一种纳米多肽载体及其制备方法和应用

文档序号:1108184 发布日期:2020-09-29 浏览:5次 >En<

阅读说明:本技术 一种纳米多肽载体及其制备方法和应用 (Nano polypeptide carrier and preparation method and application thereof ) 是由 刘小静 陈娜 金亮 周怡 罗丹 于 2020-07-31 设计创作,主要内容包括:本发明公开了一种纳米多肽载体及其制备方法和应用,纳米多肽载体为多肽的聚合物,聚合物是经半胱氨酸进行交联形成的,聚合物表面包裹有可生物降解的阳离子聚合物--聚赖氨酸;本发明的多肽载体通过半胱氨酸的巯基与纳米金之间的相互作用,将cECR Ⅴ连接到纳米金粒子上,并在AuNP表面修饰可生物降解的阳离子聚合物--聚赖氨酸(PLL),赋予AuNP-cECR Ⅴ内体可逃避性;本发明所获得的多肽载体可以抑制或破坏β-catenin和Bcl9之间相互结合;本发明应用在癌症上,提供了一种新的手段抑制Wnt信号通路,可以抑制肿瘤生长。(The invention discloses a nano polypeptide carrier and a preparation method and application thereof, wherein the nano polypeptide carrier is a polymer of polypeptide, the polymer is formed by crosslinking cysteine, and the surface of the polymer is coated with a biodegradable cationic polymer, namely polylysine; the polypeptide carrier of the invention connects the cECR V to the nano-gold particles through the interaction between the sulfydryl of cysteine and the nano-gold, and the surface of AuNP is modified with a biodegradable cationic polymer, namely Polylysine (PLL), so as to endow AuNP-cECR V endosome evasion property; the polypeptide carrier obtained by the invention can inhibit or destroy the mutual combination between beta-catenin and Bcl 9; the invention is applied to cancer, provides a new means for inhibiting the Wnt signal channel and can inhibit the growth of tumor.)

一种纳米多肽载体及其制备方法和应用

【技术领域】

本发明属于生物工程领域,尤其涉及一种纳米多肽载体及其制备方法和应用。

【背景技术】

拥有较小尺寸、稳定性好以及良好生物相容性的纳米颗粒是一种安全且有效的多肽药物递送载体。在各种纳米颗粒中,基于金纳米颗粒(AuNP)的纳米载体具有优越的特性,例如物理化学稳定性、生物相容性和通用性。此外,基于AuNP的疗法已被广泛用于临床试验,其中一些已被批准用于临床。

Wnt信号通路于1982年由Nusse等首先发现。它是一种进化上保守的通路,在正常生理过程、胚胎发育和包括癌症在内的各种疾病中起作用。这一通路主要包括三种模式:经典Wnt/β-catenin途径,非经典Wnt/平面细胞极性途径,非经典Wnt/Ca2+途径。在经典的Wnt/β-catenin途径中,β-catenin在信号转导和组织稳态中起主要作用。当Wnt激活信号不存在时,细胞质中游离的β-catenin可形成破坏性复合物,包括Ser/Thr糖原合成酶激酶3(GSK3)、Axin、酪蛋白激1a(CK1a)以及腺瘤性息肉病(APC)。在这一过程中,β-catenin处于磷酸化和泛素化,从而被降解。相反,当Wnt信号被激活,β-catenin的磷酸化和泛素化被抑制,β-catenin的水平上升,从而转移到细胞核中并激活Wnt-途径靶基因的转录。

β-catenin的结构包含N-末端结构域(150个氨基酸残基)、C-末端结构域(100个氨基酸残基)和包含12个冗余重复(530个氨基酸残基)的中心冗余重复结构域。通常,β-catenin通过其冗余重复结构域(ARD)与E-钙粘蛋白结合而在膜处被隔离,是钙依赖性粘附因子。在肿瘤中,β-catenin/E-钙粘蛋白复合物的解体会促进了β-catenin与TCF因子BCL9的结合,激活了Wnt靶基因的转录。大量证据表明,Wnt/β-catenin信号的异常表达与多种癌症相关。因此,β-catenin/Bcl9是潜在的药物靶标。数据表明β-catenin结合蛋白,如E-钙粘蛋白区域V和Bcl9,在ARD结构域共享结合位点。与Bcl9/β-catenin相互作用相比,E钙粘蛋白区域V对β-catenin具有优先结合的亲和力,从而阻断靶基因的转录激活。现有技术中对于β-catenin和Bcl9之间相互作用的抑制剂并无研究和报道。

发明内容

本发明的目的是提供一种纳米多肽载体及其制备方法和应用,能破坏或抑制β-catenin和Bcl9之间相互结合。

本发明采用以下技术方案:一种多肽,其氨基酸序列如SEQ IDNO:1所示。

一种多肽的合成方法,由以下步骤组成,

步骤11:利用Fmoc化学方法合成链状多肽;

步骤12:对链状多肽进行切割与纯化;

步骤13:向纯化后的链状多肽中加入1,3-双(溴甲基)苯得到环状多肽;

