共聚的饱和聚酯树脂和包含其的涂覆组合物

文档序号:1173767 发布日期:2020-09-18 浏览:19次 >En<

阅读说明:本技术 共聚的饱和聚酯树脂和包含其的涂覆组合物 (Copolymerized saturated polyester resin and coating composition comprising the same ) 是由 金炯坤 沈宗基 金舜琪 于 2019-01-31 设计创作,主要内容包括:本发明涉及共聚的饱和聚酯树脂和包含其的涂覆组合物。提供了共聚的饱和聚酯树脂和涂覆组合物,其在形成为涂覆膜时具有优异的耐腐蚀性和耐化学品性,表现出优异的可加工性和树脂溶解性,因此特别可用于对罐和预涂覆金属(PCM)进行涂覆。(The present invention relates to a copolymerized saturated polyester resin and a coating composition comprising the same. Provided are a copolymerized saturated polyester resin and a coating composition, which have excellent corrosion resistance and chemical resistance when formed into a coating film, exhibit excellent workability and resin solubility, and thus are particularly useful for coating cans and pre-coated metals (PCMs).)

共聚的饱和聚酯树脂和包含其的涂覆组合物

技术领域

本发明涉及共聚的饱和聚酯树脂和包含其的涂覆组合物。更详细地,本发明涉及共聚的饱和聚酯树脂、以及包含其的涂覆组合物,所述共聚的饱和聚酯树脂由于其在形成为涂覆膜时耐腐蚀性和耐化学品性优异、并且具有良好的树脂溶解性和可加工性而可用于保护金属基底。

背景技术

用于保护金属材料的涂层的主要目的是防止被水或者酸性或碱性水溶液腐蚀。因此,涂覆膜需要具有优异的耐腐蚀性和耐化学品性。

包含高分子量的饱和聚酯树脂的涂覆组合物具有优异的可加工性。但是,由于其物理特性容易通过水或者酸性或碱性水溶液而劣化,因此难以将其应用于需要耐腐蚀性的用途。

特别地,聚酯树脂的物理特性的劣化在高温条件下进一步加速。因此,不可避免地要改善在高温下对水或者酸性或碱性水溶液的耐腐蚀性,以便用聚酯树脂涂覆金属。

此外,为了将树脂应用于涂覆组合物,必须使其稳定地溶解或分散在溶剂或水中。通常,然而,出于增强其耐腐蚀性和耐化学品性的目的而改性的树脂倾向于具有低的在溶剂中的溶解度。

为了实现树脂的这种溶解性和耐腐蚀性的改善,已经通过各种单体的组合常规地开发了高分子量聚酯树脂。然而,迄今为止开发的聚酯树脂无法同时满足溶解性和耐腐蚀性。而是可能损害作为高分子量的饱和聚酯的固有优点的可加工性。

发明内容

技术问题

已知由聚酯树脂形成的涂覆膜的特性通过水或者酸性或碱性水溶液而劣化的现象主要是由渗透并扩散至涂覆膜的水分引起的聚酯树脂的水解导致的。为了抑制这种由于水分引起的物理特性的劣化,有必要使粘合剂树脂和固化剂组分化学键合以具有高固化密度,使得水分几乎不渗透并扩散至涂覆膜中。

作为本发明人进行的研究的结果,发现通过设计树脂的结构使得水分几乎不可接近酯键可以确保水解稳定性,以及通过控制树脂的玻璃化转变温度从而抑制涂覆膜在高温下的流动性使耐腐蚀性和耐化学品性显著改善。此外,确定即使在高玻璃化转变温度下,也可以通过控制树脂的构成组分来改善聚酯树脂在溶剂中的溶解性和涂覆膜的可加工性。

