生物样品中分析物和/或蛋白质的测量方法

文档序号:1191833 发布日期:2020-08-28 浏览:7次 >En<

阅读说明:本技术 生物样品中分析物和/或蛋白质的测量方法 (Method for measuring analytes and/or proteins in biological samples ) 是由 P.多赫蒂 K.基尔斯佩尔 G.法拉斯 M.V.耶拉米利 于 2019-01-09 设计创作,主要内容包括:本公开涉及用于测量生物样品中单独或与总蛋白质组合的分析物的方法。更具体地,本公开涉及使用单独或与蛋白沉淀试剂组合的一种或多种比色试剂测量分析物和/或总蛋白质的方法。(The present disclosure relates to methods for measuring an analyte in a biological sample, alone or in combination with total protein. More specifically, the present disclosure relates to methods of measuring analytes and/or total protein using one or more colorimetric reagents, alone or in combination with a protein precipitation reagent.)

生物样品中分析物和/或蛋白质的测量方法

相关申请的交叉引用

本申请要求2018年1月9日提交的美国临时专利申请第62/615,242号的优先权权益,其全部内容通过引用并入本文。

技术领域

本公开总体上涉及用于测量生物样品中分析物和/或总蛋白质的方法。更具体地,本公开涉及使用单独或与蛋白质沉淀试剂组合的一种或多种比色试剂以测量分析物和/或总蛋白质的方法。

背景技术

为了筛查多种健康状况,通常需要分析生物样品中一种或多种分析物的量,诸如红血球或白血球、钙离子、钾离子、氯离子、钠离子、葡萄糖、乳酸盐、肌酸酐、肌酸、尿素、尿酸、乙醇、白蛋白、碱性磷酸酶、胆固醇、丙酮酸、β-羟基丁酸酯、丙氨酸氨基转移酶、天冬氨酸氨基转移酶、乙酰胆碱酯酶等。除了测量特定的分析物外,它可能还有助于测量样品中总蛋白质的量。例如,测量总蛋白质可能有助于诊断肾脏疾病或急性肾损伤。分析生物样品中特定分析物和总蛋白质的浓度通常需要将样品送至实验室进行分析。这会导致样品处理工作增加、实验室结果的周转时间延长、特殊的运输要求以及增加的存储时间,进而可能导致细菌污染和/或细菌在样品中过度生长、关键蛋白质水平变化、铸件和细胞的降解、晶体的溶解或形成、样品pH值变化、样品的气味增加以及对样品的其他有害影响。

发明内容

因此,本发明人已经鉴定了对即时检验的需要,该即时检验可以有效、准确和成本有效地测量生物样品和其他样品中的分析物浓度、总蛋白质含量或其组合。

本公开的一个方面提供了测量样品中分析物或总蛋白质的浓度的方法。该方法包括使样品与比色试剂接触以获得经处理的样品。该方法还包括将包括光圈的照相机聚焦在经处理的样品上;将光圈打开足以从样品收集预定的光量的时间段;以及测量光圈打开的时间段。然后将光圈打开的时间段与样品中分析物或总蛋白质的浓度相关联。在某些实施方式中,该方法测量分析物的浓度。在某些实施方式中,该方法测量总蛋白质的浓度。

在本公开的测量样品中分析物或总蛋白质的浓度的方法的另一方面,该方法包括使样品与比色试剂接触以获得经处理的样品。该方法进一步包括将包括光圈的照相机聚焦在经处理的样品上;将光圈打开预定的时间段,其中光圈的尺寸足以从样品收集预定的光量;并测量光圈的大小。然后将光圈的大小与样品中分析物或总蛋白质的浓度相关联。在某些实施方式中,该方法测量分析物的浓度。在某些实施方式中,该方法测量总蛋白质的浓度。

本公开的一个方面提供了测量样品中总蛋白质浓度的方法。该方法包括使样品与蛋白质沉淀试剂接触以获得包括蛋白质沉淀的经处理的样品。该方法还包括通过照相机生成经处理的样品的图像,以及测量与图像中的蛋白质沉淀相关联的像素数。然后将像素数与标准曲线相关联,以获得样品中总蛋白质的浓度。

本公开的另一方面提供了测量样品中分析物和总蛋白质的浓度的方法。该方法包括使样品与比色试剂和蛋白质沉淀试剂接触,以获得包括蛋白质沉淀的经处理的样品。该方法还包括通过将包括光圈的照相机聚焦在经处理的样品上来测定经处理的样品中分析物的浓度;将光圈打开足以从经处理的样品收集预定的光量的时间段;测量光圈打开的时间段;使光圈打开的时间段与样品中分析物的浓度相关联。该方法进一步包括通过通过照相机生成经处理的样品的图像来测定总蛋白质的浓度;测量与图像中蛋白质沉淀相关联的像素数;使像素数与标准曲线相关联,得到样品中总蛋白质的浓度。

在本公开的测量样品中分析物和总蛋白质的浓度的方法的另一方面,该方法包括使样品与比色试剂和蛋白质沉淀试剂接触以获得包括蛋白质沉淀的经处理的样品。该方法还包括通过将包括光圈的照相机聚焦在经处理的样品上来测定经处理的样品中分析物的浓度;将光圈打开预定的时间段,其中光圈的尺寸足以从样品收集预定的光量;测量光圈的大小;使光圈的大小与样品中分析物的浓度相关联。该方法进一步包括通过通过照相机生成经处理的样品的图像来测定总蛋白质的浓度;测量与图像中蛋白质沉淀相关联的像素数;使像素数与标准曲线相关联,以获得样品中总蛋白质的浓度。

在本公开的测量样品中分析物和总蛋白质的浓度的方法的另一方面,该方法包括使样品与比色试剂和蛋白质沉淀试剂接触以获得包括蛋白质沉淀的经处理的样品。该方法进一步包括通过将照相机聚焦在经处理的样品上来测定经处理的样品中分析物的浓度;将光圈打开以从样品收集光量;测量所收集的光量的强度;使收集的光的强度与样品中分析物的浓度相关联。该方法进一步包括通过通过照相机生成经处理的样品的图像来测定总蛋白质的浓度;测量与图像中蛋白质沉淀相关的像素数;使像素数与标准曲线相关联,以获得样品中总蛋白质的浓度。

在本公开的方法的某些实施方式中,分析物可以选自钙离子、钾离子、氯离子、钠离子、葡萄糖、乳酸盐、肌酸酐、肌酸、尿素、尿酸、乙醇、白蛋白、碱性磷酸酶、胆固醇、丙酮酸、β-羟基丁酸酯、丙氨酸氨基转移酶、天冬氨酸氨基转移酶和乙酰胆碱酯酶。在本公开的方法的某些实施方式中,分析物可以是肌酸酐、葡萄糖、白蛋白或碱性磷酸酶。

