制备陶瓷基体浆料注入陶瓷丝束和陶瓷基体复合材料的方法

文档序号:1145433 发布日期:2020-09-11 浏览:54次 >En<

阅读说明:本技术 制备陶瓷基体浆料注入陶瓷丝束和陶瓷基体复合材料的方法 (Method for preparing ceramic matrix slurry and injecting ceramic tows and ceramic matrix composite ) 是由 阿伦·R·比贝尔 马克·G·辛普森 卡里·安·麦克吉 艾米·苏珊娜·巴尔内斯 泽巴·帕尔卡尔 于 2019-01-21 设计创作,主要内容包括:本发明描述了制备陶瓷基体预浸料的方法。所述方法包括将陶瓷纤维的涂覆丝束经包含溶剂和陶瓷前体的陶瓷基体浆料处理。至少部分地去除涂层,并将所述浆料注入所述陶瓷纤维中以形成预浸料。还描述了形成陶瓷基体复合材料的步骤,所述步骤包括将所述预浸料形成为生坯,以及烧结所述陶瓷前体。(Methods of making ceramic matrix prepregs are described. The method includes treating a coated tow of ceramic fibers with a ceramic matrix slurry comprising a solvent and a ceramic precursor. The coating is at least partially removed and the slurry is infused into the ceramic fibers to form a prepreg. Also described is a step of forming a ceramic matrix composite, the step comprising forming the prepreg into a green body, and sintering the ceramic precursor.)

制备陶瓷基体浆料注入陶瓷丝束和陶瓷基体复合材料的方法

技术领域

本公开涉及制备预浸料的方法,该预浸料包括陶瓷纤维的陶瓷基体浆料注入丝束,该陶瓷基体浆料注入丝束包括陶瓷纤维的展开丝束。该方法包括将陶瓷纤维的涂覆丝束经陶瓷基体浆料处理。还描述了用此类预浸料形成陶瓷基体复合材料的方法。

发明内容

简而言之,在一个方面,本公开提供了制备陶瓷预浸料的方法,该方法包括:a)将至少一个涂覆丝束经包含溶剂和陶瓷前体的陶瓷基体浆料处理,其中涂覆丝束包括陶瓷纤维束,基于涂覆丝束的总重量计,该陶瓷纤维束被至少0.2重量%的涂层围绕;以及b)将浆料注入陶瓷纤维束中以形成陶瓷预浸料;其中至少80重量%的涂层在25℃下可溶于溶剂中。在一些实施方案中,在步骤(b)期间或之后,至少50重量%的涂层从涂覆丝束的表面溶解到浆料中。

在另一个方面,本公开提供了制备陶瓷基体复合材料的方法,该方法包括:(c)将本公开的陶瓷预浸料形成为生坯;以及d)将生坯经足以烧结陶瓷前体的温度处理以形成陶瓷基体复合材料,其中在步骤(d)之前,至少50重量%的涂层从涂覆丝束的表面溶解到浆料中。在一些实施方案中,烧结温度为至少1000℃。

在一些实施方案中,将陶瓷预浸料形成为生坯包括使用细丝卷绕法来放置陶瓷预浸料以形成生坯。在一些实施方案中,将陶瓷预浸料形成为生坯包括使用高级纤维放置法来放置陶瓷预浸料以形成生坯。

在一些实施方案中,丝束为展开丝束。在一些实施方案中,陶瓷纤维包括氧化物陶瓷纤维。

在一些实施方案中,溶剂包括水。在一些实施方案中,基于涂覆丝束的总重量计,涂覆丝束包含不大于3重量%的涂层。在一些实施方案中,至少95重量%的涂层在25℃下可溶于溶剂中。在一些实施方案中,在步骤(b)期间或之后,至少80重量%的涂层从涂覆丝束的表面溶解到浆料中。

在一些实施方案中,步骤(a)包括将多个涂覆丝束经陶瓷基体浆料处理。在一些实施方案中,涂覆丝束为编织的。在一些实施方案中,涂覆丝束被织造以形成织物。在一些实施方案中,多个涂覆丝束的至少一部分为展开丝束。