因此,本发明的一个目的是提供共聚的饱和聚酯树脂,其溶解性和可加工性优异并且能够生产具有优异的耐腐蚀性和耐化学品性的涂覆膜。

此外,本发明的另一个目的是提供包含所述共聚的饱和聚酯树脂的涂覆组合物。

技术方案

根据本发明的目的,提供了共聚的饱和聚酯树脂,其通过酸组分和醇组分的缩聚形成,以及玻璃化转变温度为60℃至120℃,特性粘度为0.4dl/g至0.7dl/g,并且数均分子量为12000g/mol至20000g/mol,其中酸组分包含(a-1)90摩尔%至99摩尔%的芳族二羧酸或其C1-2烷基酯、和(a-2)0.5摩尔%至2摩尔%的三官能或更高官能的羧酸或其酸酐,以及醇组分包含(b-1)45摩尔%至80摩尔%的脂环族多元醇、和(b-2)20摩尔%至55摩尔%的具有C1-3烷基侧链的脂族多元醇。

根据本发明的另一个目的,提供了包含所述共聚的饱和聚酯树脂的涂覆组合物。

有益效果

共聚的饱和聚酯树脂在形成为涂覆膜时耐腐蚀性和耐化学品性优异并且具有良好的可加工性和在溶剂中的溶解性。因此,其可用作用于保护金属基底的涂层。

因此,包含共聚的饱和聚酯树脂的涂覆组合物特别地可用于预涂覆金属(pre-coated metal,PCM)以及罐的内表面和外表面的涂层。

附图说明

图1示出了评估由实施例1至4以及比较例2和3的共聚的聚酯树脂形成的涂覆膜的耐腐蚀性的结果。

具体实施方式

在下文中,将更详细地描述本发明。

共聚的饱和聚酯树脂

本发明提供了共聚的饱和聚酯树脂,其通过酸组分和醇组分的缩聚形成,以及玻璃化转变温度为60℃至120℃,特性粘度为0.4dl/g至0.7dl/g,并且数均分子量为12000g/mol至20000g/mol,其中酸组分包含(a-1)90摩尔%至99摩尔%的芳族二羧酸或其C1-2烷基酯、和(a-2)0.5摩尔%至2摩尔%的三官能或更高官能的羧酸或其酸酐,以及醇组分包含(b-1)45摩尔%至80摩尔%的脂环族多元醇、和(b-2)20摩尔%至55摩尔%的具有C1-3烷基侧链的脂族多元醇。

(a)酸组分

共聚的饱和聚酯树脂包含(a-1)芳族二羧酸或其C1-2烷基酯、和(a-2)三官能或更高官能的羧酸或其酸酐作为酸组分。

由于酸组分(a-1),共聚的饱和聚酯组合物在结构上流动性较差,由此可以抑制水分的扩散。此外,由于酸组分(a-2)而形成支化结构,由此可以获得具有致密结构的涂覆膜。因此,可以通过有效地抑制水分的移动和扩散来增强耐腐蚀性和耐化学品性。

酸组分(a-1)可以为选自间苯二甲酸、对苯二甲酸、2,6-萘二甲酸、及其C1-2烷基酯中的至少一者。

酸组分(a-1)的含量(基于总酸组分)为90摩尔%至99摩尔%。如果酸组分(a-1)的含量小于90摩尔%,则树脂的玻璃化转变温度过低,由此使得难以确保足够的耐腐蚀性和硬度。更具体地,酸组分(a-1)的含量(基于总酸组分)可以为90摩尔%至95摩尔%、93摩尔%至99摩尔%、95摩尔%至99摩尔%、或93摩尔%至97摩尔%。

此外,酸组分(a-2)可以为选自偏苯三酸及其酸酐中的至少一者。

酸组分(a-2)的含量(基于总酸组分)为0.5摩尔%至2摩尔%。如果酸组分(a-2)的含量小于0.5摩尔%,则难以获得足够的耐腐蚀性水平。如果含量大于2摩尔%,则在树脂的合成期间发生胶凝化,或者树脂的粘度变得过高,由此使涂层的可加工性劣化。更具体地,酸组分(a-2)的含量(基于总酸组分)可以为0.5摩尔%至1.5摩尔%、1摩尔%至2摩尔%、1.5摩尔%至2摩尔%、或0.5摩尔%至1摩尔%。