在本公开的方法的某些实施方式中,比色试剂可以是2,4,6-三硝基苯酚和碱。在本公开的方法的某些实施方式中,比色试剂是3,5-二硝基苯甲酸甲酯,3,5-二硝基苯甲酸或3,5-二硝基苯甲酰氯,和碱或碱性缓冲液。在本公开的方法的某些实施方式中,比色试剂是包含铜离子、氢过氧化物和可氧化染料的试剂系统。在本发明方法的某些实施方式中,比色试剂包含3,5-二硝基苯甲酰氯。在本公开的方法的某些实施方式中,比色试剂可以是葡萄糖氧化酶、己糖激酶、碱性酒石酸铜、碱性铁氰化物和辣根过氧化物酶中的一种或多种。在本公开的方法的某些实施方式中,比色试剂可以是溴甲酚绿。在本公开的方法的某些实施方式中,比色试剂可以是包含5-溴-4-氯-3-吲哚磷酸酯(BCIP)和硝基四氮唑蓝(NBT)的试剂系统。在本公开的方法的某些实施方式中,比色试剂可包括邻苯二酚紫,苄索氯铵或邻苯三酚红。在本公开的方法的某些实施方式中,比色试剂可包含邻苯二酚紫。

在本公开的方法的某些实施方式中,比色试剂可包括一种或多种适合于免疫测定的试剂。例如,比色试剂可以包括一种或多种适用于酶联免疫吸附测定(ELISA)或酶增强免疫测定技术(EIMT)的分析物特异性抗体和/或酶。

在本公开的方法的某些实施方式中,蛋白质沉淀试剂可以是一种或多种与水混溶的溶剂(诸如醇,例如异丙醇、甲醇或乙醇,酮,例如丙酮、甲基乙基酮、甲基异丁基酮或环己酮,四氢呋喃);或蛋白质沉淀试剂为盐(诸如硫酸铵或包含多价金属离子的盐);或蛋白质沉淀试剂为三氯乙酸或三氯乙酸和丙酮;或者蛋白质沉淀试剂是聚合物(例如,非离子性亲水聚合物,诸如聚乙二醇和葡聚糖)。在本公开的方法的某些实施方式中,蛋白质沉淀试剂可以是水性表面活性剂。在本公开的方法的某些实施方式中,水性表面活性剂可以是苯扎氯铵或苄索氯铵。

在本公开的方法的某些实施方式中,样品可以是尿样。

在某些实施方式中,本公开的方法可以进一步包括使用从经处理的样品收集的预定的光量来生成经处理的样品的图像。在本公开的方法的某些实施方式中,可以从包含经处理的样品的载玻片成像经处理的样品。在本公开的方法的某些实施方式中,图像可以是黑白图像。

在某些实施方式中,本公开的方法可以进一步包括在用户界面上显示经处理的样品的图像。在本公开的方法的某些实施方式中,预定的光量可能足以测量来自经处理的样品的图像的蛋白质沉淀的量。在本公开的方法的某些实施方式中,预定的光量可以是恒定的。在本公开的方法的某些实施方式中,预定的光量可以由照相机的用户选择。在本公开的方法的某些实施方式中,照相机可以包括滤光器。在本公开的方法的某些实施方式中,滤光器可以被配置为使对应于由比色试剂与样品之间的反应产生的颜色的波长范围的波长通过。在本公开的方法的某些实施方式中,照相机可以包括自动曝光功能,并且其中测量光圈打开的时间段包括使用自动曝光功能来测定时间段。在本公开的方法的某些实施方式中,可以基于光圈尺寸和光的预定的光量中的至少一项来进行测定。

在本公开的方法的某些实施方式中,照相机可以包括传感器,并且其中将光圈打开足以从样品收集的预定的光量的时间段包括:将光圈打开;通过传感器检测照相机收集的光量;测定照相机收集的光量是否基本上等于预定的光量;在测定照相机已经收集了预定的光量之后,关闭光圈。

在本公开的方法的某些实施方式中,照相机可以包括传感器,并且其中将光圈打开足以从样品收集预定的光量的时间段包括:将光圈打开一段时间以从经处理的样品收集光量;关闭光圈;通过传感器测量从经处理的样品收集的光量;测定从经处理的样品收集的光量是否基本上等于预定的光量;如果从样品接收的光量基本上不等于预定的光量,则将光圈打开第二时间段,其中第二时间段不同于第一时间段;使光圈打开的第二时间段与预定的光量相关联,以获得样品中分析物或总蛋白质的浓度.

在本公开的方法的某些实施方式中,照相机可以包括自动曝光功能,并且其中测量光圈的尺寸包括使用自动曝光功能来测定光圈的尺寸。在本公开的方法的某些实施方式中,可以基于时间段和光的预定量中的至少一项来进行测定。

在本公开的方法的某些实施方式中,照相机可以包括传感器,并且其中将光圈打开一段时间包括:将光圈打开以从样品收集光量,其中光圈包括第一光圈尺寸;关闭光圈;通过传感器测量从经处理的样品收集的光量;测定从样品收集的光量是否基本上等于预定的光量;如果从样品接收的光量基本上不等于预定的光量,则将光圈打开第二时间段,其中光圈具有第二光圈尺寸,其中第二光圈尺寸与第一光圈尺寸不同;使光圈的第二光圈尺寸与预定的光量相关联,以获得样品中分析物或总蛋白质的浓度。在某些实施方式中,本公开的方法可以进一步包括至少基于样品中肌酸酐的浓度和样品中总蛋白质的浓度来测定样品的蛋白质:肌酸酐的比率。

在某些实施方式中,本公开的方法可以进一步包括至少基于样品中分析物和/或总蛋白质的浓度进行健康测定。

前述发明内容仅是说明性的,而不旨在以任何方式进行限制。除了上述说明性方面、实施方式和特征之外,通过参考附图和以下详细描述,其他方面、实施方式和特征将变得显而易见。

附图说明

图1是根据本公开的一个实施方式的方法的流程图。

图2是根据本公开的实施方式的照相机的局部示意图,该照相机将光圈打开以从样品收集光。

图3A是根据本公开的方法制备的六个样品等分试样的照片。在样品等分试样上注明了样品制备中使用的比色技术。在图中,Pro=总蛋白质,Cre=肌酸酐。

图3B是根据本公开的方法通过照相机生成的一系列实验图像。与每个图像相对应的快门速度显示于图像上方。

图4A示出了根据本公开的方法的一系列制备的样品的照片。

图4B是示出了实验样品中的肌酸酐量与根据本公开的方法测量的快门速度之间的关系的关联曲线。

图5是根据本公开的实施方式的方法的流程图。

图6A是根据本公开的方法通过照相机生成的一系列实验图像,并且示出了制备的样品中沉淀的蛋白质的量。

图6B是示出了实验样品中的蛋白质的量与根据本公开的方法所测量的蛋白质沉淀之间的关系的关联曲线。

图7是示出了根据本公开的实施方式的照相机和制备好的样品的图。

图8A是示出了实验样品中的葡萄糖量与从样品收集预定的光量所需的时间段之间的关系的关联曲线。

图8B是示出了实验样品中的白蛋白量与从样品收集预定的光量所需的时间段之间的关系的关联曲线。

图8C是示出了实验样品中的碱性磷酸酶量与从样品收集预定的光量所需的时间段之间的关系的关联曲线。

图9提供了根据本公开的方法处理的具有不同肌酸酐浓度的样品的图像。

图10是示出了实验样品中的蛋白质的量与根据本公开的方法测量的快门速度之间的关系的图。

图11A是根据本公开的实施方式的使用多元二次方程式测定样品中蛋白质的量的图。图11B是样品中的蛋白质的量与多个设备上的滑动窗口标准偏差图像特征之间的关系图。图11C是样品中的蛋白质的量与多个设备上的平均轮廓区域图像特征之间的关系图。图11D是根据本公开的实施方式的在单个设备上使用两个图像特征的多元二次回归的线性图。

