一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法

文档序号:106843 发布日期:2021-10-15 浏览:17次 >En<

阅读说明:本技术 一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法 (Buffer layer Sb based on SnO22Se3Preparation method of solar cell ) 是由 谭婷婷 徐云海 孟庆岱 魏登科 查钢强 李颖锐 吴森 于 2021-06-17 设计创作,主要内容包括:本发明涉及一种基于SnO-(2)缓冲层Sb-(2)Se-(3)太阳能电池的制备方法,选用磁控溅射法沉积SnO-(2)薄膜,近空间升华法CSS沉积Sb-(2)Se-(3)薄膜,并对SnO-(2)薄膜和Sb-(2)Se-(3)薄膜分别进行退火改性,最后制备出了FTO/SnO-(2)/Sb-(2)Se-(3)/Au顶衬结构的薄膜太阳能电池器件。磁控溅射法与喷雾热解法、低温热解法相比,制备的SnO-(2)薄膜更加致密,纯度更高,重复性更好,厚度可控,在高真空腔室下溅射有效的避免了杂质的引入,制备的薄膜均匀性更好且不会产生废液和任何有害气体;CSS是一种将源材料加热使其快速升华并且在衬底上沉积薄膜的一种制备方法,CSS源的利用率高、工艺简单、重复性好、膜层纯度高,因此CSS制备的Sb-(2)Se-(3)薄膜更加适合商业化生产。(The invention relates to a method based on SnO 2 Buffer layer Sb 2 Se 3 The preparation method of the solar cell adopts a magnetron sputtering method to deposit SnO 2 Thin film, close space sublimation CSS deposition of Sb 2 Se 3 Thin film and for SnO 2 Film and Sb 2 Se 3 Respectively annealing and modifying the film to finally prepare the FTO/SnO 2 /Sb 2 Se 3 The thin-film solar cell device has an Au top lining structure. Compared with spray pyrolysis method and low-temperature pyrolysis method, the prepared SnO by the magnetron sputtering method 2 The film is more compact, the purity is higher, the repeatability is better, the thickness is controllable, the introduction of impurities is effectively avoided by sputtering under a high vacuum chamber, the uniformity of the prepared film is better, and waste liquid and any harmful gas cannot be generated; CSS is a preparation method for heating a source material to sublimate the source material rapidly and depositing a thin film on a substrate, and the CSS source has high utilization rate, simple process, good repeatability and high film purity, so Sb prepared by CSS 2 Se 3 The film is more suitable for commercial production.)

一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法

技术领域

本发明属于太阳能电池的制备方法,涉及一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法。

背景技术

如今能源日益短缺,新能源的开发和利用备受关注。太阳能作为一种绿色无毒且储量丰富的新型能源,可以有效解决人类当前面临的能源危机问题,而薄膜太阳能电池以其轻便、耗材少和可柔性等特点,一直是能源领域的研究热点。其中铜铟镓锡(CIGS)和碲化镉(CdTe)已经成功商业化,但因In和Ga元素价格昂贵,Cd具有生物毒性,需要继续探索廉价且无毒的吸光材料。

研究表明硒化锑(Sb2Se3)材料具有良好的光电响应,在紫外和可见光波段有较大的吸收系数以及较好的化学稳定性,非常适合作为无机薄膜太阳能电池的吸光层材料。但其主流的缓冲层材料硫化镉(CdS),一方面由于Cd+在异质结界面的扩散会导致器件稳定性变差,另一方面Cd的生物毒性也限制了Sb2Se3薄膜太阳能电池的发展,所以需要探索制备新的缓冲层材料。到目前为止,Sb2Se3太阳能电池已经具有基于其他不同类型缓冲层的结构,如氧化锌(ZnO)、二氧化钛(TiO2)和氧化锡(SnO2)。其中氧化锡是一种无毒、低成本、稳定性高的半导体材料,并且具有较大的带隙和高迁移率,是一个很有前途的CdS替代品。