本公开上面的概述不旨在描述本发明的每个实施方案。在下面的

具体实施方式

中还列出了本发明的一个或多个实施方案的细节。本发明的其他特征、目的和优点从具体实施方式和权利要求书中将显而易见。

附图说明

图1示出了制备预浸料和陶瓷基体复合材料的现有技术方法。

图2示出了根据本公开的一些实施方案制备预浸料和陶瓷基体复合材料的方法。

图3A和图3B为适用于本公开的一些实施方案中的陶瓷纤维的涂覆展开丝束的图像。

具体实施方式

陶瓷纤维为大家所熟知的,并且可以从多种商业来源获得。氧化物基陶瓷纤维包括例如氧化铝纤维和氧化铝-二氧化硅纤维。氧化物基陶瓷纤维可包含诸如氧化硼、碱土金属氧化物、碱金属氧化物和金属的附加组分。非氧化物基陶瓷纤维基于碳化物和氮化物,包括氮氧化物、碳氧化物和碳氮氧化物。示例性非氧化物基陶瓷纤维包括碳化硅、氮化硅、碳氧化硅和碳氮氧化硅纤维。此类非氧化物基陶瓷纤维可包含诸如金属或碳的附加组分。

陶瓷纤维可用于广泛的多种应用中。例如,可以通过将陶瓷纤维嵌入多种基体中来形成复合材料,该基体包括聚合物(即聚合物基体复合材料“PMC”)、金属(即金属基体复合材料“MMC”)和陶瓷(即陶瓷基体复合材料“CMC”)。在一些实施方案中,包含嵌入陶瓷基体中的增强陶瓷纤维的陶瓷基体复合材料可提供优异的性能,包括耐高温性和稳定性、机械强度、硬度和耐腐蚀性。

陶瓷纤维可作为单根纤维(有时称为细丝)或丝束使用。丝束(有时称为股线或粗纱)是沿公共轴线对齐的纤维束。

通常,单根陶瓷纤维可具有约5微米至20微米,例如至少8微米至小于15微米的直径。此类纤维的丝束可具有至少200根,例如至少400根纤维的标称纤维计数。在一些实施方案中,标称纤维计数可高达1125、2550、5100或甚至更大。一些可商购获得的陶瓷纤维的示例及其特性汇总于表1中。陶瓷纤维的丝束也可以由加捻在一起的多个丝束组成的纱线制成。

表1:可商购获得的3M NEXTEL陶瓷丝束的概述

Figure BDA0002596219850000031

丝束可涂覆有例如上浆剂或整理剂。此类涂层通常包含为获得所需有益效果而选择的多种有机化合物。例如,对于与聚合物基体一起使用的丝束,可以选择涂层以提供陶瓷纤维和聚合物基体之间的相容性。在此类应用中,在聚合物基体注入上浆陶瓷纤维丝束的步骤期间,涂层必须保留在纤维上。在随后的低温处理步骤诸如聚合物基体的固化中,上浆料的存在不会产生问题。

相反,陶瓷基体复合材料最终经历高温烧结处理。经这些温度处理会导致上浆材料的降解以及甚至炭化。这可导致诸如成品部件中的空隙或污染物的不可接受的缺陷。而且,有机涂层可抑制陶瓷纤维和陶瓷基体之间紧密接触的形成,从而导致不良的物理特性。因此,当制备陶瓷基体复合材料时,使用未涂覆丝束,例如在将陶瓷基体注入丝束之前去除涂层。例如,可对涂覆丝束进行热处理以烧尽任何涂覆材料。

在制造陶瓷纤维的织造织物时,也使用涂覆丝束。可选择涂料组合物以提供润滑性以及在典型织造操作中有利或必需的其他特征。同样,在经陶瓷基体处理之前,必须去除(例如烧尽)此类涂层以避免在后续烧结步骤中出现缺陷。

在典型的CMC方法中,将未涂覆(例如热处理的)陶瓷纤维的丝束用陶瓷基体材料浸渍以形成陶瓷预浸料(也称为丝束预浸料)。在一种常用方法中,陶瓷纤维经包含陶瓷前体和溶剂的浆料处理(例如浸入该浆料中)。将溶剂和陶瓷前体注入陶瓷纤维束中以形成预浸料。可将该预浸料卷绕到芯上以用于后续方法中。在其它情况下,根据浸渍步骤立即对预浸料进行进一步处理。