图12A是根据本公开的实施方式的使用人工神经网络测定样品中的蛋白质的量的图。图12B是人工神经网络的结构图。x1是图像特征1,x2是图像特征2,xn是图像特征n。图12C是样品中的蛋白质的量与多个设备上的直方图滑动窗口标准偏差图像特征之间的关系图。图12D是根据本公开的实施方式的在多个设备上使用图像特征的神经网络训练的线性图。

具体实施方式

通常,所公开的材料、方法和设备提供了用于测量生物样品中分析物和/或总蛋白质浓度的改进。具体地,在本公开的某些实施方式中,使用消除了多种测试方法、广泛的样品处理、运输和存储的单个样品、单个图像和/或单个测定法来测量生物样品中的分析物和/或总蛋白质。可以及时在诊所进行测量,与传统方法相比,可以减少样品的变化。例如,与根据传统方法分析的样品相比,根据本公开的方法分析的样品可以具有更少的细菌污染和/或细菌过度生长,关键蛋白质水平的变化最小或没有变化,更少的铸件和细胞降解,更少的晶体溶解或形成,以及pH值、外观和/或气味的变化最小或没有变化。

如本文所用,术语“生物样品”通常是指来自人或动物的组织或液体的样品,包括但不限于全血,血浆,血清,脊髓液如脑脊髓液;淋巴液,腹腔液(腹水),皮肤外部,呼吸道、肠道和泌尿生殖道,眼泪,唾液,尿液,血细胞,肿瘤,器官,组织和体外细胞培养成分的样品。

如本文所用,术语“总蛋白质”是指样品中的所有蛋白质,包括任何尺寸的蛋白质片段。

在本公开的方法的各个方面,样品体积在约10μL至约500μL之间;例如,约10μL至约300μL,或约10μL至约200μL,或约10μL至约100μL,或约50μL至约300μL,或约50μL至约200μL,或约100μL至约500μL,或约100μL至约300μL,或约100μL至约200μL。在一些方面,本公开的方法比用于测量分析物、总蛋白质及其组合的传统方法需要更少的样品体积。

本公开的方法包括通过使生物样品与比色试剂接触以产生经处理的样品用于测定分析物和/或比色或蛋白质沉淀试剂以测定总蛋白质。取决于样品中分析物和/或总蛋白质的浓度,比色试剂与分析物和/或总蛋白质之间的反应可导致溶液改变颜色至不同的程度。可以通过照相机的光圈从样品收集光量来使用照相机来拍摄经处理的样品的图像,其中所收集的光量指示样品的颜色。

在某些实施方式中,无论样品的颜色如何,照相机都收集(或与照相机相关联的传感器收集)预定的光量。所收集的预定的光量可以实验测定,例如通过一个、两个、三个或更多个经验实验,以获得与样品中分析物或总蛋白质的浓度相关联的预定的光量的一个或多个值。预定的光量不应大于照相机可以接受的最大光量或小于照相机可以接受的最小光量。

照相机收集的光量可取决于曝光时间、光圈尺寸和照相机的其他特征。例如,使用带有CMOS光传感器和放大倍数为10x以及数字光圈为0.28的物镜的PL-D725MU-T USB 3.0照相机(PixelLINK),在约170ms至约180ms的曝光时间下可以从含有白蛋白的浓度为1mg/mL的样品收集预定的光量。该时间表示照相机的光圈打开以便将光收集到其他光收集装置的传感器上的时间量。因此,可以通过照相机的曝光时间或快门速度来定义预定的光量,而不是直接表示光量(例如,光子)的值。

在另一个实例中,使用带有CMOS光传感器和放大倍数为10x以及数字光圈为0.28的物镜的PL-D725MU-T USB 3.0照相机(PixelLINK),在约130ms至约140ms的曝光时间下可以从含有浓度为1mM的葡萄糖的样品收集预定的光量。在另一个实例中,使用上述PL-D725MU-T USB 3.0照相机,在约135ms至约145ms的曝光时间下可以从含有浓度为1μg/mL的碱性磷酸酶的样品收集预定的光量。

通过从每个样品收集预定量(即离散的)的光,无论样品的颜色如何,照相机都可以产生具有基本相同的曝光或亮度的图像或多个图像。因此,照相机设置(例如,快门速度和/或光圈尺寸)可以在图像之间变化,以在经处理的样品的每个图像中实现预定的曝光水平。可以测量这些照相机设置以指示经处理的样品的光学性质(例如,经处理的样品的比色强度)。例如,如果光圈尺寸保持恒定,则达到所需曝光水平所需的快门速度可能会根据经处理的样品的比色强度而变化。然后可以测量快门速度并将其与样品中分析物和/或总蛋白质的浓度相关联。相反,如果快门速度保持恒定,则可以测量达到预定曝光水平所需的光圈尺寸,并且可以将其与样品中分析物和/或总蛋白质的浓度相关联。通过生成具有预定曝光水平的图像,照相机可以被配置为产生样品的临床有用图像,而不管经处理的样品的比色强度如何。在某些实施方式中,该方法可用于测量分析物的浓度和/或总蛋白质的浓度,其中分析物的浓度用第一比色试剂测定,且总蛋白质的浓度可通过第二比色试剂测定。

因此,本公开的方法包括使样品与比色试剂接触以获得经处理的样品;将包括光圈的照相机聚焦在经处理的样品上;将光圈打开足以从样品收集预定的光量的时间段;测量时间段;并将时间段与样品中分析物或总蛋白质的浓度相关联。本公开的另一种方法包括使样品与比色试剂接触以获得经处理的样品;将包括光圈的照相机聚焦在经处理的样品上;将光圈打开预定的时间段,其中光圈的尺寸足以在预定的时间内从样品收集预定的光量;测量光圈的尺寸;使光圈的尺寸与样品中分析物或总蛋白质的浓度相关联。通过将时间或光圈的尺寸与标准曲线进行比较,可以将时间段或光圈的尺寸与分析物或总蛋白质的浓度进行关联。对于一系列浓度的样品中的分析物或总蛋白质,标准曲线可以表示时间量或照相机光圈的尺寸。