目前人们通常采用喷雾热解法和低温溶液法制备SnO2缓冲层,采用快速热蒸发法制备Sb2Se3吸收层。其中喷雾热解法在制备SnO2薄膜的过程中容易产生副产物,且大面积制备时均匀性较差;低温溶液法则会产生废液以及有害气体,并且SnO2沉积速率不易控制。其次在采用快速热蒸发法制备Sb2Se3薄膜时,尽管相较于常规热蒸发法和溅射法要快的多,但为了满足商业化生产的要求需要在保证薄膜质量的同时进一步提高Sb2Se3薄膜的沉积速率。

发明内容

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法,制备无毒高效的太阳能电池。

技术方案

一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法,其特征在于步骤如下:

步骤1、选用磁控溅射法制备SnO2薄膜:靶材SnO2与FTO导电玻璃基底的距离为8~10cm,工作气压为1~5Pa,沉积时间3~5min,基底温度100~400℃,溅射气氛一组为纯氩气,另一组为Ar/O2=1:1,流量均为25sccm,射频电源的溅射功率为100W,最后在400~500℃空气氛围中退火20~40min,在基底得到SnO2薄膜;

步骤2、选用近空间升华法制备Sb2Se3薄膜:沉积SnO2缓冲层的FTO玻璃基底置于上加热台,升华源Sb2Se3粉末压成的压片置于下加热台,SnO2缓冲层与升华源Sb2Se3相对置放,两者之间的距离为4~5mm,上加热台的温度为250℃,下加热台的温度为450~480℃,沉积时间3600~7200S,最后在325~375℃下对Sb2Se3薄膜分别进行原位和硒化退火20~40min,在SnO2薄膜上得到Sb2Se3薄膜;

步骤3:采用真空蒸镀法在Sb2Se3吸光层上表面和一侧的FTO导电玻璃上镀覆Au电极,形成硒化锑薄膜太阳能电池。

最优的工艺参数下:沉积时间3min,基底温度100℃,溅射气氛Ar/O2=1:1,在空气氛围中,退火温度为450℃下退火30min;选用近空间升华法制备Sb2Se3薄膜,在最优工艺参数下:基底温度250℃,生长源温度470℃,沉积时间3600S,再通过350℃硒化退火30min,最终获得的太阳能电池参数为VOC=274mV,JSC=28.25mA/cm2,FF=36.61%,PCE=2.83%,并且器件表现出良好的稳定性和稳态输出特性。

所述FTO导电玻璃基底先清洗,将FTO导电玻璃依次用丙酮、无水乙醇、去离子水超声清洗,再将超声清洗好的FTO导电玻璃使用高压氮气吹干,放入铺有无尘布的玻璃容器中存储。

有益效果

本发明提出的一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法,选用磁控溅射法沉积SnO2薄膜,近空间升华法(CSS)沉积Sb2Se3薄膜,并对SnO2薄膜和Sb2Se3薄膜分别进行退火改性,最后制备出了FTO/SnO2/Sb2Se3/Au顶衬结构的薄膜太阳能电池器件,并且器件表现出良好的稳定性和稳态输出特性。磁控溅射法与喷雾热解法、低温热解法相比,制备的SnO2薄膜更加致密,纯度更高,重复性更好,厚度可控,在高真空腔室下溅射有效的避免了杂质的引入,制备的薄膜均匀性更好且不会产生废液和任何有害气体;CSS是一种将源材料加热使其快速升华并且在衬底上沉积薄膜的一种制备方法。其具体结构如附图1,在一个密封的仪器中,源和衬底分别放置于下层的AlN陶瓷片和上层的石墨掩膜版上,上下两组红外灯分别加热衬底与升华源,使源的温度高于衬底的温度,在源与衬底间存在一个平衡蒸气压差,使气相原子从源向衬底输运并沉积在衬底上。CSS与快速热蒸发法相比沉积速率更快(CSS沉积速率为10um/min,快速热蒸发法为1um/min),此外CSS源的利用率高、工艺简单、重复性好、膜层纯度高,因此CSS制备的Sb2Se3薄膜更加适合商业化生产。