(b)醇组分

共聚的饱和聚酯树脂包含(b-1)脂环族多元醇、和(b-2)具有C1-3烷基侧链的脂族多元醇作为醇组分。

由于共聚的饱和聚酯树脂包含脂环族多元醇和脂族多元醇组分,因此水分接近酯键变得困难,由此可以确保耐水解性。

同时,树脂的支化结构对于增强耐腐蚀性和耐化学品性非常有用,但是树脂的可加工性可以由此劣化。因此,可以在树脂中使用具有脂环族结构的多元醇以赋予柔性并增强可加工性。

优选地,共聚的饱和聚酯树脂包含三环癸烷二甲醇作为醇组分(b-1),使得可以确保饱和聚酯树脂的溶解性以及树脂的可加工性。此外,其还可以包含选自环己烷二甲醇和异山梨醇中的至少一者。

即,醇组分(b-1)可以为三环癸烷二甲醇、或者环己烷二甲醇和异山梨醇中的至少一者与三环癸烷二甲醇的混合物。

醇组分(b-1)的含量(基于总醇组分)为45摩尔%至80摩尔%。如果醇组分(b-1)的含量在以上范围内,则可以提高树脂的玻璃化转变温度和耐腐蚀性,以及增强其良好的溶解性。如果含量小于45摩尔%,则难以获得足够的耐腐蚀性和耐化学品性。如果含量大于80摩尔%,则难以进行树脂的聚合或者可加工性显著降低。

更具体地,醇组分(b-1)的含量(基于总醇组分)可以为45摩尔%至75摩尔%、45摩尔%至70摩尔%、45摩尔%至65摩尔%、或50摩尔%至80摩尔%。

此外,醇组分(b-2)可以为选自2-甲基-1,3-丙二醇、1,3-丁二醇、和1,2-丙二醇中的至少一者。

特别地,构成醇组分(b-2)中的侧链的碳原子之和优选为3或更小。

如果作为侧链的碳链长,则在施加涂覆组合物时,存在可能损害耐化学品性和耐热水性的可能性。

醇组分(b-2)的含量(基于总醇组分)为20摩尔%至55摩尔%。如果醇组分(b-2)的含量在以上范围内,则可以确保聚合反应性、溶解性、流动性、和可加工性。如果含量小于20摩尔%,则聚合反应性显著降低。如果含量大于55摩尔%,则耐腐蚀性和耐化学品性降低。

更具体地,醇组分(b-2)的含量(基于总醇组分)可以为25摩尔%至55摩尔%、30摩尔%至55摩尔%、35摩尔%至55摩尔%、或20摩尔%至50摩尔%。

同时,醇组分优选地不包含2,2-二甲基-1,3-丙二醇。

如果涂覆膜使用包含2,2-二甲基-1,3-丙二醇的聚酯树脂形成,则当膜与包含醇的食物接触时,可能显著损害涂覆膜的耐腐蚀性。

共聚的饱和聚酯树脂的特性

在本发明中,由于共聚的饱和聚酯树脂具有特定水平的高分子量,因此在处理涂覆的基底时可以赋予柔性。

共聚的饱和聚酯树脂的特性粘度可以为0.4dl/g至0.7dl/g,更具体地为0.45dl/g至0.60dl/g、0.4dl/g至0.65dl/g、或0.4dl/g至0.6dl/g。

共聚的饱和聚酯树脂的数均分子量为12000g/mol至20000g/mol。如果共聚的饱和聚酯树脂的数均分子量小于12000g/mol,则可加工性变差。如果其大于20000g/mol,则粘度增加,这在用于涂料时损害涂层可加工性。

更具体地,共聚的饱和聚酯树脂的数均分子量可以为14000g/mol至19000g/mol、16000g/mol至19000g/mol、14000g/mol至17000g/mol、12000g/mol至17000g/mol、或16000g/mol至20000g/mol。

优选地,共聚的饱和聚酯树脂的多分散指数(PDI)可以在2.0至4.0范围内。多分散指数被计算为重均分子量与数均分子量之比(Mw/Mn),其为用于确定支化结构是否能够改善树脂的耐热水性的指标。如果共聚的饱和聚酯树脂的多分散指数在2.0至4.0的范围内,则可以有利于获得良好的耐腐蚀性和熔体粘度。