步骤14:对环状多肽纯化,制得多肽的氨基酸序列如SEQ IDNO:1所示。

含有一种多肽的编码基因的DNA序列的载体。

一种纳米多肽载体,纳米多肽载体为多肽的聚合物,聚合物是经半胱氨酸进行交联形成的。

进一步地,聚合物表面包裹有可生物降解的阳离子聚合物--聚赖氨酸。

一种纳米多肽载体的制备方法,由以下步骤组成,

步骤1:将缓冲液HEPES与H2AuCl4在烧瓶中混合并搅拌,

步骤2:向混合液中加入多肽,该多肽的氨基酸序列如SEQ IDNO:1所示;

步骤3:将混合液与金纳米颗粒缀合30min,

步骤4:离心收集即得多肽抑制剂载体。

进一步地,在步骤3和4之间,向混合液中加入聚赖氨酸。

一种纳米多肽载体在癌症方面的应用,多肽对β-catenin和Bcl9之间相互作用进行抑制。

进一步地,癌症为肝癌和结肠癌。

本发明的有益效果是:本发明将ECR Ⅴ的螺旋-环-螺旋结构上的两个末端残基突变为半胱氨酸,与1,3-双(溴甲基)苯进行加成反应,得到环化ECRV,CyclicECR Ⅴ与β-catenin结合能力更强;本发明的多肽载体通过半胱氨酸的巯基与纳米金之间的相互作用,将cECR Ⅴ连接到纳米金粒子上,并在AuNP表面修饰可生物降解的阳离子聚合物--聚赖氨酸(PLL),赋予AuNP-cECR Ⅴ内体可逃避性;本发明所获得的多肽载体可以抑制或破坏β-catenin和Bcl9之间相互结合;本发明应用在癌症上,提供了一种新的手段抑制Wnt信号通路,可以抑制肿瘤生长。

【附图说明】

图1为本发明的pAuNP-cECR Ⅴ的合成以及pAuNP-cECR Ⅴ破坏细胞内β-catenin/Bcl9相互作用以抑制Wnt信号转导示意图;

图2a为本发明的β-catenin/Bcl9/ECR Ⅴ结构的立体视图;图2b为Bcl9/β-catenin相互作用的MD模拟结果;图2c为ECR Ⅴ/β-catenin相互作用的MD模拟结果;

图3为本发明的ITC实验检测β-catenin与ECR Ⅴ蛋白亲和力结果;

图4为本发明的Cyclic ECR Ⅴ环化策略示意图;

图5为本发明的Cyclic ECR Ⅴ圆二色谱检验结果;

图6为本发明的ITC实验检测β-catenin与环化ECR Ⅴ蛋白亲和力结果;

图7为本发明竞争性结合测定Cyclic ECR Ⅴ对β-catenin的亲和力;

图8为cECR Ⅴ与纳米金的连接示意图;

图9为AuNP-cECR Ⅴ和AuNP的FT-IR光谱;

图10为AuNP-cECR Ⅴ和pAuNP-cECR Ⅴ的Zeta电位图;

图11为pAuNP-cECR Ⅴ的TEM图像;

图12为动态光散射检测pAuNP-cECR Ⅴ的水合粒径图;

图13为pAuNP-cECR Ⅴ和AuNP-cECR Ⅴ溶液的稳定性;

图14为pAuNP-cECR Ⅴ抗酶降解测试;

图15为pAuNP-cECR Ⅴ高效的氧化还原可控释放药物能力;

图16为pAuNP-cECR Ⅴ有效地穿透到癌细胞中并从内体中逃逸示意图,图16a为孵育12h后,HCT116摄取cECR Ⅴ、AuNP-cECR Ⅴ、pAuNP-cECR Ⅴ以及阿米洛利(3mM)或细胞松弛素D(2μM)预处理的pAuNP-cECR Ⅴ的流式分析;图16b为激光共聚焦观察FITC标记的pAuNP-cECR Ⅴ与溶酶体、早期和晚期内体的共定位,比例尺为20μm;

图17为pAuNP-cECR Ⅴ对HCT116的生长活性抑制检测;

图18为流式细胞仪检测药物处理HCT116后细胞周期情况;

图19为流式细胞仪检测药物处理HCT116后细胞凋亡情况;

图20为WesternBlot检测不同药物处理HCT116细胞后β-catenin蛋白的变化;

图21为pAuNP-cECR Ⅴ对Hep3B的生长活性抑制检测;

图22为流式细胞仪检测药物处理Hep3B后细胞周期情况;

图23为流式细胞仪检测药物处理Hep3B后细胞凋亡情况;

图24为WesternBlot检测不同药物处理Hep3B细胞后β-catenin蛋白的变化;

图25为pAuNP-cECR Ⅴ的体外治疗安全性评价。

具体实施方式

下面结合附图和具体实施方式对本发明进行详细说明。

本发明公开了一种多肽,其氨基酸序列为ESDQDQDYCY LNEWGNRFKKLADMYGC(SEQIDNO:1)。

现有技术中数据表明β-catenin结合蛋白,如E-钙粘蛋白区域V和Bcl9,在ARD结构域共享结合位点,与Bcl9/β-catenin相互作用相比,E钙粘蛋白区域V对β-catenin具有优先结合的亲和力,从而阻断靶基因的转录激活,因此本发明的肽,命名为E-cadherin regionⅤ mimic peptide,简称为cECR Ⅴ,它能破坏β-catenin和Bcl9之间的相互作用。