除了由样品的颜色强度而测量分析物或蛋白质的浓度之外,或者作为其替代方式,本公开的方法还包括通过使样品与蛋白沉淀试剂接触以获得包含蛋白质沉淀的经处理的样品来测量样品中总蛋白质的浓度。与蛋白质沉淀试剂反应后,蛋白质沉淀可能可见。总蛋白质浓度可以通过用照相机生成经处理的样品的图像并分析该图像来测量。图像分析可以包括,例如,测量与蛋白质沉淀(例如,与蛋白质沉淀小球或由蛋白质沉淀组成的图像区域)相关联的多个像素。然后可以将像素数与反映像素与蛋白质浓度之间的关联性的标准曲线进行比较,以获得样品中总蛋白质的浓度。与传统测试相比,该测试方法可以更快地进行,允许更大的动态范围、降低分析成本、和/或使用更少的试剂和材料。在本公开的一些实施方式中,使用照相机图像测量总蛋白质,而不测量另一种分析物。

本公开的方法可用于测量多种分析物的浓度,包括但不限于生物样品中可能存在的以下一种或多种化合物:钙离子、钾离子、氯离子、钠离子、葡萄糖、乳酸盐、肌酸酐、肌酸、尿素、尿酸、乙醇、白蛋白、碱性磷酸酶、胆固醇、丙酮酸、β-羟基丁酸酯、丙氨酸氨基转移酶、天冬氨酸氨基转移酶和乙酰胆碱酯酶。在一些实施方式中,分析物可以选自肌酸酐、葡萄糖、白蛋白和碱性磷酸酶中的一种或多种。

如上所述,本公开的方法包括使样品与比色试剂接触以获得如在图1的流程图中的方法100的步骤101所表示的经处理的样品。可以基于期望的应用和要测量的分析物类型选择比色试剂。例如,用于测量肌酸酐的比色试剂包括但不限于以下一种或多种:(1)2,4,6-三硝基苯酚和碱性缓冲液的碱,(2)3,5-二硝基苯甲酸甲酯,3,5-二硝基苯甲酸或3,5-二硝基苯甲酰氯,和碱或碱性缓冲液,以及(3)包括铜离子、氢过氧化物和可氧化染料的试剂体系。例如,用于测量葡萄糖的比色试剂包括但不限于葡萄糖氧化酶、己糖激酶、碱性酒石酸铜、碱性铁氰化物和辣根过氧化物酶中的一种或多种。例如,用于测量白蛋白的比色试剂包括但不限于溴甲酚绿。例如,用于测量碱性磷酸酶的比色试剂包括但不限于5-溴-4-氯-3-吲哚磷酸酯(BCIP)和硝基四氮唑蓝(NBT)系统。例如,用于测量总蛋白质的比色试剂包括但不限于邻苯二酚紫、苄索氯铵和邻苯三酚红。在本公开的方法的某些实施方式中,比色试剂可以包括一种或多种适合于免疫测定的试剂。例如,比色试剂可以包括一种或多种适用于酶联免疫吸附测定(ELISA)或酶增强免疫测定技术(EIMT)的分析物特异性抗体和/或酶。

在本公开的某些实施方式中,比色试剂可包括两种或更多种组分(例如,除了2,4,6-三硝基苯酚外的碱或碱性缓冲液)。在某些实施方式中,可以将这些组分分别地和顺序地添加到样品中。例如,样品可以首先与碱接触,然后与2,4,6-三硝基苯酚接触。在某些实施方式中,比色试剂的组分可以同时与样品接触。例如,在接触样品之前,可以将3,5-二硝基苯甲酸或3,5-二硝基苯甲酰氯溶解在碱性缓冲液中。

可以基于期望的应用和要测量的分析物类型以特定的体积添加在本公开的方法中使用的比色试剂。例如,比色试剂的体积在约1μL至约500μL之间;例如;例如,约1μL至约300μL,或约1μL至约200μL,或约1μL至约100μL,或约1μL至约50μL,或约50μL至约300μL,或约50μL至约200μL,或约100μL至约500μL,或约100μL至约300μL,或约100μL至约200μL。

可以基于期望的应用并且还基于样品中要测量的分析物类型来选择用于本公开的方法中的蛋白质沉淀试剂,所述样品还被分析来获得蛋白质浓度(例如,可以选择蛋白质沉淀试剂以便减少该试剂与分析物和比色试剂反应之间的干扰)。例如,蛋白质沉淀试剂包括但不限于以下的一种或多种,与水混溶的溶剂(诸如醇,例如异丙醇、甲醇或乙醇,酮,例如丙酮、甲基乙基酮,甲基异丁基酮或环己酮,四氢呋喃),盐(诸如硫酸铵或包含多价金属离子的盐),三氯乙酸(单独或与丙酮结合),聚合物(例如非离子性亲水聚合物,诸如聚乙二醇和葡聚糖),水性表面活性剂,苯扎氯铵,苄索氯铵及其任何组合。

蛋白质沉淀试剂可以基于期望的应用以特定的体积添加。例如,在本公开的方法的某些实施方式中,蛋白质沉淀试剂的体积在约1μL至约500μL之间;例如,约1μL至约300μL,或约1μL至约200μL,或约1μL至约100μL,或约1μL至约50μL,或约50μL至约300μL,或约50μL至约200μL,或约100μL至约500μL,或约100μL至约300μL,或约100μL至约200μL。

如上所述,本公开的方法包括将包含光圈的照相机聚焦在经处理的样品上,如图1所示的方法100的步骤102所示。该照相机可以是具有光圈的任何设备,当打开时,该光圈可以从经处理的样品收集光(即拍摄样品的图像)。照相机可以包括各种成像系统。在某些实施方式中,照相机可以包括台式成像平台,该台式成像平台被配置为对悬浮在盒或载玻片中的生物样品成像。在特定的实施方式中,照相机可以与尿液或血液沉积物分析仪相关联,例如,SEDIVUETM DXTM尿液沉积物分析仪(IDEXX Laboratories,Inc.,Westbrook,ME)。在这样的实施方式中,可以将经处理的样品移液或以其他方式直接分配到设置在系统的入口端中的盒中。在其他实施方式中,可以从包括经处理的样品的载玻片对经处理的样品成像,并且该方法可以包括将载玻片、盒或包括经处理的样品的另一个容器***成像系统的入口端中。

在某些其他实施方式中,照相机可以是数字照相机、照相机电话或另一便携式设备,并且将照相机聚焦在经处理的样本上可以包括将照相机定位成面向样品。在使用便携式设备的情况下,支架、三脚架、电枢或其他支撑件可配置为将照相机定位在相对于经处理的样品的特定位置以对样品成像(即从样品收集预定的光量)。对这样的照相机进行聚焦可以包括经由照相机的用户界面手动地控制聚焦,使得经处理的样品在照相机的聚焦范围内。另外地或可替代地,对照相机进行聚焦可以包括使用照相机的自动聚焦功能来在经处理的样品上进行聚焦。照相机的这种自动聚焦功能可以使用传感器来检测经处理的样品与照相机之间的距离,并调节照相机的聚焦,以使得经处理的样品在照相机的聚焦范围内。

