基于光子计数的无线光通信的光信号检测方法及接收装置

文档序号:117930 发布日期:2021-10-19 浏览:19次 >En<

阅读说明:本技术 基于光子计数的无线光通信的光信号检测方法及接收装置 (Photon counting-based optical signal detection method and receiving device for wireless optical communication ) 是由 汪井源 徐智勇 汪琛 李建华 赵继勇 戚艾林 沈荟萍 苏洋 周华 于 2021-05-31 设计创作,主要内容包括:本发明公开了一种基于光子计数的无线光通信的光信号检测方法及接收装置,其检测方法包括:光学接收天线采集接收大气中的光信号并耦合进光纤;自适应光衰减模块改变衰减因子,使从光纤接收的光信号的光功率和背景光功率维持在单光子探测器的最佳响应范围内;光滤波器对从自适应光衰减模块接收的光信号滤除通信波长之外的背景光;单光子探测器对从光滤波器接收到的光信号进行检测。本发明能够实时调整衰减因子,使入射光功率始终维持在单光子探测器的最佳响应范围内,可有效抑制背景辐射噪声,提高光子计数无线光通信系统的误码性能。(The invention discloses a photon counting-based optical signal detection method and a receiving device for wireless optical communication, wherein the detection method comprises the following steps: the optical receiving antenna collects and receives optical signals in the atmosphere and couples the optical signals into the optical fiber; the self-adaptive light attenuation module changes an attenuation factor to ensure that the light power of the light signal received from the optical fiber and the background light power are maintained in the optimal response range of the single photon detector; the optical filter filters background light outside the communication wavelength from the optical signal received by the adaptive optical attenuation module; the single photon detector detects the optical signal received from the optical filter. The invention can adjust the attenuation factor in real time, so that the incident light power is always maintained in the optimal response range of the single photon detector, the background radiation noise can be effectively inhibited, and the error code performance of the photon counting wireless optical communication system is improved.)

基于光子计数的无线光通信的光信号检测方法及接收装置

技术领域

本发明涉及一种基于光子计数的无线光通信的光信号检测方法及接收装置,属于天线光通信技术领域。

背景技术

无线光通信是以激光为信号载体的无线通信方式,具有传输速率高、抗电磁干扰、方向性好、保密性强、无需频谱许可、无需架设光纤、组网周期短、设备轻便、搭设便捷等优点。由于信道中大气分子和气溶胶粒子对光子的吸收、散射,以及大气湍流导致空气折射率的变化会引起光束随机漂移、光强起伏、光信号衰减严重等现象发生,在远距离通信时存在通信易中断、误码率高、受天气因素制约等缺点。

随着近年来单光子检测技术的迅速发展,单光子探测器被广泛应用于深空通信、水下通信、散射通信、量子通信等领域。单光子探测器具备单个光子的灵敏度,是检测弱光信号的理想选择。但是,由于大气中的背景辐射噪声引起的单光子探测器饱和极大恶化了光子计数无线光通信系统的误码性能。

为了解决上述问题,本申请提出一种基于光子计数的无线光通信的光信号检测方法及接收装置。

发明内容

本发明的目的在于克服现有技术中的不足,提供一种基于光子计数的无线光通信的光信号检测方法及接收装置,用于抑制背景辐射噪声对无线光通信系统性能的影响,提升光子计数无线光通信系统的误码性能。

为达到上述目的,本发明是采用下述技术方案实现的:

第一方面,本发明提供了一种基于光子计数的无线光通信的光信号检测方法,包括:

光学接收天线采集接收大气中的光信号并耦合进光纤;

自适应光衰减模块改变衰减因子,使从光纤接收的光信号的光功率和背景光功率维持在单光子探测器的最佳响应范围内;

光滤波器对从自适应光衰减模块接收的光信号滤除通信波长之外的背景光;

单光子探测器对从光滤波器接收到的光信号进行检测;

其中,所述单光子探测器通过门控信号发生器产生周期性的矩形脉冲进行驱动并工作于门控模式。

优选的,所述自适应光衰减模块改变衰减因子包括:

单光子探测器对从光滤波器接收到的光信号进行检测并输出离散计数脉冲序列;

信号同步模块基于同步算法提取离散计数脉冲序列中的时隙同步和帧同步信号;

信号估计判决模块根据时隙同步和帧同步信号对时隙内的开门次数进行计数;

自适应光衰减模块基于自适应光衰减控制算法对计数值进行运算,获取最佳衰减因子并替换原衰减因子。

优选的,所述自适应光衰减控制算法包括:

根据序列中每个时隙内的开门次数,获取每个判决门限Kth

获取每个判决门限Kth对应的衰减因子,从而生成衰减因子搜索区间(0,α1],(α1,α2],……,(αk-1,αk];

通过计算衰减因子搜索区间边界上的误码率Pe(α),获取误码率序列Pe1),Pe2),……Pek);