更具体地,共聚的饱和聚酯树脂的PDI可以在2.0至3.0、3.0至4.0、2.5至4.5、2.5至4.0、或2.0至3.5的范围内。

共聚的饱和聚酯树脂的玻璃化转变温度(Tg)可以为60℃至120℃。如果共聚的饱和聚酯树脂的Tg为60℃至120℃,则在高温下树脂涂覆膜的流动性可以被抑制,由此增强耐腐蚀性和耐化学品性。

更具体地,共聚的饱和聚酯树脂的Tg可以在60℃至110℃、60℃至100℃、70℃至110℃、80℃至110℃、或65℃至105℃的范围内。

用于制备共聚的饱和聚酯膜的方法

本发明的共聚的饱和聚酯树脂可以通过常规的酯化和缩聚方法来制备。例如,将酸组分和醇组分装入反应器中,随后向其中添加酯化催化剂。然后,将温度从室温逐渐升高至约200℃至260℃。当排出例如水或甲醇的副产物时,添加缩聚催化剂和热稳定剂。将反应温度升高至220℃至300℃,并进行共聚数小时,以由此获得具有适当特性粘度的聚酯树脂。

在这样的情况下,要使用的酸组分和醇组分的实例如上所述。

此外,聚合物结构可以通过在生产时向酯化反应步骤和缩聚步骤中分配和添加三官能或更高官能的羧酸或其酸酐来适当地控制。

具体地,可以在酯化步骤中进给三官能或更高官能的羧酸或其酸酐以具有支化结构。或者,可以将其添加至缩聚步骤中以调节酸值以及适当水平的支化结构,由此提高涂覆膜的粘附性。

在共聚的饱和聚酯树脂的生产期间,还可以添加酯化催化剂、缩聚催化剂、热稳定剂等。酯化催化剂的实例包括Ca、Ce、Pb、Mn、Zn、Mg、Sb等的乙酸盐,和四丁氧基钛。此外,缩聚催化剂的实例包括Sb2O3、GeO2、四丁氧基钛等。热稳定剂的实例包括磷酸盐/酯、磷酸等。

特别地,在本发明中,通过用不具有不饱和键(例如双键)的饱和化合物作为待用作聚酯树脂的共聚用单体的酸组分和醇组分而进行酯化和缩聚反应,可以提供在其最终树脂结构中不具有不饱和键的共聚的饱和聚酯树脂。

由于如上所述的本发明的共聚的饱和聚酯树脂不具有不饱和键,因此可以防止物理特性响应于热、光等而变化。此外,如上所述的共聚的饱和聚酯树脂可以适合作为用于形成涂覆膜的热塑性树脂。

涂覆组合物

本发明还提供了包含共聚的饱和聚酯树脂的涂覆组合物。

例如,涂覆组合物可以包含共聚的饱和聚酯树脂、固化剂、溶剂、添加剂等。

在这样的情况下,共聚的饱和聚酯树脂的组成和特性如上所述。

固化剂可以为选自酚醛树脂、多官能多异氰酸酯化合物、三聚氰胺-甲醛树脂、苯胍胺树脂、及其组合中的至少一者。优选地,如果将酚醛树脂或苯胍胺树脂用作固化剂,则有利于在耐腐蚀性和耐化学品性方面获得优异的物理性特性。可商购的酚醛树脂的实例包括来自Allnex的PR516、PR566、PR827、VPR1785、和CYMEL 659。

共聚的饱和聚酯树脂与固化剂的重量比可以在95:5至40:60的范围内,更具体地在90:10至50:50的范围内。

溶剂可以为基于酯的溶剂、基于二醇醚的溶剂、基于酮的溶剂、基于芳族烃的溶剂、基于脂族烃的溶剂、或基于醇的溶剂。更具体地,二甲苯、丙二醇单乙基乙酸酯、和二元酯是合适的。