如上所述,本公开的方法包括将光圈打开一段时间,该时间段足以从样品收集预定的光量,如图1中方法100的步骤103所示。图2进一步示出了示例照相机210的简化示意图,该示例照相机210的特征为具有用于从样品290接受光260的光圈220和光传感器230。当光圈220打开时,来自样品290的光260可以进入照相机210,从而接触光传感器230。光接触传感器可以用于分析样品290的视觉特性,以产生样品的图像,或进行某种其他类型的处理。

光圈220可包括任何开口,照相机210可通过该开口在一段时间内收集光260以测定样品的颜色或光强度,或生成制备的样品290的图像。例如,光圈220可包括照相机210的快门,其将光传感器230暴露于来自样品290的光360一段时间(即,与快门速度相对应的时间)。光圈220的尺寸可以是固定的,例如由照相机210的制造商设定,以使得每次将光圈打开时其尺寸基本相同。例如,数字光圈220可以在大约0.025至大约0.5,或大约0.03至大约0.5,或大约0.025至大约0.25,或大约0.03至大约0.25,或大约0.03至大约0.5,或大约0.05至约0.25,或约0.05至约0.5,或约0.1至约0.25,或约0.1至约0.5的范围内。

在光圈大小恒定的本公开的实施方式中,由照相机210通过光圈220收集的光260的量可以主要取决于光圈打开的时间段。在替代实施方式中,光圈220的尺寸可以是可调节的,以允许经由光圈进入照相机210的较高或较低的光260的流率,并且将光圈打开可以包括选择或测定光圈的尺寸。光圈尺寸可以由照相机210的用户例如通过照相机的用户界面手动选择。可替代地,光圈尺寸可以由照相机210通过照相机的自动曝光(“autoexposure”)功能来测定。

将光圈220打开足以收集预定的光量260的时间段可以允许照相机拍摄样品的图像。该方法可以包括使用从经处理的样品收集的光的量(诸如预定量)来生成制备的样品290的图像。照相机210生成的图像可以包括全色图像、黑白图像或适合于测量经处理的样品中的分析物和/或蛋白质的任何其他图像。替代地,可以由诸如电荷耦合器件(CCD)、有源像素传感器(APS)、互补金属氧化物半导体(CMOS)、Foveon X3传感器或其他传感器之类的光传感器230以数字方式产生图像。在这样的实施方式中,该方法可以包括在光传感器230上检测所收集的光260和/或将入射光转换成电信号。在一些示例中,这样的光传感器230可以检测入射光260,并将其记录为一系列像素,表示在成像的制备好的样品上的离散点。这样的像素可以对特定波长或波长范围的光选择性地敏感。例如,可以将像素细分为分别选择性地收集与绿色、红色和蓝色相对应的波长的光的像素。替代地,这样的像素可以对传感器敏感的波长范围内的所有收集的光敏感(即,产生黑白图像)。光传感器230可以测量由照相机210的每个像素收集的光的波长和/或光量,并将其以值的阵列存储在照相机的存储器或数据存储装置中。在特定示例中,每个像素可以包括与像素处所收集的光260的量,入射光的平均强度、亮度、着色或另一特性相对应的数字值。该方法可以进一步包括在与照相机通信的用户界面上显示经处理的样品的图像。另外地或替代地,可以将图像和/或关联信息发送到远程计算设备,诸如服务器、手机、计算机或另一外部设备。

如本文所述,预定的光量表示由照相机收集以产生具有预定亮度或曝光的图像的光量。可以根据照相机的光传感器上的入射光量,通过将入射光转换成电信号而产生的电压,所产生的图像的亮度或光学性质,或通过其他一些方式来指定预定的光量。由照相机210收集的预定的光量260可以是恒定的,使得每次将光圈打开220时都产生均匀曝光和/或亮度的图像。预定的光量260可能受到照相机或成像系统的各种元件的影响。例如,预定的光量可以与透镜、光圈、光传感器或照相机的其他元件有关。可以基于产生经处理的样品290的临床上有用的图像所需的光量来选择预定的光量260。

在其中测量蛋白质沉淀的量的实施方式中,预定的光量260可能足以从经处理的样品的图像测量蛋白质沉淀的量(例如,通过视觉检查经处理的样品的图像),通过计数与蛋白质沉淀(例如,蛋白质沉淀小球或包含蛋白质沉淀的图像区域)相关的像素数,和/或通过使用程序、算法或其他一些方法处理图像。在另一个实施方式中,可基于由经处理的样品290的图像的亮度直方图根据由照相机210生成的图像中的期望的曝光水平、亮度、对比度或强度来测定预定的光量260。

预定的光量260可以由照相机210的用户通过照相机210的用户界面来选择,并且该方法可以包括输入预定的光量。预定的光量260可以由用户选择或调节,以确保图像的清晰度和/或便于图像的后处理。另外地或可替代地,可以使用照相机210的自动曝光(“autoexposure”)功能来测定最佳的或在临床上有用的曝光水平。这种自动曝光功能可以使用算法,该算法使用关于制备好的样品290的信息和/或照相机210的设置以测定相机应收集以产生临床有用图像的光量260。例如,可以基于制备好的样品290的平均亮度、制备号的样品的亮度直方图、制备好的样品的高光和弱光的识别和/或平衡,或一些其他方法来测定预定的光量260。

对于给定的样品,照相机210通过光圈220收集的光量260(即照相机产生的图像的曝光水平)通常受两个照相机设置的影响:光圈220的尺寸和光圈打开的时间段。取决于经处理的样品290的光学特性,可能需要更大或更小的光圈尺寸和/或更长或更短的光圈220的打开时间以从样品收集预定的光量。例如,如果一个样品比另一个样品更暗,则与较亮的样品相比,将需要更大的光圈尺寸和/或更长的快门速度来收集相同量的光260。

在一个实施方式中,本公开的方法包括测量光圈打开的时间段,以便收集预定的光量,如图1中的方法100的步骤104所示。在一些实施方式中,在生成经处理的样品的图像之前,可以使用照相机的自动曝光功能来测定各种照相机设置。在与自动曝光功能可以使用样品的光学特性来测定最佳曝光水平的类似方式中,自动曝光功能也可以用于测定适当的照相机设置以达到预定的曝光水平。在一些实施方式中,自动曝光功能使用照相机的光传感器来评估经处理的样品的光学特性,并在将光圈打开之前测定照相机的适当快门速度。自动曝光功能还可在测定应将光圈打开的时间段时使用与预定光量和/或光圈尺寸有关的信息。