在随后的步骤中,使用已知的方法(诸如鼓式卷绕、细丝卷绕、自动铺带和高级纤维放置)将预浸料形成为所需形状,有时称为“生坯”。然后将生坯经高温处理以烧结陶瓷前体,从而形成陶瓷基体复合材料部件。在一些实施方案中,烧结可在至少1000℃,例如至少1200℃或甚至至少1400℃的温度下进行。通常,烧结温度将不大于1600℃,例如不大于1500℃。在一些实施方案中,烧结温度介于800℃和1400℃之间,例如介于1000℃和1400℃之间,或甚至介于1000℃和1200℃之间,包括端值在内。烧结条件,例如温度、时间和压力将取决于部件的组成及其所需特性,并且可通过已知的方法进行选择。

现有技术方法示出于图1中。在清洁步骤(110)中,清洁(例如热处理)陶瓷纤维的涂覆丝束(10)以去除涂覆材料,从而形成未涂覆丝束(20)。在注入步骤(120)中,将陶瓷基体材料注入未涂覆丝束(20)以形成预浸料(30)。在一些实施方案中,该预浸料可卷绕在芯上以供后续使用(任选的卷绕步骤(130))。在形成步骤(140)中,使用例如细丝卷绕法或高级纤维放置法来将预浸料(30)形成为所需形状。然后在烧结步骤(150)中,将所得生坯(40)在高温下处理以烧结陶瓷基体,从而形成陶瓷基体复合材料成品。可执行诸如机加工、磨削和抛光的进一步处理步骤。

由陶瓷纤维的丝束形成的织物也已被使用。在此类方法中,涂覆织物被处理以去除涂层。将陶瓷基体注入织物以形成织物预浸料。然后将织物预浸料铺设成所需形状以形成生坯。然后将生坯经高温处理以烧结陶瓷基体并形成陶瓷基体复合材料部件成品。

近来,陶瓷纤维束已以一种新的形数出现。现在可以使用陶瓷纤维的展开丝束,而不是传统的圆形或椭圆形丝束。以传统的圆形丝束为起点,可使用任何已知的方法来形成展开丝束,包括适合与碳纤维一起使用的那些方法,例如使用撑杆。此类技术展开纤维束,在降低厚度的同时显著增加丝束的宽度。

如本文所用,“展开丝束”是指纵横比(A2/A1)不大于0.05的纤维的丝束,其中A1为丝束的宽度,并且A2为厚度。相比之下,传统的圆形或椭圆形丝束可具有在1至0.2范围内的纵横比。在一些实施方案中,纵横比不大于0.04,例如不大于0.03或甚至不大于0.02。在一些实施方案中,纵横比大于0.002,例如大于0.005。在一些实施方案中,纵横比介于0.005和0.04之间,例如介于0.01和0.03之间,例如介于0.01和0.02之间,其中所有范围均包括端点在内。

展开丝束可与单个纤维层一样薄。然而,在一些实施方案中,展开丝束具有至少5根纤维,例如至少10根纤维的平均厚度。在一些实施方案中,展开丝束的厚度将不大于25根纤维,例如不大于20根纤维或甚至不大于15根纤维。

展开丝束实现的显著更低的纵横比导致陶瓷纤维更紧凑的包装,丝束之间的开放体积更小,并且因此显著减少或消除了与圆形展开丝束构造相关联的富含基体的区域。当使用采用纤维放置机制诸如细丝卷绕法和高级纤维放置法的单个展开丝束时,陶瓷纤维的展开丝束的纵横比非常低的一些优点可被实现。

陶瓷纤维的单个展开丝束可与相同的材料(例如上浆材料和基体材料)一起使用并且以与传统的圆形丝束相同的方式使用。例如,可使用细丝卷绕设备和高级纤维放置设备来应用此类展开丝束。可能需要修改来处理展开丝束的宽度;然而,此类修改将类似于带材已经进行的那些修改,该带材由平行排的传统圆形展开丝束制备。

然而,为了将其形状保持为展开丝束,施加涂层以防止纤维束在处理(例如卷绕和纤维处理)期间恢复到圆形形状。如果在施加陶瓷基体之前将该涂层从陶瓷纤维的展开丝束去除,则展开丝束可能失去其所需的平坦、薄的形状–而恢复到更椭圆的横截面。因此,必须更改与传统未涂覆丝束一起使用的方法。

