一种实现铅基钙钛矿纳米片种类切换的方法

文档序号:1093938 发布日期:2020-09-25 浏览:23次 >En<

阅读说明:本技术 一种实现铅基钙钛矿纳米片种类切换的方法 (Method for realizing type switching of lead-based perovskite nanosheets ) 是由 王琳 孙研 于 2020-06-23 设计创作,主要内容包括:本发明涉及一种实现铅基钙钛矿纳米片种类切换的方法,通过化学气相沉积法,实现阳离子和卤素离子插入卤化铅纳米片中,得到铅基钙钛矿纳米片;将铅基钙钛矿纳米片置于管式炉中,通过低压退火使阳离子和卤素离子部分脱离,得到卤化铅纳米片,实现铅基钙钛矿纳米片到卤化铅纳米片的逆转换;将铅基钙钛矿纳米片置于管式炉中,通过阳离子或/和卤素离子替换,得到另一类型的钙钛矿纳米片,实现不同铅基钙钛矿纳米片的类型变换。本发明方法具有灵活普适、可控性好、重复性高、产量高、成本低等优点,对挖掘钙钛矿材料光电性质,发现新物理机制,制备功能化微纳器件都具有着重要的科学意义和应用价值。(The invention relates to a method for realizing type switching of lead-based perovskite nanosheets, which is characterized in that cations and halogen ions are inserted into lead halide nanosheets by a chemical vapor deposition method to obtain the lead-based perovskite nanosheets; placing the lead-based perovskite nanosheets in a tubular furnace, and partially separating cations and halogen ions through low-pressure annealing to obtain lead halide nanosheets, so that reverse conversion from the lead-based perovskite nanosheets to the lead halide nanosheets is realized; and placing the lead-based perovskite nanosheets in a tubular furnace, and replacing the lead-based perovskite nanosheets with cations or/and halogen ions to obtain perovskite nanosheets of another type, so that the type conversion of different lead-based perovskite nanosheets is realized. The method has the advantages of flexibility, universality, good controllability, high repeatability, high yield, low cost and the like, and has important scientific significance and application value for excavating the photoelectric property of the perovskite material, discovering a new physical mechanism and preparing the functionalized micro-nano device.)

一种实现铅基钙钛矿纳米片种类切换的方法

技术领域

本发明属于金属卤化物钙钛矿材料研究,涉及一种实现铅基钙钛矿纳米片种类切换的方法,尤其涉及的是一种简单、可控、高效的铅基钙钛矿纳米片种类切换技术及其应用和器件。

背景技术

近年来,杂化钙钛矿凭借优异的光电性能迅速崛起,在光伏、发光二极管、激光、传感和波导等领域表现出了极大的应用优势。其中,将钙钛矿材料减薄至原子级厚度所形成的二维钙钛矿,能将二维材料和杂化钙钛矿这两类新型功能材料的优势有效结合,使得二维钙钛矿既秉承了三维体材料高吸收与发光效率、带隙灵活可调、双极性传输等优点,还具有量子效应强、可界面调控、可微纳加工等特性,是不可多得的微纳光电器件的功能层材料。

然而,在目前钙钛矿纳米片的制备过程中,存在着合成方法不灵活、后期可操作性不强的问题。主要体现在以下两个方面:1)一种方法通常只适用于合成一种钙钛矿纳米片,为了合成不同类型的钙钛矿需要摸索不同的合成方法;2)很多方法是“一次型”合成,即生成的钙钛矿的种类从合成初始加入前驱体时就已决定,合成开始后很难再做更改。因此,很有必要开发一种多类型钙钛矿纳米片种类切换的方法,促进对钙钛矿纳米片的光电性质研究及器件化应用。

发明内容

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种实现铅基钙钛矿纳米片种类切换的方法,解决的技术问题是针对现有技术的不足提供一种铅基钙钛矿纳米片种类切换方法及其应用和器件。

技术方案

一种实现铅基钙钛矿纳米片种类切换的方法,其特征在于步骤如下:

卤化铅纳米片转化铅基钙钛矿纳米片:

将卤化铅纳米片置于管式炉下游生长区,将卤化物前驱体AX置于管式炉上游蒸发区,抽负压10-2Pa~104Pa;加热20℃~300℃,加热时间为5分钟~5小时;使气相卤化物前驱体与卤化铅纳米片PbX2充分反应,得到铅基钙钛矿纳米片;

铅基钙钛矿纳米片转化卤化铅纳米片:将铅基钙钛矿纳米片置于管式炉中,抽负压10-2Pa~104Pa;通载气,气体流量为大于零小于1000sccm;加热20℃~300℃,加热时间为5分钟~5小时;控制A阳离子与X卤素离子部分脱离,得到卤化铅纳米片PbX2,实现钙钛矿纳米片到卤化铅纳米片的逆转化;