在本公开的另一个实施方式中,照相机可以包括实时测量收集的光的传感器,使得当已经收集到预定的光量时,照相机可以通过关闭光圈来主动做出响应。因此,这样的实施方式可以包括:(i)将光圈打开;(ii)通过传感器检测照相机收集的光量;(iii)测定照相机收集的光量是否基本上等于预定的光量;(iv)在测定照相机已经收集了预定的光量之后关闭光圈。另外,传感器可以对适用于特定应用的任何波长范围敏感或选择性敏感。这样的传感器可以连续地测量进入光圈的光量,或者可以在光圈打开之后的多个离散时间点测量通过光圈收集的光量,以便间歇地测量收集的光量。当传感器测定已经通过光圈收集了预定的光量时,传感器可以被配置为通过控制器、开关、机械部件或照相机的其他元件来关闭光圈。

在又一个实施方式中,可以将光圈打开多次(即,生成多个图像)。在照相机缺乏自动曝光功能或无法测定在光圈的第一次打开期间收集预定的光量所需的时间段或光圈尺寸的情况下,这可能是特别理想的。在特定实施方式中,照相机可以打开其光圈以拍摄样品的初步第一图像,然后使用关于第一图像的信息来调节照相机设置用于第二图像或后续图像。在这样的实施方式中,将光圈打开可以包括:将光圈打开一段时间以从经处理的样品收集光量;测量从经处理的样品收集的光量;测定从经处理的样品收集的光量是否基本上等于预定光量;如果从样品接收的光量基本上不等于预定光量,则将光圈打开第二时间段,其中第二时间段不同于第一时间段;使光圈打开的第二时间段与预定的光量相关联,以获得样品中分析物或总蛋白质的浓度。可以基于对在光圈的第一次打开期间从样品收集的光量的分析来测定第二时间段。例如,照相机可以使用使光圈打开的时间段和从经处理的样品收集的光量相关联的算法,并且该方法可以进一步包括基于第一时间段和第一收集的光量来测定第二时间段,该第二时间段将允许照相机从样品收集预定的光量。

在一些实施方式中,照相机可以使用迭代方法来收集预定的光量。在这种情况下,光圈可以被打开多次,其中每个连续的时间段都不同于先前的时间段。光圈打开的时间段可以迭代地增加或减少预定的时间量(即,迭代的“步”)。另外地或可替代地,可以使用算法来测定光圈打开的时间段内迭代变化的大小和/或方向。这可以允许照相机拍摄连续的图像渐进预定的光量。

另外地或可替代地,照相机可以多次将光圈打开不同的时间段,以在一定曝光水平范围内拍摄图像。照相机产生的多个图像可以进行后处理以测定哪个图像是用预定的光量产生的。在这样的实施方式中,测量光圈打开的时间段可以包括测量多个图像的亮度、颜色或其他特性,以及从多个图像中选择最接近预定曝光水平的图像(例如,经由收集预定的光量产生的图像)。与该图像相关联的光圈打开的时间段然后可以用于使快门速度与样品中分析物或总蛋白质的浓度相关联。

所测量的时间段可以用于量化经处理的样品中的分析物或总蛋白质的浓度。在一些实施方式中,所测量的时间段可以显示在照相机的显示器或用户界面上。在其他实施方式中,可以将所测量的时间段和/或快门速度传输到计算设备、存储器、远程计算机、服务器或其他系统,以用于例如进一步的分析、处理或关联。

在一些实施方式中,本公开的方法还包括使光圈打开的时间段与预定的光量相关,以获得样品中分析物或总蛋白质的浓度。在图1中的方法100的步骤105中示出了一个这样的实施方式。如先前关于步骤101所描述的,可以使样品与比色试剂接触以获得经处理的样品,该样品可以表现出不同的着色度,这取决于样品中存在的目标分析物或总蛋白质的浓度。例如,示出了三个样品,其中包含比色试剂而没有肌酸酐,以及三个经处理的样品,其中包含比色试剂和2000mg/dL的蛋白质以及1000mg/dL的肌酸酐。使用本公开的方法,可以通过测量样品的着色、亮度、彩度、强度、不透明度或其他光学性质,例如通过拍摄经处理的样品的图像来估计经处理的样品中肌酸酐或总蛋白质的浓度。

在本公开的某些实施方式中,如果所产生的图像的光学特性是预定的(例如,收集均匀量的光以产生每个图像),则测量产生这种图像的各种照相机设置可以允许用户估计样品中分析物或总蛋白质的浓度。例如,代替使用相同的照相机设置来拍摄不同着色的图像(其中图像的着色指示样品中分析物或总蛋白质的浓度),可以从不同的样品拍摄相同的图像,且用于实现相同的图像的照相机设置可能表示分析物或总蛋白质的浓度。在一个示例中,在测量快门速度的同时,图像曝光(即,从样品收集的光量)可以保持恒定。测量光圈打开的时间段(如快门速度所反映)可用于测定经处理的样品中分析物或总蛋白质的浓度。

图3B示出了通过从图3A所示的六个样品收集预定的光量而生成的六个图像。代表图3A样品的每个图像都位于图3B中的相应位置(即,图3B中的左上方图像对应于图3A中的左上方样品,依此类推)。如图所示,尽管样品中观察到了着色差异,但通过照相机产生的六个图像看起来基本上具有相同的颜色、亮度和/或曝光。这是因为照相机为每个图像将光圈打开不同时间段(如图所示为568、436、252、782、1224和598毫秒),以便产生相同颜色和/或曝光的图像无论原始样品颜色如何。

本领域技术人员将认识到,光圈打开的时间段将根据照相机和待成像的经处理样品的特性而变化。例如,在本公开的方法的某些实施方式中,时间段可以在约0.1ms至约10秒的范围内,例如,在约0.1ms至约5s之间,或约0.1ms至约1s之间,约1ms至约10s,或约1ms至约5s,或约10ms至约10s,或约10ms至约5s,或约100ms至约10s,或约100ms至约1s。

图4A示出了通过照相机生成的用于另一系列经处理的样品的样品图像,该另一系列经处理的样品包括比色试剂和已知量的范围为0至2000mg/dL的肌酸酐。像图3B中的图像一样,这些图像是通过从样品收集预定的光量而拍摄的,因此产生颜色和/或曝光基本上相同的图像。从图像中可以明显看出,包含更多分析物(在这种情况下为肌酸酐)的样品较暗,因此需要将光圈打开更长的时间段以收集预定的光量。如图4B所示,可以将照相机测得的快门速度与样品中肌酸酐的量相关联,这代表了反映样品中分析物的量与快门速度之间关系的标准曲线,照相机以所述快门速度从样品收集预定的光量。

在一些实施方式中,使光圈打开的时间段与预定的光量相关联可以包括进行回归分析。在这样的实施方式中,可以进行初步测试,并且可以绘制分析物的已知浓度与快门速度,或者总蛋白质和快门速度之间的实验关系。回归线可用于估计与两个变量相关的回归函数,使得可以基于回归函数解释后续的实验数据。在这样的实施方式中,使光圈打开的时间段与预定的光量相关联以获得样品中分析物或总蛋白质的浓度可以包括使用回归函数来估计样品中分析物或总蛋白质的浓度。

