高塑性和高耐蚀性的医用植入锆合金:

Nb:30-44wt%;

Ti:5-10wt%;

O:0.10-0.15wt%;

余量为Zr。

O合金中的O含量。TiO2是原材料,其中40wt%为O,60wt%为Ti,熔炼时其O、Ti元素均进入合金中,在配料时已计算好。

(1)β锆的弹性模量较低,α锆的弹性模量较高,因此必须添加适量的β稳定元素Nb,确保锆合金为单一β相。单一β相还具有塑性高(β相有12个滑移系,α相仅有3个滑移系)、耐蚀性更好(防止α+β双相组织引起的微观电池腐蚀)等优点。

(2)研究表明,Zr-Nb-Ti合金中会形成Nb2O5、ZrO2、TiO2的钝化膜,将显著提高合金的耐蚀性,而添加Nb比添加Ti对改善锆合金耐蚀性的效果更好,因此适当提高Nb含量、降低Ti含量,有利于提高锆合金的耐蚀性。另一方面,针对低弹性模量β钛合金的研究表明,β钛合金处于亚稳β稳定性时具有最低的弹性模量,因此借鉴其研究成果,在锆合金中β稳定元素Nb的添加量也不能过高。必须通过Zr、Nb、Ti含量的合理组合,使合金同时具有低弹性模量和高耐蚀性性能。

(3)氧作为一种人体必需元素,生物相容性良好。在锆合金中添加少量氧可使β锆产生晶格畸变、细化晶粒组织而显著提高合金强度,但对弹性模量和塑性的影响不大。

为进一步理解本发明,下面结合具体实施例对本发明方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。

实施例1:

(1)合金制备工艺:以高纯度的Zr、Nb、Ti金属块和TiO2粉末为原料配制合金,各组分重量为:Zr:54.90g;Nb:40.00g;Ti:4.85g;TiO2:0.25g;各合金元素重量百分比为:Nb:40wt%;Ti:5wt%;O:0.10wt%,余量为Zr。将配好的原料置于磁搅拌高真空非自耗电弧炉中反复熔炼五次,得到成分均匀的铸锭。将铸锭在600℃热锻成棒材,变形量为80%。经900℃固溶处理50min后投入水中淬火冷却。

(2)压缩力学性能:压缩屈服强度1175MPa,弹性模量71GPa,压缩率>90%(见图1和图2)。

(3)耐蚀性:Zr40Nb5Ti0.1O合金与纯钛和Ti-6Al-4V合金在林格溶液中进行对比测试,锆合金开路电位Φocp=-197mV,纯钛和Ti-6Al-4V分别为-436mV和-327mV(见图3)。Φocp越高,耐蚀性越强。极化曲线中,锆合金的腐蚀电位Φcorr=-206mV,纯钛和Ti-6Al-4V分别为-473和-419mV(见图4)。

Figure BDA0002500060060000061

越低,意味着腐蚀倾向越大。可以计算出锆合金的腐蚀电流Icorr为11.6nA/cm2,纯钛和Ti-6Al-4V分别为392.0和137.5nA/cm2。Icorr越大,说明腐蚀越严重。还可以计算出锆合金的钝化电流Ipass为0.83μA/cm2,纯钛和Ti-6Al-4V分别为11.75和6.61μA/cm2。Ipass越小,说明合金更容易钝化。以上数据表明本发明Zr40Nb5Ti0.1O合金的耐蚀性在同比条件下明显优于纯钛和Ti-6Al-4V合金。Zr40Nb5Ti0.1O合金与纯钛在林格溶液中的腐蚀形貌分别见图5a和图5b。

实施例2:

(1)合金制备工艺:以高纯度的Zr、Nb、Ti金属块和TiO2粉末为原料配制合金,各组分重量为:Zr:48.85g;Nb:44.00g;Ti:6.78g;TiO2:0.38g;各合金元素重量百分比为:Nb:44wt%;Ti:7wt%;O:0.15wt%,余量为Zr。将配好的原料置于磁搅拌高真空非自耗电弧炉中反复熔炼五次,得到成分均匀的铸锭。将铸锭在700℃热锻成棒材,变形量为80%。经930℃固溶处理60min后投入水中淬火冷却。

(2)压缩力学性能:压缩屈服强度1138MPa,弹性模量73GPa,压缩率>90%。

(3)耐蚀性:Zr44Nb7Ti0.15O合金在林格溶液中进行测试,其开路电位Φocp=-213mV,腐蚀电位为Φcorr=-229mV,腐蚀电流Icorr=19.93nA/cm2,钝化电流Ipass=1.39μA/cm2。以上数据表明本发明合金的耐蚀性在同比条件下明显优于纯钛和Ti-6Al-4V合金。

实施例3:

(1)合金制备工艺:以高纯度的Zr、Nb、Ti金属块和TiO2粉末为原料配制合金,各组分重量为:Zr:59.86g;Nb:30.00g;Ti:9.79g;TiO2:0.35g;各合金元素重量百分比为:Nb:30wt%;Ti:10wt%;O:0.14wt%,余量为Zr。将配好的原料置于磁搅拌高真空非自耗电弧炉中反复熔炼五次,得到成分均匀的铸锭。将铸锭在650℃热锻成棒材,变形量为75%。经1000℃固溶处理40min后投入水中淬火冷却。

(2)压缩力学性能:压缩屈服强度1083MPa,弹性模量70GPa,压缩率>90%。

(3)耐蚀性:Zr30Nb10Ti0.14O合金在林格溶液中进行测试,其开路电位Φocp=-235mV,腐蚀电位为Φcorr=-255mV,腐蚀电流Icorr=51.6nA/cm2,钝化电流Ipass=1.76μA/cm2。以上数据表明本发明合金的耐蚀性在同比条件下明显优于纯钛和Ti-6Al-4V合金。

实施例4:

(1)合金制备工艺:以高纯度的Zr、Nb、Ti金属块和TiO2粉末为原料配制合金,各组分重量为:Zr:55.88g;Nb:35.00g;Ti:8.82g;TiO2:0.30g;各合金元素重量百分比为:Nb:35wt%;Ti:9wt%;O:0.12wt%,余量为Zr。将配好的原料置于磁搅拌高真空非自耗电弧炉中反复熔炼五次,得到成分均匀的铸锭。将铸锭在600℃热锻成棒材,变形量为70%。经960℃固溶处理30min后投入水中淬火冷却。

(2)压缩力学性能:压缩屈服强度1213MPa,弹性模量75GPa,压缩率=85.1%。

(3)耐蚀性:Zr35Nb9Ti0.12O合金在林格溶液中进行测试,其开路电位Φocp=-225mV,腐蚀电位为Φcorr=-233mV,腐蚀电流Icorr=31.0nA/cm2,钝化电流Ipass=1.72μA/cm2。以上数据表明本发明合金的耐蚀性在同比条件下明显优于纯钛和Ti-6Al-4V合金。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种钛镍合金感温记忆材料及其应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类