铅基钙钛矿纳米片转化实现不同类型钙钛矿纳米片之间的种类切换:

将铅基钙钛矿纳米片置于管式炉下游生长区,将卤化物前驱体A′X′置于上游蒸发区,抽负压10-2Pa~104Pa;加热20℃~300℃,加热时间为5分钟~5小时;通过离子替换,实现不同类型钙钛矿纳米片之间的种类切换;所述卤化物前驱体A′X′是与卤化铅纳米片转化铅基钙钛矿纳米片时的另一种卤化物前驱体AX。

所述载气为氩气或者氩氢混合气。

所述卤化物前驱体满足AX通式,其中,A为烷基胺、芳香胺或金属离子以及它们的任意比例混合;X为卤族元素。

所述烷基胺包括但不限于:甲胺MA、甲脒FA、丁胺BA。

所述芳香胺包括但不限于:苯乙胺PEA、、萘甲胺NMA。

所述金属离子包括但不限于铯Cs。

所述卤化铅满足PbX2通式,其中,Pb为铅元素,X为卤族元素。

所述卤族元素包括但不限于:氯Cl、溴B或碘I。

所述卤化铅纳米片和铅基钙钛矿纳米片的衬底采用:石英、云母、氧化硅/硅SiO2/Si、ITO、FTO或聚二甲基硅氧烷PDMS。

所述卤化铅纳米片包括由溶液法、机械剥离法、化学气相沉积法得到的卤化铅纳米片。

有益效果

本发明提出的一种实现铅基钙钛矿纳米片种类切换的方法,通过控制卤化铅纳米片模板中阳离子与卤素离子的***、脱离与替换,实现不同类型钙钛矿纳米片的生长制备、可逆转换与类型变换,包括以下三个部分:1,通过化学气相沉积法,实现阳离子和卤素离子***卤化铅纳米片中,得到铅基钙钛矿纳米片;2,将铅基钙钛矿纳米片置于管式炉中,通过低压退火使阳离子和卤素离子部分脱离,得到卤化铅纳米片,实现铅基钙钛矿纳米片到卤化铅纳米片的逆转换;3,将铅基钙钛矿纳米片置于管式炉中,通过阳离子或/和卤素离子替换,得到另一类型的钙钛矿纳米片,实现不同铅基钙钛矿纳米片的类型变换。本发明提供的铅基钙钛矿纳米片种类切换的方法具有灵活普适、可控性好、重复性高、产量高、成本低等优点,对挖掘钙钛矿材料光电性质,发现新物理机制,制备功能化微纳器件都具有着重要的科学意义和应用价值。得到的铅基钙钛矿纳米片或卤化铅纳米片,在光伏器件与发光器件方面的用途。

附图说明

图1是本发明所提供的实现铅基钙钛矿纳米片种类切换方法的示意图;

图2是本发明所提供的卤化铅模板法合成铅基钙钛矿纳米片的示意图;

图3是本发明所提供的铅基钙钛矿纳米片与卤化铅模板之间可逆转换的示意图;

图4是本发明所提供的不同类型铅基钙钛矿纳米片之间类型变换的示意图;

图5是本发明所提供的实施例1的MAPbI3纳米片的原子力显微镜图谱;

图6是本发明所提供的实施例1的MAPbI3纳米片的光致发光光谱;

图7是本发明所提供的实施例2的FAPbI3纳米片的光学照片和光致发光光谱;

图8是本发明所提供的实施例3的MAPbI3纳米片和由其逆转化得到的PbI2纳米片的光学图片和原子力显微镜图;

图9是本发明所提供的实施例3的MAPbI3纳米片和由其逆转化得到的PbI2纳米片的光致发光光谱;

图10是本发明所提供的实施例4的FAPbI3纳米片和由其逆转化得到的PbI2纳米片的光学图片和原子力显微镜图;

图11是本发明所提供的实施例4的FAPbI3纳米片和由其逆转化得到的PbI2纳米片的光致发光光谱;

图12是本发明所提供的实施例5的MAPbI3纳米片和由其变换得到的FAPbI3纳米片的光学图片;

图13是本发明所提供的实施例5的MAPbI3纳米片和由其变换得到的FAPbI3纳米片的光致发光光谱;

具体实施方式

现结合实施例、附图对本发明作进一步描述:

本发明的技术方案提供一种实现铅基钙钛矿纳米片种类切换的方法(图1),具体包括:(1)如图2所示,将卤化铅纳米片置于管式炉下游生长区,将卤化物前驱体AX置于管式炉上游蒸发区,抽负压,通载气,加热,使气相卤化物前驱体与卤化铅纳米片PbX2充分反应,得到铅基钙钛矿纳米片;(2)图3所示,将铅基钙钛矿纳米片置于管式炉中,抽负压,通载气,加热,控制A阳离子与X卤素离子部分脱离,得到卤化铅纳米片PbX2,实现钙钛矿纳米片到卤化铅纳米片的逆转化;(3)图4所示,将铅基钙钛矿纳米片置于管式炉下游生长区,将另一种卤化物前驱体A′X′置于上游蒸发区,抽负压,通载气,加热,通过离子替换,实现不同类型钙钛矿纳米片之间的种类切换。

实现铅基钙钛矿纳米片种类切换的方法,通过纳米片后处理工艺来制备铅基钙钛矿纳米片或卤化铅纳米片,所描述制备方法具有灵活普适、可控性好、重复性高、产量高、成本低等优点。具体包括:(1)将卤化铅纳米片置于管式炉下游生长区,将卤化物前驱体AX置于管式炉上游蒸发区,抽负压,通载气,加热,使气相卤化物前驱体与卤化铅纳米片PbX2充分反应,得到铅基钙钛矿纳米片;(2)将铅基钙钛矿纳米片置于管式炉中,抽负压,通载气,加热,控制A阳离子与X卤素离子部分脱离,得到卤化铅纳米片PbX2,实现钙钛矿纳米片到卤化铅纳米片的逆转化;(3)将铅基钙钛矿纳米片置于管式炉下游生长区,将另一种卤化物前驱体A′X′置于上游蒸发区,抽负压,通载气,加热,通过离子替换,实现不同类型钙钛矿纳米片之间的种类切换。

所述的铅基钙钛矿纳米片种类切换方法,卤化物前驱体满足AX通式,其中,A为烷基胺或(/和)芳香胺或(/和)金属离子,包括甲胺(MA)、甲脒(FA)、苯乙胺(PEA)、丁胺(BA)、萘甲胺(NMA)、铯(Cs),X为卤族元素,包括氯(Cl)、溴(B)、碘(I)。

所述的铅基钙钛矿纳米片种类切换方法,卤化铅满足PbX2通式,其中,Pb为铅元素,X为卤族元素,氯(Cl)、溴(B)、碘(I)。

所述的铅基钙钛矿纳米片种类切换方法,卤化铅纳米片包括由溶液法、机械剥离法、化学气相沉积法得到的卤化铅纳米片。

所述的铅基钙钛矿纳米片种类切换方法,衬底为石英、云母、氧化硅/硅(SiO2/Si)、ITO、FTO、聚二甲基硅氧烷(PDMS)。

所述的铅基钙钛矿纳米片种类切换方法,负压为10-2Pa-104Pa;

所述的铅基钙钛矿纳米片种类切换方法,载气为氩气或者氩氢混合气,气体流量为0sccm-1000sccm;

所述的铅基钙钛矿纳米片种类切换方法,加热温度为20℃-300℃,加热时间为5分钟-5小时;

任一所述种类切换方法的应用,通过种类切换方法得到铅基钙钛矿纳米片或卤化铅纳米片,

根据任一所述种类切换方法得到的铅基钙钛矿纳米片或卤化铅纳米片,在光伏器件与发光器件方面的用途。

实施例1:

将碘化铅纳米片置于管式炉下游生长区,将卤化物前驱体MAI置于管式炉上游蒸发区,对管式炉抽真空,使其达到<104Pa的真空氛围。以50sccm的流速向管式炉中通入氩氢混合气(Ar(90%)/H2(10%))。将蒸发区加热至115℃保持100分钟,生长区加热至90℃保持200分钟,使气相的MAI前驱体与PbI2纳米片充分反应,得到MAPbI3钙钛矿纳米片。

MAPbI3纳米片的形貌表征如图5所示,从AFM图和相应的高度曲线中可以看出,三个相邻的钙钛矿纳米片厚度分别为6.9nm、9.5nm与32nm,表面均匀,平整光滑,边缘形状规则。图6为MAPbI3钙钛矿纳米片在488nm连续激光器激发(激发功率~10uW)的光致发光光谱,插图显示了同一衬底上相邻的三个不同厚度的钙钛矿纳米片的光学图片。从图中可以看出,MAPbI3纳米片的发光只有单一峰位,其中,厚度为10.4nm的纳米片发光峰位位于746nm附近,相比于三维MAPbI3薄膜的发光峰蓝移了~40nm,相比于三维MAPbI3单晶则蓝移了~70nm,而对于3.9nm厚的纳米片,发光峰位从746nm进一步蓝移到了735nm。

以上数据表明基于碘化铅模板,利用离子***这一方法,可以有效地实现碘化铅纳米片到MAPbI3钙钛矿纳米片的转化。

实施例2:

将碘化铅纳米片置于管式炉下游生长区,将卤化物前驱体FAI置于管式炉上游蒸发区,对管式炉抽真空,使其达到<104Pa的真空氛围。以50sccm的流速向管式炉中通入氩氢混合气(Ar(90%)/H2(10%))。将蒸发区加热至135℃保持180分钟,生长区加热至95℃保持200分钟,使气相的FAI前驱体与PbI2纳米片充分反应,得到FAPbI3钙钛矿纳米片。

图7所示为FAPbI3钙钛矿纳米片的光致发光光谱,插图为该纳米片的光学图片。该FAPbI3纳米片的厚度约12nm,仅有单个发光峰,位于785nm附近,比三维FAPbI3单晶的发光蓝移了约250nm。相比于MAPbI3,FAPbI3纳米片具有更窄的光学带隙

以上数据表明基于碘化铅模板,利用离子***这一方法,可以有效地实现碘化铅纳米片到FAPbI3钙钛矿纳米片的转化。

实施例3:

将MAPbI3钙钛矿纳米片置于管式炉中,对管式炉抽真空,使其中达到<104Pa的真空氛围,以200sccm的流速向管式炉中通入高纯氩气(Ar(100%))。将蒸发区加热至130℃保持100分钟,控制MA阳离子与I卤素离子部分脱离,得到PbI2纳米片,实现MAPbI3钙钛矿纳米片到PbI2纳米片的逆转化。

图8所示为MAPbI3纳米片和由其逆转化得到的PbI2纳米片的光学图片和原子力显微镜图。MAPbI3纳米片厚度约28.1nm,转化为PbI2纳米片后,厚度降低到20.6nm,表面保持平整。图9所示为MAPbI3纳米片和逆转化得到的PbI2纳米片的光致发光光谱,MAPbI3纳米片的发光峰位在762nm,逆转化为PbI2纳米片后,钙钛矿纳米片的发光峰完全消失,而在510nm附近出现了属于PbI2纳米片。

以上数据表明利用热辅助,促使MA阳离子与I卤素离子部分脱离,可以有效地实现MAPbI3钙钛矿纳米片到PbI2纳米片到的逆转化。

实施例4:

将FAPbI3钙钛矿纳米片置于管式炉中,对管式炉抽真空,使其中达到<104Pa的真空氛围,以200sccm的流速向管式炉中通入高纯氩气(Ar(100%))。将蒸发区加热至170℃保持120分钟,控制FA阳离子与I卤素离子部分脱离,得到PbI2纳米片,实现FAPbI3钙钛矿纳米片到PbI2纳米片的逆转化。

图10所示为FAPbI3纳米片和由其逆转化得到的PbI2纳米片的光学图片和原子力显微镜图。FAPbI3纳米片厚度约55.9nm,转化为PbI2纳米片后,厚度降低到36.1nm,表面保持平整。图11所示为FAPbI3纳米片和逆转化得到的PbI2纳米片的光致发光光谱,FAPbI3纳米片的发光峰位在779nm,逆转化为PbI2纳米片后,钙钛矿纳米片的发光峰完全消失,而在510nm附近出现了属于PbI2纳米片。

以上数据表明利用热辅助,促使FA阳离子与I卤素离子部分脱离,可以有效地实现FAPbI3钙钛矿纳米片到PbI2纳米片到的逆转化。

实施例5:

将MAPbI3钙钛矿纳米片置于管式炉下游生长区,将FAI置于上游蒸发区,对管式炉抽真空,使其中达到<104Pa的真空氛围,以50sccm的流速向管式炉中通入氩氢混合气(Ar(90%)/H2(10%))。将蒸发区加热至135℃保持180分钟,生长区加热至95℃保持200分钟,使气相的FAI前驱体与MAPbI3纳米片充分反应,FA+与I-分别替换MAPbI3钙钛矿晶格中的MA+和I-,实现MAPbI3到FAPbI3纳米片的有效变换。

图12所示为MAPbI3纳米片和由其变换得到的FAPbI3纳米片的光学图片。可以看出转换之后,纳米片的横向尺寸基本保持不变,表面保持平整。图13所示为MAPbI3纳米片和变换得到的FAPbI3纳米片的光致发光光谱,MAPbI3纳米片的发光峰位在758nm,变换为FAPbI3纳米片后,在798nm附近出现了属于FAPbI3纳米片。变换前的MAPbI3纳米片和变换后的FAPbI3纳米片的发光光谱可以用单个洛伦兹曲线进行很好的拟合,证明由MAPbI3到FAPbI3纳米片的有效变换。

以上数据表明利用热辅助,促使FA阳离子替换MA阳离子,可以有效地实现MAPbI3钙钛矿纳米片到FAPbI3纳米片的类型变换。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种选择性提取锂的钛基离子筛及制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!