本发明还公开了一种多肽的合成方法,由以下步骤组成,

步骤11:利用Fmoc固相肽合成法合成链状多肽;

步骤12:对链状多肽进行切割与纯化;

步骤13:向纯化后的链状多肽中加入1,3-双(溴甲基)苯得到环状多肽;

步骤14:对环状多肽纯化,制得多肽的氨基酸序列如SEQ IDNO:1所示。

本发明还公开了含一种多肽的编码基因的DNA序列的载体。

本发明还公开了一种纳米多肽载体,所述的纳米多肽载体为多肽的聚合物,聚合物是经半胱氨酸进行交联形成的,聚合物表面包裹有可生物降解的阳离子聚合物--聚赖氨酸。

本发明还公开了一种纳米多肽载体的合成方法,由以下步骤组成,

步骤1:将缓冲液HEPES与H2AuCl4在烧瓶中混合并搅拌,

步骤2:向混合液中加入多肽,所述多肽的氨基酸序列如SEQ IDNO:1所示;

步骤3:将混合液与纳米金颗粒缀合30min,

步骤4:向混合液中加入聚赖氨酸。

步骤5:离心收集即得多肽载体。

其中,步骤2中的多肽通过计算机辅助设计而得,基于Bcl9与β-catenin的晶体结构,通过Discovery Studio 2.5软件模拟出E-钙粘蛋白区域V中结构,然后对模拟的模型进行MolProbity分析以测试其合理化。

其中,步骤3中的纳米金颗粒的制备方法为:使用超纯水配置浓度为50mM的4-羟乙基哌嗪乙磺酸(2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid,HEPES)。然后,用氢氧化钠将HEPES溶液的pH调到7.4。最后,按9:1的比例在干净的20mL烧杯中加入HEPES与1mM的氯金酸,室温搅拌30min,12000g离心去上清,所得沉淀即为纳米金。

本发明还公开了一种纳米多肽载体在癌症方面的应用,基于多肽对β-catenin和Bcl9之间相互作用进行抑制,所述癌症为肝癌和结肠癌。

本发明通过半胱氨酸的巯基与纳米金之间的相互作用,将cECR Ⅴ连接到纳米金粒子上。为了赋予AuNP-cECR Ⅴ内体可逃避性,在AuNP表面修饰可生物降解的阳离子聚合物--聚赖氨酸(PLL),形成PLL包被的AuNP-cECR Ⅴ,称为pAuNP-cECR Ⅴ,如图1所示。本发明的多肽通过体外数据和机理研究验证了pAuNP-cECR Ⅴ作为一种新型多肽抑制剂,具有治疗癌症的潜力和良好的生物安全性。

实施例1

实验材料及仪器

表1实验试剂与生产商

表2实验设备与生产商

Figure BDA0002612452930000072

1.AuNP-cECR Ⅴ的制备

将9mL 50mM HEPES(PH7.4,溶于PBS中)与1mL 10mM H2AuCl4在烧瓶中混合。在室温下搅拌20min后,将1mg制备的cECR Ⅴ加入混合物中,在室温下与金纳米颗粒缀合30min。然后,将0.5mg PLL加入混合物中。最后,通过10000rpm离心收集pAuNP-cECR Ⅴ并冷冻干燥以进一步使用。

1.1AuNP-cECR Ⅴ的物理化学表征

在以200kV运行的高分辨率透射电子显微镜(HRTEM,F20,FEI)上观察pAuNP-cECRⅤ形态和晶格结构。通过傅里叶变换红外光谱仪(Nicolet 6700)和紫外可见吸收光谱仪(Shimadzu 3000spectrophotometer)评价pAuNP-cECR Ⅴ的表面化学结构。通过动态光散射测量(Malvern Zetasizer Nano ZS system)来获得pAuNP-cECR Ⅴ晶体尺寸分布。

1.2蛋白-蛋白相互作用表征

等温滴定量热法(isothermal Titration Calorimetry,ITC)是一种热力学技术,它是在已知化学反应基础上,使用定量的一种反应物,逐滴加入另一种反应物,反应随着滴定过程逐渐进行,体系温度变化反映热量变化,记录这一变化将可以得到热力学信息。等温滴定量热法通过等温量热仪实现。通过等温滴定量热实时完整记录出的热谱图,可以通过计算得到反应热力学参数,其中最常用的是判断结合能力的解离常数Kd(Dissociationconstant)。

具体步骤:ITC在25℃,PBS(pH 7.4中)条件下,使用Microcal 2000量热计(GEHealthcare)测量。在检测过程中,将β-catenin蛋白置于温控样品池中,体积为200μL,浓度均为10μM。然后,将不同多肽cECR Ⅴ,BCl9放入滴定针中,浓度为100μM。反应设置温度为25℃,参比池中为纯水,设置滴定次数为20次,滴定间隔120s。收据收集完成后,利用ITC分析软件计算结合常数,分析模式选择为one site分析方法,自动拟合之后即可得到结合常数。使用Microcal Origin程序分析数据,饱和度下的数据点用于计算平均基线值,然后从每个数据点中减去该值。