为了避免与在陶瓷基体复合材料中涂覆纤维的使用相关联的缺陷,在例如烧结步骤中经高温处理之前,应去除(例如溶解或分散)涂层。在一些实施方案中,去除至少50重量%,例如至少80重量%或甚至至少95重量%的涂层。

通常,陶瓷基体浆料是已知的,并且可使用任何此类浆料。这些浆料包含溶剂和陶瓷前体。在一些实施方案中,浆料包含如本领域已知的附加组分。

合适的溶剂包括水和有机溶剂。在一些实施方案中,水是优选的溶剂,可单独使用或与有机溶剂组合使用。合适的有机溶剂包括例如醇(例如甲醇、乙醇、异丙醇和叔丁醇);芳香烃(例如苯、甲苯和二甲苯);脂肪烃(例如庚烷、己烷和辛烷);乙二醇醚(例如丙二醇甲醚);二丙二醇;醚(例如,甲醚、丙二醇正丁醚、丙二醇正丙醚和乙二醇正丁醚);酮(例如甲基乙基酮和甲基异丁基酮);以及卤代烃,诸如1,1,1-三氯乙烷和二氯甲烷。在一些实施方案中,由于毒性问题,因此可优选异丙醇、乙醇、丁醇和各种乙酸盐。

通常,可以使用任何已知的陶瓷前体。基于前体与陶瓷纤维的相容性和所需的最终使用特性来选择前体。用于陶瓷浆料中的常见前体包括溶胶凝胶和基于颗粒的耐火材料。溶胶凝胶包括尺寸在2纳米至300纳米范围内并且浓度为耐火颗粒的约5重量%至约30重量%的颗粒的胶态悬浮液。颗粒浆料可使用大得多的耐火颗粒,例如0.2微米至200微米的颗粒。示例性耐火颗粒包括氧化铝(Al2O3)、以及氧化铝的水合物(例如勃姆石或三水合铝)和二氧化硅(SiO2)、涂覆氧化铝的二氧化硅、或莫来石。

在一些实施方案中,涂层的至少一部分溶解于陶瓷基体浆料中。对于水基浆料,涂层化学成分的性能标准包括高水溶性、良好的丝束捆绑(即成膜)、良好的丝束柔韧性(即不易碎)以及烧尽期间的低炭化性能。这包括许多水溶性有机物,诸如聚乙烯醇、二醇(例如聚乙二醇、丙二醇)、多元醇(例如甘油)、聚烯烃氧化物(例如环氧乙烷、环氧丙烷以及它们的共聚物)、和聚乙烯吡咯烷酮、以及这些中的任一种的共聚物和共混物。此外,常见的陶瓷粘结剂和添加剂包括羧甲基纤维素、细胞胶、瓜尔胶、***树胶和糖(例如蔗糖或葡萄糖)可单独使用或组合使用。

类似地,对于溶剂基基体浆料,上浆化学成分的性能标准包括溶剂可溶性、良好的丝束捆绑、良好的丝束柔韧性以及烧尽期间的低炭化性能。增加的标准是在具有低毒性的溶剂中的可溶性。可能的涂层包括聚乙烯醇缩丁醛(PVB)和丙烯酸类,以及聚烯烃(例如聚乙烯)、有机硅、聚酯、苯乙烯/马来酸共聚物、苯乙烯/丙烯酸酯共聚物、丙烯酸酯/丙烯酰胺共聚物、聚甲基丙烯酸甲酯、微晶蜡、氢化聚异丁烯、聚癸烯、有机硅如聚二甲基硅氧烷、氧化聚乙烯和含官能团的聚乙烯共聚物、丙烯酸酯/叔辛基丙烯酰胺共聚物、聚乙烯吡咯烷酮、以及水溶性共聚物。

为了有助于去除,本公开的涂层基本上可溶于陶瓷基体浆料的溶剂,例如水中。在一些实施方案中,至少80重量%的涂层在25℃下可溶于溶剂中。在一些实施方案中,至少90重量%、至少95重量%或甚至至少99重量%的涂层在25℃下可溶于溶剂中。例如,当溶剂包括水或由水组成时,在一些实施方案中,至少80重量%,例如至少90重量%、至少95重量%或甚至至少99重量%的涂层在25℃下可溶于水中。