本发明采用磁控溅射法制备n型缓冲层SnO2薄膜,采用近空间升华法制备p型吸光层Sb2Se3薄膜,成功制备出FTO/SnO2/Sb2Se3/Au结构的太阳能电池器件。在SnO2的制备过程中,将溅射时间控制在3min,减小了SnO2薄膜的粗糙度,使其在可见波光段的透过率提高到80~85%;采取Ar/O2=1:1的溅射气氛,成功减少SnO2薄膜的氧空位缺陷,使得载流子在传输过程中被氧空位捕获室的概率减小,复合损失减小,SnO2薄膜在可见过波段的透过率提升了10~12%,提高了薄膜太阳能电池的效率;在空气中对SnO2薄膜退火改性,薄膜致密度提高,择优生长面由(211)转变为(101),沿C轴的择优生长有利于载流子的传输。在Sb2Se3薄膜制备过程中,将源温控制在470℃,使Sb2Se3薄膜结晶质量增加,Sb2Se3薄膜致密且晶粒较大如附图15所示,且当源温为470℃时,Sb2Se3薄膜的(hk1)晶面丰度增加,如附图12所示;350℃原位退火后Sb2Se3薄膜总体的峰位置保持不变,各个峰的强度均增强,薄膜的最强峰仍为(221)峰,薄膜结晶质量增强,而350℃硒化退火后,Sb2Se3薄膜最强峰为(221)和(211)峰,不仅结晶质量增强,而且(hk1)晶面丰度显著增大,同时使(hk0)晶面丰度减小,包括(120)、(230)、(240)峰明显减弱,如附图17所示。由附图18可知当太阳能电池产生光生载流子时,沿(120)方向生长的晶粒,其载流子在运输过程中一方面要在(Se4Sb6)纳米带间的共价键传输,另一方面还需要克服范德华力在带与带之间跳跃,且这部分跳跃所需的能量较高,不利于载流子的传输,相反沿(211)和(221)取向生长的(Se4Sb6)纳米带倾斜的垂直于基底,光生载流子可以更多的在带内传输,从而减少带间的跳跃,提高了载流子的传输效率,减少了复合损失,因此通过350℃硒化退火可以增加Sb2Se3薄膜的(hk1)晶面丰度,进而使电池性能得到提升;同时硒化退火填补了蒸发过程中形成的硒空位,薄膜更加致密。

所述磁控溅射法制备SnO2薄膜工艺参数为:沉积时间3min,基底温度100℃,溅射气氛Ar/O2=1:1,在空气氛围中,退火温度为450℃下退火30min;所述近空间升华法制备Sb2Se3薄膜的工艺参数下:基底温度250℃,生长源温度470℃,沉积时间3600S,再通过350℃硒化退火30min,最终获得的太阳能电池参数为VOC=274mV,JSC=28.25mA/cm2,FF=36.61%,PCE=2.83%,并且器件表现出良好的稳定性和稳态输出特性。

最优的工艺参数下:沉积时间3min,基底温度100℃,溅射气氛Ar/O2=1:1,在空气氛围中,退火温度为450℃下退火30min;选用近空间升华法制备Sb2Se3薄膜,在最优工艺参数下:基底温度250℃,生长源温度470℃,沉积时间3600S,再通过350℃硒化退火30min,最终获得的太阳能电池参数为VOC=274mV,JSC=28.25mA/cm2,FF=36.61%,PCE=2.83%,并且器件表现出良好的稳定性和稳态输出特性。

附图说明

图1是本发明中近空间升华法装置的结构示意图。

图2是本发明一种基于SnO2缓冲层Sb2Se3太阳能电池的结构示意图。

图3是本发明一种基于SnO2缓冲层Sb2Se3太阳能电池的制备方法中的制备流程图及实物图。

图4是本发明中不同沉积时间下SnO2薄膜的透射光谱。

图5是本发明中不同基底温度下SnO2薄膜的透射光谱。

图6是本发明中SnO2在不同沉积温度下的电池参数。

图7是本发明中不同气氛沉积的SnO2薄膜的PL谱

图8是本发明中SnO2在不同沉积气氛下电池的J-V曲线。

图9是本发明中不同退火处理方式下SnO2薄膜的SEM图;