荧光偏振(FP)测定。利用的荧光偏振现象,指相互作用的两个分子中至少有一个标记荧光素,分子相互作用后结为整体,体积与分子质量均会增大,如果此时利用水平和垂直方向的偏振光激发,其荧光偏振信号将与未相互作用时不同。荧光偏振分析即利用此原理,通过水平和垂直方向的荧光偏振值的不同判断分子是否相互作用。荧光偏振分析的优点在于可以定量测定,较大的待测分子在激发时荧光偏振值较高,因为相比,大分子更加难以旋转和运动;较小的待测分子的发射光将由于其运动状态而去偏振化,荧光偏振值会低。测得的偏振值可以使用软件进行计算和分析。

1.3多肽抗降解实验

在抗酶降解实验中,为了对比cECR Ⅴ、AuNP-cECR Ⅴ以及pAuNP-cECR Ⅴ在细胞内抗酶降解能力,采用了含有10mM氧化型谷胱甘肽、10%血清和胰凝乳蛋白酶的PBS进行实验。分别将cECR Ⅴ、AuNP-cECR Ⅴ以及pAuNP-cECR Ⅴ溶解至终浓度为1mg/mL,反应终止液为8M盐酸胍,1mg/mL DTT。通过RP-HPLC评估和定量随时间增加释放的多肽水解的情况。使用HPLC检测剩余蛋白量时,首先将反应体系与反应终止液按1:1体积稀释之后检测,剩余蛋白含量百分比由蛋白在214nm吸收峰的峰面积确定,DTT可作为内参进行对比。

1.4CD光谱测定

圆二色谱光谱表征步骤如下:将蛋白质以1mg/mL的浓度溶解于6M盐酸胍溶液中,调节pH至7.4。之后将溶解于6M盐酸胍的蛋白质稀释6倍于PBS缓冲液中,再利用缓慢透析的方法逐渐将缓冲液替换为pH 7.4的PBS缓冲液,最后使用10mm TCEP的PBS缓冲液作为透析液透析三次。采用紫外分光光度法,利用蛋白旋光系数进行蛋白定量计算。圆二色谱检测在JASCO J-815中进行,样品制备流程是:配制10mM的pH7.4的PBS缓冲液,定量溶解2.5μM透析蛋白,采用1mm光程、总容积3mL的比色皿,反应温度设置为25℃。波长扫描范围设定为190-250nm,样品重复检测三次。使用JASCO J-815系统自带软件对测得的数据分析处理。

1.5细胞摄取实验

异硫氰酸荧光素(FITC)标记pAuNP-cECR Ⅴ的步骤:将含有FITC(浓度为2.0mg/mL)的DMSO溶液以1:10的比例加入到pAuNP-cECR Ⅴ溶液中,混合液在37℃下避光搅拌3h。然后,用制备型液相纯化得到FITC标记的pAuNP-cECR Ⅴ,干燥后用于后续的细胞摄取实验。

HCT116在相应的培养基中培养,培养环境是含有5%CO2的空气,温度为37℃。细胞经过消化、浓缩、计数后,将其接种到含有盖玻片的6孔培养板中,每个孔的接种量为1×104细胞,培养24h后,将其分别与2μM FITC标记的纳米材料孵育6h,经PBS清洗后将细胞吸附在用pLL包被的盖玻片上,用3.7%的多聚甲醛固定10min,再经0.1%的Triton X-100破膜处理3min。使用流式细胞仪分析细胞内部纳米偶联药物分子荧光信号的分布情况。

1.6细胞周期和凋亡实验

将1×105细胞接种到12孔培养皿中培养48h,然后用药物处理72h。离心收集细胞,用冷PBS清洗两次,在1×染色缓冲液(10mM HEPES,pH7.4,140mM NaCl,2.5mM CaCl2)中重悬细胞至106细胞/mL的浓度。吸取100μL细胞悬液,加入5μL的AnnexinV-APC和5μL PI(10mg/mL),混匀后避光孵育15min。加入400μL 1×染色缓冲液,用流式细胞仪进行分析。用FlowJo软件分析对比药物处理组和对照组之间细胞凋亡率的差异。

将1×105细胞接种到12孔培养皿中培养48h,然后用药物处理24h。分别收集细胞,用500μL PBS重悬后逐滴加入4.5mL的70%乙醇中同时震荡混匀,置于-20℃固定4h。PBS清洗后离心,用500μL含50μg/mL碘化丙啶(PI),100μg/mL RNase A,0.2%Triton X-100的PBS重悬,4℃避光孵育30min,用流式细胞仪进行分析。用FlowJo软件分析细胞周期。

1.7蛋白免疫印迹实验

1)在悬浮培养细胞12孔板之中,每孔中加入1mL不同悬浮细胞液。细胞培养24h之后,在细胞内加入不同药物进行处理。处理48h之后,将细胞液离心弃上清,收集细胞,加入RIPA裂解液裂解细胞。

2)通过BCA定量试剂盒对每组样品中含有的总蛋白量进行定量,并通过调整样品体积的方式使每组样品中的蛋白浓度一致。蛋白量调整之后,加入Loading Buffer,沸水煮5min以使蛋白完全变性。