通过比较得到最低误码率所对应的衰减因子αmin,其公式如下:

将衰减因子αmin相邻的两个搜索区间(αmin-1,αmin],(αmin,αmin+1]定义为最佳衰减因子的搜索区间;

基于凸优化理论,在搜索区间(αmin-1,αmin],(αmin,αmin+1]内运行梯度下降法搜索得到最佳衰减因子。

优选的,所述判决门限Kth的计算公式如下:

其中,N为时隙内单光子探测器开门次数,M为单光子探测器阵列的像素个数,P00为检测“0”比特时不产生计数脉冲的概率、P01为检测“0”比特时产生计数脉冲的概率、P10为检测“1”比特时不产生计数脉冲的概率、P11为检测“1”比特时产生计数脉冲的概率。

优选的,所述P00、P01、P10和P11的公式如下:

其中,A为后脉冲效应拟合因子、Pap为单光子探测器的后脉冲概率、α为衰减因子,α的初始值为预设值,λ1与λ0分别为探测“1”比特与“0”比特时单次开门时间内产生的有效载流子数。

优选的,所述λ1与λ0的公式如下:

λ1=[PDEsb)+λd]ts

λ0=(PDEλbd)tg

其中,PDE为单光子探测器的光子探测效率、λs为信号光子到达速率、λb为背景光子到达速率、λd为暗载流子产生速率、tg为门宽,ts为开门时间。

优选的,所述误码率Pe(α)的计算公式如下:

其中,N为时隙内单光子探测器开门次数,M为单光子探测器阵列的像素个数,A为后脉冲效应拟合因子、Pap为单光子探测器的后脉冲概率、α为衰减因子,α的初始值为预设值,λ1与λ0分别为探测“1”比特与“0”比特时单次开门时间内产生的有效载流子数,n表示序列数。

优选的,所述梯度下降法的步长迭代公式与收敛不等式如下:

αk+1=αk+βtΔα

其中,t取1,β取0.5,γ取0.2,

第二方面,本发明提供了一种光子计数无线光通信的自适应接收装置,包括依次电性连接的光学接收天线、自适应光衰减模块、光滤波器、单光子探测器、信号同步模块以及信号估计判决模块,所述信号估计判决模块还与自适应光衰减模块连接,所述单光子探测器上还连接有门控信号发生器;

所述光学接收天线用于采集接收大气中的光信号并耦合进光纤;

所述自适应光衰减模块用于改变衰减因子,使从光纤接收的光信号的光功率和背景光功率维持在单光子探测器的最佳响应范围内;

所述光滤波器用于对从自适应光衰减模块接收的光信号滤除通信波长之外的背景光;

所述门控信号发生器用于产生周期性的矩形脉冲驱动单光子探测器工作于门控模式;

所述单光子探测器用于对从光滤波器接收到的光信号进行检测并输出离散计数脉冲序列;

所述信号同步模块用于基于同步算法提取离散计数脉冲序列中的时隙同步和帧同步信号;

所述信号估计判决模块用于根据时隙同步和帧同步信号对时隙内的开门次数进行计数,并将结果反馈至自适应光衰减模块;

其中,自适应光衰减模块基于如上述所述自适应光衰减控制算法对计数值进行运算,获取最佳衰减因子并替换原衰减因子。

与现有技术相比,本发明所达到的有益效果:

本实施例提供了一种基于光子计数的无线光通信的光信号检测方法及接收装置,基于自适应光衰减控制算法,通过实时改变衰减因子,使入射信号光功率与背景光功率始终维持在单光子探测器的最佳响应范围之内,可有效提升系统的抗背景辐射噪声性能,为实现低成本的背景辐射噪声抑制技术提供了一种解决方案。

附图说明

图1是本发明实施例提供的一种适用于光子计数无线光通信的自适应接收装置的结构示意图;

图2是为经过自适应接收装置接收的系统误码率与直接接收的系统误码率对比图。

具体实施方式

下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。

实施例一:

本发明提供了一种基于光子计数的无线光通信的光信号检测方法,包括:

S1、光学接收天线采集接收大气中的光信号并耦合进光纤。

S2、自适应光衰减模块改变衰减因子,使从光纤接收的光信号的光功率和背景光功率维持在单光子探测器的最佳响应范围内。

自适应光衰减模块改变衰减因子包括:

S2.1、单光子探测器对从光滤波器接收到的光信号进行检测并输出离散计数脉冲序列。

S2.2、信号同步模块基于同步算法提取离散计数脉冲序列中的时隙同步和帧同步信号。

S2.3、信号估计判决模块根据时隙同步和帧同步信号对时隙内的开门次数进行计数。

S2.4、自适应光衰减模块基于自适应光衰减控制算法对计数值进行运算,获取最佳衰减因子并替换原衰减因子。

自适应光衰减控制算法包括:

S2.4.1、根据序列中每个时隙内的开门次数,获取每个判决门限Kth

判决门限Kth的计算公式如下:

其中,N为时隙内单光子探测器开门次数,M为单光子探测器阵列的像素个数,P00为检测“0”比特时不产生计数脉冲的概率、P01为检测“0”比特时产生计数脉冲的概率、P10为检测“1”比特时不产生计数脉冲的概率、P11为检测“1”比特时产生计数脉冲的概率。

P00、P01、P10和P11的公式如下:

其中,A为后脉冲效应拟合因子、Pap为单光子探测器的后脉冲概率、α为衰减因子,α的初始值为预设值,λ1与λ0分别为探测“1”比特与“0”比特时单次开门时间内产生的有效载流子数。

λ1与λ0的公式如下:

λ1=[PDEsb)+λd]ts

λ0=(PDEλbd)tg

其中,PDE为单光子探测器的光子探测效率、λs为信号光子到达速率、λb为背景光子到达速率、λd为暗载流子产生速率、tg为门宽,ts为开门时间。

S2.4.2、获取每个判决门限Kth对应的衰减因子,从而生成衰减因子搜索区间(0,α1],(α1,α2],……,(αk-1,αk]。

S2.4.3、通过计算衰减因子搜索区间边界上的误码率Pe(α),获取误码率序列Pe1),Pe2),……Pek)。

误码率Pe(α)的计算公式如下:

其中,N为时隙内单光子探测器开门次数,M为单光子探测器阵列的像素个数,A为后脉冲效应拟合因子、Pap为单光子探测器的后脉冲概率、α为衰减因子,α的初始值为预设值,λ1与λ0分别为探测“1”比特与“0”比特时单次开门时间内产生的有效载流子数,n表示序列数。

S2.4.4、通过比较得到最低误码率所对应的衰减因子αmin,其公式如下:

S2.4.5、将衰减因子αmin相邻的两个搜索区间(αmin-1,αmin],(αmin,αmin+1]定义为最佳衰减因子的搜索区间。

S2.4.6、基于凸优化理论,在搜索区间(αmin-1,αmin],(αmin,αmin+1]内运行梯度下降法搜索得到最佳衰减因子。

梯度下降法的步长迭代公式与收敛不等式如下:

αk+1=αk+βtΔα

其中,t取1,β取0.5,γ取0.2,

S3、光滤波器对从自适应光衰减模块接收的光信号滤除通信波长之外的背景光。

S4、单光子探测器对从光滤波器接收到的光信号进行检测,单光子探测器通过门控信号发生器产生周期性的矩形脉冲进行驱动并工作于门控模式。

实施例二:

如图1所示,本实施例提供了一种光子计数无线光通信的自适应接收装置,包括依次电性连接的光学接收天线、自适应光衰减模块、光滤波器、单光子探测器、信号同步模块以及信号估计判决模块,信号估计判决模块还与自适应光衰减模块连接,单光子探测器上还连接有门控信号发生器;

光学接收天线用于采集接收大气中的光信号并耦合进光纤;

自适应光衰减模块用于改变衰减因子,使从光纤接收的光信号的光功率和背景光功率维持在单光子探测器的最佳响应范围内;

光滤波器用于对从自适应光衰减模块接收的光信号滤除通信波长之外的背景光;

门控信号发生器用于产生周期性的矩形脉冲驱动单光子探测器工作于门控模式;

单光子探测器用于对从光滤波器接收到的光信号进行检测并输出离散计数脉冲序列;

信号同步模块用于基于同步算法提取离散计数脉冲序列中的时隙同步和帧同步信号;

信号估计判决模块用于根据时隙同步和帧同步信号对时隙内的开门次数进行计数,并将结果反馈至自适应光衰减模块;

其中,自适应光衰减模块基于如实施例一中自适应光衰减控制算法对计数值进行运算,获取最佳衰减因子并替换原衰减因子。

如图2所示,经过自适应光衰减模块调整后,系统误码性能显著提升。

本发明公开了,在无线光通信系统中,使用单光子探测器替代传统的雪崩光电二极管作为接收端探测器,利用光子计数技术进行光信号接收,是提高系统接收灵敏度的一种重要方式。但是,由于单光子探测器的高灵敏度,光子计数接收系统性能极易受到大气中背景辐射噪声的影响。其中,背景辐射噪声引起的单光子探测器饱和是抑制系统性能的重要因素。为了抑制背景辐射噪声的影响,使单光探测器工作在最佳入射功率范围,在光子计数接收系统中加入自适应光衰减模块。同时,采用一种新型的自适应光衰减控制算法,使自适应光衰减模块根据信号处理模块反馈的数据,实时调整衰减因子,使入射光功率始终维持在单光子探测器的最佳响应范围内。采用该装置和方法可有效抑制背景辐射噪声,提高光子计数无线光通信系统的误码性能。

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:光性能监测方法、电子设备及计算机可读存储介质

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!