在一些实施方案中,并非所有的涂层都溶解于溶剂中。在一些实施方案中,涂层的一部分可能是不溶解的。这些材料仍可被去除并分散到陶瓷基体浆料中。

为了进一步有助于去除,可以优选低涂层重量的涂层。在一些实施方案中,基于涂覆丝束的总重量计,以不大于3重量%,例如不大于2重量%或甚至不大于1重量%施加涂层。为了保持展开丝束的完整性,在一些实施方案中,基于涂覆纤维丝束的总重量计,以至少0.2重量%、至少0.3重量%、至少0.5重量%或甚至至少0.8重量%施加涂层。在一些实施方案中,基于涂覆丝束的总重量计,涂层以0.2重量%至3重量%,例如0.2重量%至2重量%或甚至0.3重量%至1重量%存在。

通常,涂覆材料将在生坯形成之后去除。例如,在一些实施方案中,这些材料将在高温烧结步骤期间与陶瓷基体浆料自身中存在的任何有机物一起蒸发或烧尽。在一些实施方案中,可在烧结步骤之前进行单独的烧尽步骤。在一些实施方案中,涂覆材料将在该单独的步骤中被去除。

在一些实施方案中,需要使用具有低水平材料的涂层,该低水平材料可在烧尽或烧结条件下炭化(即还原为碳或木炭)。在一些实施方案中,基于涂层的总重量计,本公开的涂层包含不大于5重量%的炭化材料。在一些实施方案中,涂层包含不大于2重量%、不大于0.5重量%或甚至不大于0.1重量%的炭化材料。已知用来炭化的材料包括例如蜡。

本公开的一个示例性方法在图2中示出。在混合步骤(220)中处理陶瓷纤维的涂覆丝束(22)。在混合步骤(220)中,将涂覆陶瓷纤维的丝束经包含陶瓷前体和溶剂的陶瓷基体浆料处理。在经浆料处理后,涂层中的一些可开始从涂覆丝束去除。将材料转移到(例如溶解或分散在)陶瓷基体浆料中。在该步骤期间,溶剂和陶瓷前体注入陶瓷纤维的丝束中以形成预浸料(32)。

在任选的卷绕步骤(230)中,预浸料(32)可卷绕在芯上以供后续使用。在形成步骤(240)中,通过常规方法(诸如细丝卷绕法或高级纤维放置法)将预浸料(32)形成为所需形状,以形成生坯(42)。由于在这些步骤期间溶剂的至少一部分仍存在于预浸料中,因此涂层可开始或继续从涂覆丝束去除,并且溶解并扩散离开纤维表面进入陶瓷基体中。当陶瓷基体仍为浆料形式时,通过从纤维的表面去除涂层,在浆料和纤维的表面之间形成了良好的接触。

在烧结步骤(150)中,将生坯(42)经高温处理以烧结陶瓷基体,从而形成陶瓷基体复合材料部件成品(52)。在一些实施方案中,可在烧结之前进行任选的热处理步骤。通常,涂层和浆料的有机材料在这些步骤中的一个或两个中去除。例如,有机材料被蒸发或烧尽。

使用本公开的涂层和方法,涂覆陶瓷丝束可用于形成陶瓷基体复合材料,而无需单独的清洁步骤。即使在使用传统的陶瓷纤维的圆形丝束时,去除步骤的成本和效益也将是有益的。然而,在一些实施方案中,本公开的涂层和方法允许使用陶瓷纤维的涂覆展开丝束,而不存在如果在传统方法的基体注入步骤之前去除涂层则可能发生的损失所需薄、宽形式织物的风险。

陶瓷纤维的涂覆展开丝束可如下制备。

样品ST-1的制备:将纤度为10,000、标称细丝计数为2550的水上浆NEXTEL 610陶瓷纤维丝束(购自美国明尼苏达州圣保罗的3M公司(3M Company,St.Paul,Minnesota,U.S.A.))退绕并通过900℃的管式炉以烘干水。然后,使丝束穿过一系列的三个撑杆,该撑杆水平均匀间隔开7.6cm并且竖直均匀间隔开5.1cm。这导致丝束展开。然后,所得展开丝束被聚乙二醇(20,000gm/mol,来自阿法埃莎公司(Alfa Aesar))涂覆,使用热风枪在140℃下干燥,并卷绕在芯上。所得展开丝束具有7.6mm的平均宽度、0.10mm的厚度。基于涂覆丝束的总重量计,涂层含量为1.5重量%。