3)将不同组的样品进行SDS-PAGE分离。配制12%的含有SDS的聚丙烯酰胺分离胶和5%的聚丙烯酰胺浓缩胶。然后将制备好的样品与同样体积的预染蛋白样品加入上样孔中,进行电泳分离实验。电泳条件为:电压设置为70V,分离约15min至溴酚蓝到达分离胶处。之后调整电压至120V,分离约60min至溴酚蓝到达分离胶末端约1cm处,停止电泳。

4)将蛋白样品进行转膜处理。所有Western Blot实验均使用PVDF膜,在转膜仪上按顺序排放:三层滤纸、PVDF膜、胶、三层滤纸。设置转膜电流为100mA,转膜时间为1h。

5)封闭转膜完成的PVDF膜浸入含有5%BSA的封闭液中,室温孵育1h,TBST、5min洗涤2次。

6)一抗孵育按照需求配置不同抗体的稀释液,之后4℃孵育过夜,以达到抗体识别特定抗原的目的,然后TBST、5min洗涤2次。

7)二抗孵育根据不同一抗的来源种属配制相应的HRP标记的二抗(抗鼠或抗兔),1:2000稀释。之后室温孵育1h,TBST、5min洗涤2次。

8)显色用TBST配置1:5的ECL显色液,浸润5min,用干净的纸吸掉多余的显色液,使用化学发光仪进行曝光。

1.8MTT法测细胞活力

MTT,即3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐,也叫噻唑蓝。原理:活细胞线粒体中的琥珀酸脱氢酶能使外源性MTT还原为不能溶于水的蓝紫色结晶甲臜(Formazan),从而积聚在细胞中,但死细胞拒染。细胞中的甲臜可以溶解在二甲基亚砜(DMSO)中,通过测定其在570nm波长处的光吸收值,可计算活细胞数量。在一定细胞数范围内,甲臜的形成量与细胞数成正比。

具体步骤如下:

1)接种细胞在96孔板中接种200μL细胞溶液,使每孔含有1×103-104个细胞。

2)培养细胞将细胞培养板放入CO2培养箱中,37℃、5%CO2条件下培养24h。

3)药物处理每个药物设3个孔,药物浓度为2.5μM,与细胞孵育24h。每孔加入20μL5mg/ml的MTT溶液,继续培养4h。

4)溶解终止培养,小心弃去孔内培养液,每孔加入150μL DMSO,低速摇床摇10min,使结晶充分溶解。

5)测量使用分光光度计测定其在570nm波长处的光吸收值。

1.9细胞荧光成像

采用激光扫描共聚焦显微镜(CLSM,FV1200,Olympus),对标本焦平面上每一点进行扫描,研究pAuNP-cECR Ⅴ对细胞进行标记的能力。研究仪器设置条件如下,405nm(3.15mW),484nm(0.7mW)的连续波激光分别提供激发。

1.10生物统计分析

所有数据均通过GraphPad Prism软件进行分析,记录三个独立测试的标准偏差(SD)的平均值,组别间的差异通过t-检验进行统计学显著性分析。P<0.05被认为具有统计学意义。

2.结果与讨论

2.1靶向BCL9/β-catenin相互作用的多肽设计与合成

在肿瘤发生过程中,解离的β-catenin与其协同作用因子Bcl9结合,后者将细胞质中的β-catenin转运至细胞核以激活Wnt通路的下游分子。但是,Bcl9蛋白不能与膜上的β-catenin结合,因为BCL9结合域ARD被E-cadherin的Ⅴ区占据,如图2a所示。因此,假设在细胞质中模拟这种现象可以阻断BCL9和β-catenin之间的相互作用。

通过结构设计和计算机模拟开发了靶向β-catenin/BCL9相互作用的有效肽拮抗剂,命名为ECR Ⅴ(BCL9/β-catenin抑制剂)。为了检测其对β-catenin的潜在亲和力,通过分子动力学(MD)模拟比较了ECR Ⅴ/β-catenin、Bcl9/β-catenin的结合面面积和自由能,结合界面面积单位为

Figure BDA0002612452930000131

和结合自由能单位为ΔiG,如图2b和图2c所示,ECR Ⅴ表现出反平行的螺旋-环-螺旋结构,其与β-catenin的结合界面面积为而Bcl9只有这一数据表明ECR Ⅴ比Bcl9更容易与β-catenin结合。此外,ECR Ⅴ/β-catenin的结合自由能比Bcl9/β-catenin高50%。这些MD数据表明ECR Ⅴ模拟肽可作为竞争性破坏Bcl9/β-catenin相互作用的候选抑制剂。

3.验证试验

为了进一步验证上述模拟的结果,首先通过蛋白质全化学合成的方法合成了28个氨基酸长度的ECR Ⅴ模拟肽(序列:ESDQDQDYDYLNEWGNRFKKLADMYGG),并将其与β-catenin结合。使用等温滴定量热法(ITC),量化了ECR Ⅴ与β-catenin的ARD结构域的直接相互作用。ITC测定结果,如图3所示,出乎意料的是,在ECR Ⅴ和β-catenin之间没有检测到亲和力,这可能是因为游离肽不能维持其拓扑结构。

为了解决ECR Ⅴ和β-catenin之间没有亲和力的问题,将ECR Ⅴ的螺旋-环-螺旋结构上的两个末端残基突变为半胱氨酸,如表3所示;其与1,3-双(溴甲基)苯进行加成反应,从而得到环化ECRV,即Cyclic ECR Ⅴ,如图4所示。