在其他实施方式中,与照相机相关联的计算设备、控制器、处理器、服务器或其他计算单元的存储器可以包括将快门速度与预定的光量相关联的数据,以获得分析物或总蛋白质的浓度(例如,一个存储的回归函数)。在这样的实施方式中,使光圈打开的时间段与预定的光量相关联可以包括通过计算装置测定分析物或总蛋白质的浓度。可以基于分析物的种类、比色试剂的种类和/或所测量的光圈打开的时间段中的至少一种来进行这种测定。也可以基于蛋白质含量、比色试剂的种类和/或所测量的光圈打开的时间段来进行这种测定。在测定分析物或总蛋白质的浓度之后,该量可以显示在显示器,或照相机或与照相机相关联的设备的用户界面上。在其他实施方式中,分析物或总蛋白质的浓度可被传输到计算设备、处理器、照相机的存储器、计算设备的存储器或远程计算机,服务器或其他系统用于进一步分析、处理或诊断。

如以上参考图1中表示的方法100所解释的,在一些实施方式中,照相机的光圈的尺寸可以保持恒定,并且将光圈打开可以包括将光圈打开足以收集预定的光量的时间段。测量制备好的样品中分析物或总蛋白质的浓度然后可以包括测量光圈打开以收集预定的光量的时间段。然后,可以将所测量的时间段与预定的光量相关联,以获得样品中分析物总蛋白质的浓度。

在另一个实施方式中,光圈打开的时间段(即快门速度)可以保持恒定。在这样的实施方式中,可以针对每个图像改变光圈的尺寸,并且可以测量光圈的尺寸以测定样品中分析物或总蛋白质的浓度。例如,该时间段可以在约0.1ms至约10秒的范围内,例如在约0.1ms至约5s之间,或约0.1ms至约1s之间,或约1ms至约10s,或约1ms至约5s之间,或约10ms至约10s之间,或约10ms至约5s之间,或约100ms至约10s之间,或约100ms至约1s之间。在这些实施方式中,当数字光圈在例如约0.01至约0.99之间,约0.055至0.9之间或约0.1至0.5之间时,预定的光量。

图5示出了用于测量样品中分析物的浓度和/或总蛋白质浓度的这种方法500的流程图。

如上所述,方法500的步骤501和502可以包括与方法100的步骤101和102相似的步骤。在一些实施方式中,样品与比色试剂(101、501)的接触和照相机(102、502)的聚焦可以与方法100中基本相同地执行。方法500可以进一步包括将光圈打开离散的时间段,其中光圈尺寸与样品中分析物或总蛋白质的浓度有关。例如,步骤503包括将光圈打开预定的时间段,其中光圈的尺寸足以从样品收集预定的光量。然后,如步骤504所示,可以测量允许照相机在光圈打开的时间段内收集预定的光量的光圈尺寸。

如先前关于快门速度所述,可以通过自动曝光功能来测定最佳光圈尺寸(即,允许照相机在预定时间段内收集预定的光量的光圈尺寸)。在这样的实施方式中,将光圈打开一段时间可以包括使用自动曝光功能来将光圈打开,使得光圈的尺寸足以从样品收集预定的光量。因此,测量光圈的尺寸可以包括使用自动曝光功能来测定光圈的尺寸。如前所述,这种测定可以基于经处理的样品的光学特性和/或时间段和预定光量中的至少一项。

另外地或可替代地,涉及测量光圈尺寸的方法可以包括拍摄多个图像以收集预定的光量。在一些实施方式中,照相机可以包括传感器,并且该方法可以包括:(i)将光圈打开以从样品收集光量,其中光圈包括第一光圈尺寸;(ii)关闭光圈;(iii)测量传感器从经处理的样品收集的光量;(iv)测定从样品收集的光量是否基本上等于预定的光量;(v)如果从样品接收的光量基本上不等于预定光量,则将光圈打开第二时间段,其中光圈具有第二光圈尺寸,其中第二光圈尺寸与第一光圈尺寸不同;(vi)使光圈的第二光圈尺寸与样品中分析物或总蛋白质的浓度相关联。这样的方法可以使用光圈的第一开口来引导第二或随后的光圈开口,使用算法、迭代方法、关于快门速度所描述的任何方法或一些其他方法。

方法500可以包括将光圈的尺寸与样品中分析物或总蛋白质的浓度相关联,如步骤505中所示。将光圈的尺寸与分析物或总蛋白质的量相关联可以包括比较测量的光圈尺寸与标准曲线,以估计分析物或总蛋白质的量。可以生成这样的标准曲线,对一系列包含已知量的分析物或总蛋白质的样品进行成像,并绘制每个样品相对于已知浓度的测量光圈尺寸。如前所述,可以使用回归线来估计与两个变量相关的回归函数,从而可以基于与例如测量的光圈尺寸和分析物或总蛋白质浓度有关的回归函数来解释后续的实验数据。

在一些实施方式中,方法100和500可以包括测定样品中分析物和总蛋白质的浓度。样品中总蛋白质的量可以通过分析样品的图像来估计,例如,当照相机收集光以测量分析物浓度时生成的图像。该方法可以包括通过照相机生成经处理的样品的图像(步骤106和506);测量与图像中的蛋白质沉淀相关的像素数(步骤107和507);将像素数与标准曲线相关联以获得样品中总蛋白质的浓度(步骤108和508)。

在一个实施方式中,测量蛋白质沉淀的量包括对通过照相机生成的经处理的样品的图像进行视觉分析。例如,当打开照相机的光圈以收集先前测定的光量时,可以在该方法的先前步骤期间生成经处理的样品的图像。如前所述,可以通过收集光并使用照相机的光传感器将其记录为图像来生成图像。

蛋白质沉淀的图像可能包括沉淀蛋白质小球,根据样品中蛋白质的浓度,这些小球可能会以不同的量出现在图像中。图6A示出了含有0-1000mg/dL蛋白质的经处理的样品的实验图像。如图6A中所见,蛋白质可能是肉眼可见的,并且以中断的形式出现在原本均匀曝光或着色的图像中。在一些实施方式中,蛋白质沉淀的图像,诸如图6A中看到的图像,可以是用于测量分析物浓度的相同图像(即,当从样品收集预定的光量时产生的图像)。另外地或可替代地,可以生成单独的图像用于蛋白质定量,并且该方法可以包括将光圈打开以从经处理的样品收集第二量的光和/或生成经处理的样品的图像。

该方法可以包括处理蛋白质沉淀的图像。在一些实施方式中,蛋白质沉淀的图像可以进行后处理以增加图像的清晰度、增加对比度、增加聚焦或促进蛋白质的定量。例如,照相机可以耦合到计算设备或与之通信,该计算设备包括控制器、处理器、存储器或其他组件。后处理可以包括使用计算设备上的图像处理程序,或者执行存储在计算设备的存储器中的指令。另外地或可替代地,图像的方面可以由照相机的用户通过与照相机或相关联的计算设备的用户界面进行交互来手动调节。