(a)—未退火;(b)—400℃退火;(c)—450℃退火;(d)—500℃退火

图10是本发明中不同退火处理方式下SnO2薄膜的XRD图。

图11是本发明中SnO2在不同退火温度下电池的J-V曲线。

图12是本发明中不同沉积温度下Sb2Se3薄膜的XRD谱。

图13是本发明中不同温度下制备Sb2Se3薄膜的光学透过率。

图14是本发明中Sb2Se3在不同制备温度下电池的J-V曲线。

图15是本发明中不同退火处理方式下Sb2Se3薄膜的表面形貌SEM图;

(a)—原位退火;(b)—硒化退火;(c)—未退火

图16是本发明中不同退火处理方式下Sb2Se3薄膜太阳能电池的J-V曲线;

(a)—原位退火;(b)—硒化退火;(c)—未退火

图17是本发明中不同退火处理方式下Sb2Se3薄膜的XRD谱;

(a)—未退火;(b)—原位退火;(c)—硒化退火

图18是本发明中Sb2Se3薄膜的载流子在[120]、[211]或[221]方向的传输示意图

具体实施方式

现结合实施例、附图对本发明作进一步描述:

(1)衬底的选择与清洗:

本发明采用的深圳华南湘城科技有限公司,规格为15×15mm2,厚度185nm的FTO导电玻璃。将FTO导电玻璃置于200ml烧杯中,依次用丙酮、无水乙醇、去离子水超声清洗20~30min,再将超声清洗好的FTO导电玻璃用高压氮气吹干,放入铺有无尘布的玻璃容器中,清洗干净的FTO应尽快使用,避免长时间存放遭受二次污染。

(2)SnO2缓冲层的制备:

本发明采用北京创世威纳科技有限公司的MSP-300BT型磁控溅射镀膜机,将清洗后的FTO玻璃基底固定在样品台上,放入真空腔室中,并使磁控溅射靶材SnO2与玻璃基底上表面正对,间距8~10cm;抽真空,使腔室真空度达到2×10-4Pa后,加热样品台达到100~400℃;当样品台加热至所需温度时,关闭真空计,依次打开氩气瓶气阀,氧气瓶气阀开始送气,然后通过控制插板阀调节腔室内气压,使之维持在3Pa左右,开启功率源准备起辉,待起辉成功后,调节射频功率至设定值,反射功率调至最低,调节插板阀使腔室内的气压达到1~5Pa,开始预溅射,溅射时间10-20min,此过程的目的是去除靶材表面杂质;预溅射结束后,打开遮挡盘及挡板,开始计时溅射;溅射功率100W,工作气压1~5Pa,沉积时间3~5min,基底温度为100~400℃,一组工作气氛为纯Ar气,另一组工作气氛为Ar气和O2气,Ar/O2=1:1,气流量均为25sccm;将沉积有SnO2缓冲层的玻璃基底置于退火炉中,在空气气氛下,进行退火处理,温度400~500℃,时间20~40min。

1.将SnO2靶材与基底(FTO导电玻璃)的距离设置为8~10cm,工作气压为1~5Pa,工作气氛为Ar,流量为25sccm,基底温度为100℃,射频电源的溅射功率为100W,分别沉积3、5、10、15min,得到四组样品,其表面粗糙程度如表一所示:

表一

如附图4所示,3min、5min的SnO2薄膜拥有80%的透过率,随着沉积时间的增加,较厚的SnO2薄膜内部吸收更多的光子,进而导致SnO2薄膜的透过率逐渐下降,当沉积时间为15min时,样品的透过率降到70%左右。

2.上述分析表明,沉积3min得到的SnO2薄膜有着最小的粗糙度和最优的透过率,因此在选择沉积时间时,统一为3min,为了进一步探究基底温度的改变对薄膜性能的影响,采用的工艺参数为:工作气压为1Pa,射频电源的溅射功率为100W,靶材到基底的距离为8~10cm,在基底温度分别为100、200、300、400℃下沉积3min,得到四组样品。不同基底温度制备的SnO2薄膜的表面粗糙程度和电池参数,分别如表二、表三所示:

表二

表三

附图5为基底温度为100℃、200℃、300℃、400℃下沉积3min的SnO2薄膜透射光谱,从图中可知,随着温度的变化,薄膜在紫外和可见光波段的变化并不大,透射率约为80%,其中在400℃下沉积的SnO2薄膜透射率相较于其他温度略优一些,其原因可能为400℃条件下制备的SnO2薄膜的粗糙度较小,入射光达到薄膜后的散射作用减小,使得薄膜在紫外及可见光波段的透过率略有增加。但整体来看所有样品的透过率在可见光波段都在80%左右,基本吸收边在335nm左右,满足薄膜太阳能电池缓冲层的光学透过要求。

3.由上述分析可知100℃下制备的薄膜光电效率最高,说明温度为100℃时为最佳工艺参数。金属氧化物在制备过程中会有一定的氧缺失,产生氧空位,因此采用如下制备工艺参数:溅射功率100W,工作气压1Pa,沉积时间3min,基底温度为100℃。一组工作气氛为纯Ar气,Ar流量为25sccm,另一组工作气氛为Ar气和O2气,Ar/O2为1:1,制备得到两组样品,其表面粗糙程度和电池参数,如表四、表五所示:

表四

表五

由上表可知含氧气氛制备的SnO2薄膜粗糙度更小,表面更为光滑,与之同时,如附图7所示,氧气氛也填补了制备过程中SnO2薄膜体内的氧空位缺陷,使得载流子在传输过程中更少被氧空位所捕获,从而改善了开路电压和短路电流,使得电池效率得到提高。

4.通过上面的工艺研究以及制备成器件后的结果可知,进一步优化SnO2薄膜的性能可提高器件效率。通过退火处理,分别在400℃、450℃、500℃下,对在Ar/O2氛围下制备的SnO2薄膜退火处理半小时,制备的SnO2薄膜含有一定的氧空位,因此退火改性选择在空气中进行,附图9为不同处理方式下的SnO2薄膜SEM形貌图,没有退火处理的SnO2薄膜表面晶粒尺寸均匀性较差,较大尺寸的晶粒会严重影响p-n结的质量,经退火后SnO2薄膜的表面更为均匀,其中经450℃退火后,薄膜的晶粒尺寸最为均匀,几乎没有较大尺寸的晶粒,表面光滑致密,而500℃下退火得到的SnO2薄膜可看到部分晶粒发生团聚现象,这些团聚在一起的晶粒会导致界面的结合质量变差,产生更多的界面缺陷。因此,本发明选定在450℃下,对在氧气氛下制备的SnO2薄膜进行退火处理,其电池参数如表六所示:

表六

由上述分析可知SnO2缓冲层的最优制备工艺参数为,沉积时间3min,基底温度100℃,溅射气氛Ar/O2=1:1,在空气氛围中退火温度为450℃下退火30min。(3)Sb2Se3吸光层的制备:

采用合肥科晶的OTF-1200X-RTP-II近空间升华炉制备硒化锑薄膜,在升华炉腔室的上加热台安装石墨掩膜版,下加热台安装AlN陶瓷片,并将硒化锑生长源置于AlN陶瓷片上;将沉积SnO2缓冲层的玻璃基底置于石墨掩膜版上,并与硒化锑生长源相对设置,且玻璃基底与硒化锑生长源相距4~5mm,关闭腔室;将升华炉腔室抽真空至1~5Pa,通入100Pa高纯Ar气,再抽真空至1~5Pa,重复操作直至去除升华炉腔室内残余空气,之后将升华炉腔室气压稳定在5Pa;将硒化锑生长源温度升温至450~480℃,衬底温度保持在250℃,生长时间为3600~7200S,在SnO2缓冲层上表面生长出硒化锑薄膜。将制备的Sb2Se3薄膜分别进行原位退火和硒化退火。原位退火是指将通过近空间升华法得到的Sb2Se3薄膜随炉冷却至室温,再将升华炉的上加热台和下加热台均升温至325~375℃进行原位退火,退火时间为20~40min;硒化退火是指待通过近空间升华发制备的Sb2Se3薄膜随炉冷却至室温后,将AlN陶瓷片上的Sb2Se3升华源取出,替换放入Se升华源,然后将上加热台和下加热台同时加热到325~375℃,保持20~40min。