表3 ECR Ⅴ和Cyclic ECR Ⅴ氨基酸序列图

Ligand Sequence
E-Cadherin Region V ESDQDQDYDYLNEWGNRFKK LADMYGG
Cyclic E-Cadherin RegionV ESDQDQDYCYLNEWGNRFKK LADMYGC

为了证实环化可以使ECR Ⅴ形成其内在的拓扑结构,比较了游离ECR Ⅴ和环化ECR Ⅴ(cECR Ⅴ)的圆二色谱(CD)。首先,对蛋白质进行折叠而形成高级结构。正如预期的那样,cECR Ⅴ呈现出典型的α螺旋构象,其特征为208和222nm处的双负峰和195nm处的单个正峰,与ECR Ⅴ的已知结构特征一致,而ECR Ⅴ显示具有低圆二色性的柔性结构,如图5所示。

在用CD验证Cyclic ECR Ⅴ在室温下能够保持结构稳定之后,用ITC测定β-catenin与Cyclic ECR Ⅴ间的亲和力。结果显示,ECR Ⅴ在环化后具有与β-catenin结合的能力,亲和力常数(Kd)为1.5μM,如图6所示。

为了进一步验证β-catenin与Cyclic ECR Ⅴ的亲和力,进行了竞争性结合测定实验。结果如图7所示,相比于ECR Ⅴ,Cyclic ECR Ⅴ与β-catenin结合能力更强。总之,这些结果表明Cyclic ECR Ⅴ能够抑制β-catenin与Bcl9之间的相互作用。

3.1pAuNP-cECR Ⅴ的制备

在cECR Ⅴ的N末端引入一个ACM保护的Cys残基,并且在环化后通过硝酸铵除去保护基团如图8所示。先将9mL 50mM HEPES(PH7.4,溶于PBS中)与1mL 10mM H2AuCl4在烧瓶中混合合成在室温下搅拌20min,然后将1mg cECR Ⅴ加入混合物中,在室温下与金纳米颗粒缀合30min。然后,将0.5mg PLL加入混合物中。最后,通过以10000rpm离心收集pAuNP-cECRⅤ并冷冻干燥备用。

为了检测cECR Ⅴ与AuNP是否成功连接,进行了傅里叶变换红外(FTIR)光谱测试。如图9所示,在3300cm-1和1415cm-1处出现两个尖带,其分别与N-H和C=O基团的伸缩振动相关,这表明cECR Ⅴ已通过酰胺键成功修饰到纳米晶体表面。

为了赋予AuNP-cECR Ⅴ更好的亲水性和更多的生物学功能,在其表面涂覆了PLL。在PLL涂覆之后,纳米颗粒之间的静电排斥力大于范德华力驱动的吸引力,从而潜在地增加纳米晶体的稳定性。如图10所示,Zeta电位结果显示:在涂覆PLL后,相比于AuNP-cECR Ⅴ的Zeta电位:-26.3mV,pAuNP-cECR Ⅴ Zeta电位变成了29.9mV。这一数据表明PLL的涂覆的确增加了纳米晶体的稳定性。

3.2pAuNP-cECR Ⅴ的形貌、结构表征

在制备pAuNP-cECR Ⅴ后,进一步通过透射电子显微镜(TEM)、动态光散射(DLS)来测定所制备的纳米晶体的形态、尺寸和物理结构。透射电子显微镜图像结果显示,如图11所示:pAuNP-cECR Ⅴ纳米颗粒保持着均匀的单分散球形结构,直径为6.1±0.5nm。

DLS数据结果,如图12所示,进一步显示pAuNP-cECR Ⅴ纳米晶体的流体动力学直径为9.9nm,它具有良好的较为单一的尺寸分布。

为了验证pAuNP-cECR Ⅴ的稳定性,将AuNP-cECR Ⅴ和pAuNP-cECR Ⅴ悬浮在37℃、含有20%胎牛血清的PBS中,通过DLS监测内它们的粒径随时间的变化。如图13所示,AuNP-cECR Ⅴ在2.5h后急剧聚集,而pAuNP-cECR Ⅴ在24h内保持单分散且粒径大小几乎不变。这一结果表明pAuNP-cECR Ⅴ可以保持良好的稳定性。

3.3pAuNP-cECR Ⅴ抗酶降解和可控药物释放能力表征

PLL涂层可进一步保护多肽免于酶解。为证实这一点,将cECR Ⅴ、AuNP-cECR Ⅴ和pAuNP-cECR Ⅴ分别与含有10%血清、氧化型谷胱甘肽和胰凝乳蛋白酶的标准PBS孵育,该胰蛋白酶是对碱性和大体积疏水性残基具有双重特异性的蛋白酶(cECR Ⅴ具有许多疏水残基)。与AuNP-cECR Ⅴ(半衰期,11.2h)相比,pAuNP-cECR Ⅴ显著提高了多肽对酶解的抗性(半衰期,>24h),而游离肽的半衰期小于2.5h,如图14所示。这一数据表明,pAuNP-cECRⅤ具有优异的抗蛋白酶降解的能力。