样品ST-2的制备:将纤度为20,000、标称细丝计数为5100的水上浆NEXTEL 610陶瓷纤维丝束(3M公司(3M Company))退绕并通过900℃的管式炉以烘干水。然后,使丝束穿过一系列的三个撑杆,该撑杆水平均匀间隔开7.6cm并且竖直均匀间隔开5.1cm。这导致丝束展开。然后,所得展开丝束被聚环氧乙烷(100,000gm/mol,来自阿法埃莎公司(AlfaAesar))涂覆,使用热风枪在140℃下干燥,并卷绕在芯上。所得展开丝束具有12.7mm的平均宽度、0.19mm的厚度。基于涂覆丝束的总重量计,涂层含量为1.5重量%。

样品ST-3的制备:将纤度为10,000、标称细丝计数为2550的水上浆NEXTEL 610陶瓷纤维丝束(3M公司(3M Company))退绕并通过900℃的管式炉以烘干水。然后,使丝束穿过一系列的三个撑杆,该撑杆水平均匀间隔开7.6cm并且竖直均匀间隔开5.1cm。这导致丝束展开。然后,所得展开丝束被聚环氧乙烷(20,000g/mol,阿法埃莎公司(Alfa Aesar))涂覆,使用热风枪在140℃下干燥,并卷绕在芯上。所得展开丝束具有6.1mm的平均宽度、0.09mm的厚度。基于涂覆丝束的总重量计,涂层含量为3.4重量%。

样品ST-4的制备:将纤度为20,000、标称细丝计数为5100的水上浆NEXTEL 610陶瓷纤维丝束(3M公司(3M Company))退绕并通过900℃的管式炉以烘干水。然后,使丝束穿过一系列的三个撑杆,该撑杆水平均匀间隔开7.6cm并且竖直均匀间隔开5.1cm。这导致丝束展开。然后,所得展开丝束被低分子量聚乙烯醇(26,000g/mol,阿法埃莎公司(AlfaAesar))涂覆,使用热风枪在140℃下干燥,并卷绕在芯上。所得展开丝束具有12.6mm的平均宽度、0.17mm的厚度。基于涂覆丝束的总重量计,涂层含量为0.2重量%。

样品ST-5的制备:将纤度为20,000、标称细丝计数为5100的水上浆NEXTEL 610陶瓷纤维丝束(3M公司(3M Company))退绕并通过900℃的管式炉以烘干水。然后,使丝束穿过一系列的三个撑杆,该撑杆水平均匀间隔开7.6cm并且竖直均匀间隔开5.1cm。这导致丝束展开。然后,所得展开丝束被聚乙烯吡咯烷酮(40,000g/mol,西格玛奥德里奇公司(SigmaAldrich))涂覆,使用热风枪在140℃下干燥,并卷绕在芯上。所得展开丝束具有12.4mm的平均宽度、0.20mm的厚度。基于涂覆丝束的总重量计,涂层含量为0.7重量%。

这些展开丝束的宽度(长轴A1)和厚度(短轴A2)以及A2/A1的比率汇总于表2中。

表2:由NEXTEL 610陶瓷丝束制备的展开丝束的尺寸

展开丝束 ST-1 ST-2 ST-3 ST-4 ST-5
附图 3A 3B -- -- --
纤度 10,000 20,000 10,000 20,000 20,000
宽度(A1) 7.6mm 12.7mm 6.1mm 12.6mm 12.4mm
厚度(A2) 0.10mm 0.19mm 0.09mm 0.17mm 0.20mm
纵横比(A2/A1) 0.013 0.015 0.015 0.013 0.016

两个示例性展开丝束在图3A(展开丝束ST-1)和图3B(展开丝束ST-2)中示出。

在不脱离本发明的范围和实质的情况下,本发明的各种修改和更改对于本领域的技术人员将变得显而易见。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:使用减少的结晶载量回收对二甲苯的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!