1.固定源基距为4~5mm,设置不同的源温度参数,温度梯度为30℃,分别为440℃、470℃、500℃、530℃,衬底保持在250℃沉积Sb2Se3薄膜,得到四种样品,其电池参数如表七所示:

表七

如上表所示,在470℃下制备的Sb2Se3薄膜太阳能电池最好,器件拥有较高的光电转换效率2.33%。

2.想要获得更优的电池性能,就需要结晶性更好的薄膜以及高质量的p-n结界面,因此要对薄膜进行退火处理,退火参数为:在350℃下退火30min,分别采用原位退火和硒化退火两种方式,其中原位退火是在薄膜沉积后随炉冷却至室温,然后升温至设定温度进行退火处理,硒化退火是将制备好的Sb2Se3薄膜放入有硒源的腔室中,升温至设定温度在硒气氛下进行退火,两者都是在近空间升华炉内进行。退火样品选取最优参数470℃下制备的Sb2Se3薄膜,通过不同的退火处理来研究薄膜性能的变化,分析其对太阳能电池器件性能的影响。不同退火处理后Sb2Se3薄膜的表面粗糙程度及电池参数如表八、表九所示:

表八

表九

附图15为Sb2Se3薄膜SEM表面形貌对比图,可以看出没有退火前晶粒形状较为尖锐且晶粒间有少量的孔隙,这些孔隙都会阻碍载流子的传输从而使器件性能下降,经过原位退火或硒化退火后的Sb2Se3薄膜表面孔隙明显减少,薄膜更为致密,晶粒也更为圆润,这也与本文的AFM结果相吻合。更为圆润的晶粒和致密度更高的Sb2Se3薄膜与n型缓冲层组成了高质量的p-n结,使得光生载流子的收集与分离更为高效。

在经过350℃原位退火后Sb2Se3薄膜总体的峰位置保持不变,(hk1)的晶面丰度得到提高,薄膜的最强峰仍为(221)峰,而经过350℃硒化退火后的薄膜,最强峰为(221)和(211)峰,其(hk0)晶面丰度减小,包括(120)、(230)、(240)峰明显减弱,且杂峰较少,如附图17所示,并且350℃下硒化退火填补了一定的硒空位得到的Sb2Se3薄膜更为致密,表明硒气氛的引入起到正向作用。最终获得的太阳能电池参数为VOC=274mV,JSC=28.25mA/cm2,FF=36.61%,PCE=2.83%。

由上述分析可知Sb2Se3吸光层的最优制备工艺为,固定源基距为5mm,下加热台的温度为250℃,上加热台的温度为470℃,沉积时间3600S,最后在350℃下硒化退火30min。

(5)电极制备:

本发明采用中科科仪多功能表面处理机SBC-2-1真空蒸镀仪来制备金电极,具体步骤如下,

打开总电源,将腔室内恢复至大气压状态,取下石英罩,将蒸发舟(钨舟)和掩膜版装至固定位置。掩膜版位于蒸发舟正上方,以保证每个样品所蒸镀电极厚度的均匀性。将样品和金粒分别放入掩膜版的通孔处和蒸发舟内,盖上石英罩,开始抽真空,直至真空度抽至5×10-3pa。打开蒸发电源,缓慢调节电流升至75A,在蒸发电流为75A时保持3min,待蒸发舟上金溶液蒸发完毕,缓慢将电流调至0A。关闭蒸发电源,继续抽真空至5×10-3pa。然后关闭真空泵,打开放气阀,5min后摘下石英罩取出样品,蒸镀完成。

18页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种太阳能电池片加工清洗设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类