通过HPLC测试,在含有蛋白酶的溶液中,随时间的增加,游离多肽、AuNP-cECR Ⅴ和pAuNP-cECR Ⅴ负载多肽的含量变化。

pAuNP-cECR Ⅴ的另一个设计功能是响应还原性细胞内环境释放多肽cECR Ⅴ。为了评估cECR Ⅴ在还原性细胞内环境中的释放,将pAuNP-cECR Ⅴ(0.5mg/mL)与PBS(pH7.4,模拟体内中性环境)、含有10mM还原型谷胱甘肽(GSH)的PBS孵育(pH7.4,模拟体内还原环境),并通过HPLC来定量释放的cECR Ⅴ。如图15所示,在加入GSH后8h内,在pH7.4下实现从稳定的pAuNP-cECR Ⅴ到cECR Ⅴ的几乎完全释放。这表明pAuNP-cECR Ⅴ具有可控的多肽药物的刺激响应释放的性能。

在pH 7.4的PBS溶液中,加GSH前后,来自pAuNP-cECR Ⅴ的多肽药物的氧化还原依赖性释放。通过HPLC定量cECR Ⅴ释放,数据为平均值±SD。

3.4pAuNP-cECR Ⅴ的优良细胞穿透性、内体逃逸

用FITC标记和激光扫描共聚焦显微镜(LSCM)评估了细胞对pAuNP-cECR Ⅴ、AuNP-cECR Ⅴ和游离肽摄取。如图16a所示,在孵育12h后,超过60%的HCT116细胞在用FITC标记的pAuNP-cECR Ⅴ处理后被摄取,而在用FITC标记的cECR Ⅴ处理后只有不到5%的细胞被摄取。值得注意的是,基于肽的纳米粒子在与细胞孵育后,其可以穿透细胞膜进入到细胞内,这表明还原的cECR Ⅴ可以有效地穿过核膜并靶向核内PPI。

接下来,研究了FITC标记的pAuNP-cECR Ⅴ在细胞内的分布,以检测其逃避内体/溶酶体降解的能力。为此,将HCT116细胞与浓度为10μg/mL FITC标记的pAuNP-cECR Ⅴ一起孵育6h,然后用已知标记物染色早期内体(EEA1)、晚期内体(RAB)和溶酶体(Lysotracker)。如图16b所示,亚细胞器和FITC标记的pAuNP-cECR Ⅴ的图像显示pAuNP-cECR Ⅴ和溶酶体之间没有共定位。但是在早期和晚期内体中可以发现部分共定位。这些结果表明cECR Ⅴ可以从早期和晚期内体逃逸,从而有效地避免被溶酶体降解。

3.5pAuNP-cECR Ⅴ对HCT116(结肠癌细胞)、Hep3B细胞(肝癌细胞)生长活性抑制检测

首先,检测了pAuNP-cECR Ⅴ对HCT116细胞的生长抑制作用。结果如图17所示,pAuNP-cECR Ⅴ以剂量依赖性方式有效抑制HCT116的活力,而游离cECR Ⅴ或pAuNP在高达10μM的最高浓度下均不具有抑制作用。

孵育72h后,不同样品对HCT116细胞的剂量-反应曲线。通过MTT法测定测定结果(n=3,平均值±SD)。

为了进一步评估pAuNP-cECR Ⅴ对癌细胞的药理活性,利用流式细胞术来检测cECR Ⅴ对癌细胞细胞周期的影响。如图18所示,在2.5μM PAuNP-cECR Ⅴ处理HCT116细胞24h后,G0/G1期分数增加,并伴随S期细胞群的消耗。此外,通过MTT检测已经验证了pAuNP-cECR Ⅴ以剂量依赖性方式有效抑制HCT116,但仍然需要确认的一点是这种杀伤能力是否是通过诱导凋亡产生。因此,利用流式技术分析pAuNP-cECR Ⅴ杀伤肿瘤细胞的方式。通过检验Annexin V-APC与PI,可验证pAuNP-cECR Ⅴ是否通过诱导凋亡杀伤细胞,结果如图19所示。经过三次独立重复实验,统计分析结果表明pAuNP-cECR Ⅴ可诱导HCT116细胞发生凋亡。

在药物与HCT116细胞孵育48h后,通过FACS监测细胞中的PI信号来分析细胞周期,*P<0.5。

在药物与HCT116孵育48h后,通过FACS来测量细胞的凋亡水平,Flowjo软件分析数据,***P<0.01。

为了探讨细胞内cECR Ⅴ在分子水平上抑制癌细胞生长的机制,进行了免疫印迹分析。HCT116细胞中Wnt/β-catenin通路异常活跃,因此,检测了HCT116中β-catenin的水平。在用2.5μM CECR Ⅴ、AuNP和pAuNP-cECR Ⅴ处理HCT116细胞24h后,如图20所示,与其它组相比,pAuNP-cECR Ⅴ组中β-catenin的水平显著降低。这一结果表明,pAuNP-cECR Ⅴ是通过靶向Wnt/β-catenin信号传导途径来抑制肿瘤的生长。