此外,添加剂的实例可以包括颜料、蜡、润滑剂、消泡剂、润湿剂、催化剂等。

涂覆组合物特别地可用于PCM和罐的内表面和外表面的涂层,因为其在耐腐蚀性和耐化学品性方面得到显著改善并且可加工性优异。

用于进行本发明的实施方案

具体实施例和测试例

在下文中,将参照实施例详细描述本发明。

但是本发明的范围不限于此。

以下实施例中的测量和评估方法如下。

-特性粘度(IV):使用Cannon-UbbeLodhe型粘度计用邻氯苯酚溶剂在35℃下测量。

-玻璃化转变温度(Tg):通过差示扫描量热法(DSC)测量。

-数均分子量(Mn)和重均分子量(Mw):将样品溶解在四氢呋喃中,并通过凝胶渗透色谱法(WATERS GPC 150-CV)测量。使用聚苯乙烯(Shodex SM-105,Showa Denko,日本)作为标准材料。

-树脂溶解性:当将样品溶解在溶剂例如甲基乙基酮中时,如果保持透明均匀状态则评估为良好,而如果出现相分离或浑浊则评估为不溶。

-耐溶剂性:将样品涂覆在厚度为0.3mm的镀锡钢板上,并用热风在210℃下干燥10分钟,以获得经涂覆的钢板。将软布用甲基乙基酮浸泡并卷绕在手指上。用布对经涂覆的钢板的表面进行往复摩擦,并对往复次数进行计数直到涂覆膜损坏。

-耐腐蚀性:将样品涂覆在厚度为0.3mm的镀锡钢板上,并用热风在210℃下干燥10分钟,以获得经涂覆的钢板。使经涂覆的钢板经历冲击测试(Dupont冲击测试),然后将其浸入含有3%的乙酸和3%的NaCl的水溶液中。然后将其在高压釜中在131℃下储存30分钟,并浸入硫酸铜溶液中60分钟。随后,将表面分成具有相同面积的五个区域,并且计数未被腐蚀的区域的数量。即,当所有区域被腐蚀时,将其评估为0/5,而当没有区域被腐蚀时,将其评估为5/5。

A.共聚的聚酯树脂的制备

以下表1中所示的组成将酸组分和醇组分装入配备有温度计、冷凝器、罩搅拌器、和真空泵的2000ml四颈烧瓶中,随后向其中添加作为酯化催化剂的四丁氧基钛。当随着温度逐渐升高至240℃而以理论量产生作为副产物的水和甲醇时,向其中添加作为缩聚催化剂的四丁氧基钛。将温度升高至260℃,并且在真空下进行反应数小时。因此,如下表1所示获得了特性粘度为0.4dl/g至0.65dl/g且数均分子量为12000g/mol至20000g/mol的共聚的饱和聚酯树脂。

[表1]

Figure BDA0002618716580000091

B.涂覆组合物的制备

将实施例1至4和比较例1至4中制备的共聚的饱和聚酯树脂各自用溶剂石脑油-100/二元酯(5/5,v/v)的混合溶剂稀释,以制备固体含量为40重量%的树脂溶液。将其进一步与下表2中所示的组分配混以最终制备固体含量为35重量%的涂覆组合物。

[表2]

涂覆组合物中的组分 含量(g)
40重量%的树脂溶液(溶剂石脑油-100/二元酯=5/5,v/v) 70
72重量%的苯胍胺树脂溶液(CYMEL 659,Allnex) 9.7
溶剂石脑油-100 10.2
二元酯 10.1
十二烷基苯磺酸(CYCAT 600,Allnex) 2.0

C.涂覆膜的评估

将以上制备的涂覆组合物各自涂覆在厚度为0.3mm的镀锡钢板上至6μm至10μm的厚度,将其在自动排出烘箱中在210℃下干燥并固化10分钟以获得涂覆膜。对涂覆膜评估树脂溶解性、耐溶剂性、和耐腐蚀性。结果示于下表3中。此外,图1示出了经历了耐腐蚀性测试的经涂覆的钢板的照片。

[表3]

Figure BDA0002618716580000101

如上表3和图1所示,当各自涂覆根据实施例的共聚的饱和聚酯树脂时,树脂溶解性、耐溶剂性、和耐腐蚀性均优异。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:共聚的饱和聚酯树脂和包含其的涂覆组合物

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类