使用Image J软件定量分析药物处理Hep3B细胞后β-catenin蛋白的水平变化,actin被用作内参,**P<0.1。

为了进一步验证pAuNP-cECR Ⅴ是通过靶向Wnt/β-catenin信号传导途径来抑制肿瘤的生长。检测了pAuNP-cECR Ⅴ对Hep3B细胞的生长抑制作用。结果如图21所示,与HCT116一样,pAuNP-cECR Ⅴ以剂量依赖性方式有效抑制Hep3B的活力,而游离cECR Ⅴ或pAuNP在高达10μM的浓度下均不具有抑制作用。

孵育72h后,不同样品对Hep3B细胞的剂量-反应曲线。通过MTT法测定结果(n=3,平均值±SD)。

同样利用流式细胞术来检测cECR Ⅴ对Hep3B细胞周期的影响。如图22所示,在2.5μM PAuNP-cECR Ⅴ处理Hep3B细胞24h后,G0/G1期分数增加,并伴随S期细胞的减少。此外,利用流式技术分析pAuNP-cECR Ⅴ杀伤Hep3B的方式。通过检验Annexin V-APC与PI,可验证pAuNP-cECR Ⅴ是否通过诱导凋亡杀伤靶细胞,结果如图23所示。经过三次独立重复实验,统计分析结果表明pAuNP-cECR Ⅴ可诱导Hep3B细胞发生凋亡。

Hep3B细胞中Wnt/β-catenin通路异常活跃,因此,同样通过免疫印迹分析检测了Hep3B中β-catenin的水平。在用2.5μM CECR Ⅴ、AuNP和pAuNP-cECR Ⅴ处理Hep3B细胞24h后,如图24所示,与其它组相比,pAuNP-cECR Ⅴ组中β-catenin的水平显著降低。这一结果表明,pAuNP-cECR Ⅴ是通过靶向Wnt/β-catenin信号传导途径来抑制肿瘤的生长。

在药物与Hep3B孵育48h后,通过FACS监测细胞中的PI信号来分析细胞周期,*P<0.5。

在药物与Hep3B孵育48h后,通过FACS来测量细胞的凋亡水平,Flowjo软件分析数据,***P<0.01。

使用Image J软件定量分析药物处理Hep3B细胞后β-catenin蛋白的水平变化,actin被用作内参,**P<0.1。

3.6pAuNP-cECR Ⅴ的体外细胞毒性评估

脱靶药物造成的系统毒性对癌症化疗药物的临床应用提出了重大挑战。理想情况下,当设计的药物成功靶向癌细胞中异常的Wnt信号通路时,应该消除药物对正常细胞的潜在靶向作用。因此,评估了pAuNP-cECR Ⅴ、cECR Ⅴ和pAuNP对外周血单核细胞(PBMC)和人血管内皮细胞(HUVEC)的细胞毒性。如图25所示,HUVEC细胞(a)和PBMC细胞(b)在用不同剂量的pAuNP-cECR Ⅴ、pAuNP和cECR Ⅴ孵育后,使用标准MTT法测定细胞存活(n=3),在细胞增殖实验中,pAuNP-cECR Ⅴ、cECR Ⅴ和pAuNP(浓度312.5至10000nM)对细胞活力几乎没有任何影响,表明它们对正常细胞没有毒性。总的来说,体外模型证明了pAuNP-cECR Ⅴ在靶向Wnt信号通路过度活跃的癌细胞方面具有较好的安全性。

4.结论

利用结构设计和计算机模拟,开发了β-catenin/BCL9相互作用的有效肽拮抗剂,命名为ECR Ⅴ(BCL9/β-catenin抑制剂)。在分子动力学模拟中,比较了ECR Ⅴ/β-catenin、Bcl9/β-catenin的结合面面积和自由能,数据表明ECR Ⅴ可以成为竞争性破坏Bcl9/β-catenin相互作用的候选抑制剂。但是,ITC结果显示多肽ECR Ⅴ与β-catenin并没有结合力。因此,对ECR Ⅴ采用了环化的策略来稳定其结构,ITC和FP实验都显示了环化的ECR Ⅴ与β-catenin之间有很好的结合。

在此基础上,利用纳米金递送多肽技术,开发了具有生物活性的pAuNP-cECR Ⅴ系统,这一系统具有穿透细胞、内体逃逸能力。在体外细胞实验中,pAuNP-cECR Ⅴ能够通过Wnt/β-catenin途径抑制癌细胞的活性,并可以诱导癌细胞凋亡。同时,pAuNP-cECR Ⅴ对正常细胞毒性较低。

总之,纳米金颗粒作为一种多肽递送载体,可以将多肽cECR Ⅴ有效且安全地递送到癌细胞中,具有潜在的应用价值。

序列表

<110> 西安交通大学医学院第一附属医院

<120> 一种纳米多肽载体及其制备方法和应用

<160> 1

<170> SIPOSequenceListing 1.0

<210> 1

<211> 27

<212> PRT

<213> 2 Ambystoma laterale x Ambystoma jeffersonianum

<400> 1

Glu Ser Asp Gln Asp Gln Asp Tyr Cys Tyr Leu Asn Glu Trp Gly Asn

1 5 10 15

Arg Phe Lys Lys Leu Ala Asp Met Tyr Gly Cys

20 25

25页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种胰高血糖素样肽-1类似物的纯化方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!