在某些情况下,视觉分析可用于量化样品中蛋白质沉淀的量。在一个实施方式中,该方法可以包括对由照相机产生的图像进行肉眼分析以测量样品中蛋白质沉淀的浓度。例如,该方法的用户可以查看图像并计数沉淀的蛋白质小球,估计包含蛋白质沉淀的图像区域,或进行一些其他肉眼分析。

在一些实施方式中,算法、程序或软件可用于定量经处理的样品中的蛋白质沉淀。在一些实施方式中,耦合到照相机或与照相机通信的计算设备执行指令(例如,存储在计算设备的存储器中的指令),以便测量经处理的样品中蛋白质沉淀的量。这样的指令可以由计算设备的处理器执行,以使以上关于裸眼技术描述的测量的一部分自动化。例如,指令可以被配置为通过测量或测定与蛋白质沉淀相关联的像素数(例如,对应于蛋白质沉淀小球或包含蛋白质沉淀的图像区域)来测量经处理的样品中蛋白质沉淀的量。另外地或可替代地,指令可以使计算设备通过测量包括蛋白质沉淀的经处理的样品的图像的面积来测量经处理的样品中蛋白质沉淀的量。测量包括蛋白质沉淀的区域可以包括测定与蛋白质沉淀有关的图像的像素数。将蛋白质沉淀与图像的背景区分开可以包括分析与像素相关联的数值。例如,图像中的每个像素可以包括对应于所收集的光的量,强度、亮度、着色、灰度等级或该像素的其他光学特性的值(例如,8位图像中的像素可以是由0到255之间的数字表示,其中0对应于黑色,0对应于白色)。在特定示例中,可以设置阈值,使得具有高于阈值的值的像素被认为包括蛋白质沉淀,而具有低于阈值的值的像素被认为是背景。在这种情况下,测定与蛋白质沉淀有关的像素数可以包括测定高于或低于某个阈值的像素数。

另外地或可替代地,可以通过测定产生的图像的同质性来测量沉淀的蛋白质。异质性更高(即,同质性较低)的图像可以代表更大量的沉淀蛋白质,而同质性图像可以表示较少量的蛋白质。在这样的示例中,可以通过分析与图像中的每个像素相关联的数值(例如,如上所述,与所收集的光相关联的值)来测定图像的同质性。在特定示例中,测定图像的同质性可以包括计算与图像中的每个像素相关联的值的标准偏差,其中较高的标准偏差可能是较大量的沉淀蛋白质的结果(反之亦然)。

图6B示出了样品中蛋白质的浓度与经处理的样品的图像中蛋白质沉淀的测量量之间的关系图。如图6B所示,“响应”与图像的同质性有关,如先前所述的方法所测定的。使用图像分析软件测定经处理的样品中蛋白质沉淀的量,该软件计算图像的同质性(即响应),并将同质性与成像样品中的蛋白质的量相关联。在某些情况下,将经处理的样品中蛋白质沉淀的量与样品中蛋白质浓度相关联可以包括进行回归分析。在这种情况下,可以进行初步测试,并可以绘制已知浓度的蛋白质与样品图像中沉淀物之间的实验关系。回归线可用于估计与两个变量相关的回归函数,使得可以基于回归函数解释后续的实验数据。在这样的实施方式中,使经处理的样品中的蛋白质沉淀的量与样品中的蛋白质的量相关联可以包括使用回归函数来估计样品中的蛋白质的量。

在本公开的一些实施方式中,使用图11A中提供的多元二次方程式将经处理的样品中的蛋白质沉淀的量与样品中的蛋白质的量相关联。在步骤1中从样品内的不同位置获取蛋白质沉淀的多个图像。然后在步骤2中,通过提取图像中蛋白质沉淀特征的大量图像处理管线对图像进行处理。在某些实施方式中,图像处理管线可以包括传感器噪声校准、对比度和边缘增强、边缘和轮廓检测、轮廓区域、傅立叶变换和/或标准偏差。在步骤3中,使用多元二次方程式将通过图像处理管道提取的特征与蛋白质相关联,如下所示:

其中x1是图像特征1;x2是图像特征2;xn是图像特征n。

图11B示出了在多个装置上的样品中蛋白质的浓度与滑动窗口标准偏差图像特征之间的关系图。图11C示出了多个装置上的样品中蛋白质的浓度与平均轮廓区域图像特征之间的关系图。图11D示出了对两个图像特征执行多元二次回归后,单个设备的线性图。

在本公开的一些实施方式中,使用如图12A中提供的人工神经网络,将经处理的样品中的蛋白质沉淀的量与样品中的蛋白质的量相关联。在步骤1中从样品内的不同位置获取蛋白质沉淀的多个图像。然后在步骤2中,通过提取图像中蛋白质沉淀物特征的大量图像处理管线对图像进行处理。在某些实施方式中,图像处理管线可以包括传感器噪声校准、对比度增强和/或傅里叶变换和/或标准偏差的直方图。在步骤3中,使用人工神经网络将通过图像处理管道提取的特征与蛋白质相关联。人工神经网络的结构在图12B中提供(其中x1是图像特征1,x2是图像特征2,xn是图像特征n)。图12C示出了在多个装置上的样品中蛋白质的浓度与直方图滑动窗口标准偏差图像特征之间的关系图;且图12D示出了对图像特征训练神经网络之后多个设备的线性图。

在其他情况下,与照相机相关联的计算设备、控制器、处理器、服务器或其他计算单元可以包括将经处理的样品中的蛋白质沉淀的浓度与样品中的蛋白质的量相关的数据。在这样的实施方式中,使图像中的蛋白质沉淀的量与样品中的蛋白质的量相关联可以包括通过计算装置测定蛋白质的量。可以基于与图像中计数的蛋白质沉淀相关联的像素数中的至少一个来做出这种测定,所测量的区域包括图像中的沉淀蛋白质。在测定蛋白质的浓度之后,方法100和500可以包括在照相机或与照相机相关联的设备的显示器或用户界面上显示浓度。在其他实施方式中,蛋白质的浓度可以被传输到计算设备、处理器、照相机的存储器或远程计算机,传输到服务器或其他系统用于例如进一步的分析、处理或诊断。

在一些实施方式中,方法100和500还包括至少基于所测定的样品中分析物和/或蛋白质的浓度来测定用户的健康状况。在一些情况下,与照相机通信的计算设备(例如,计算机、服务器、处理器或控制器)可以使用所测定的分析物和/或蛋白质的浓度来测定健康状况,诊断疾病,表达危险因素,或提供有关患者健康的一些其他信息。在一个实施方式中,蛋白质和分析物的量的关系(例如,比率)可以指示健康状况,并且测定健康状况可以包括测定分析物和肌酸酐的关系是高于还是低于阈值水平。在一个特定的实施方式中,分析物可以是肌酸酐,并且方法100和500可以包括测定样品的尿蛋白:肌酸酐比率(“UPC比率”)。在这种情况下,诊断健康状况(例如蛋白尿)可以包括测定UPC比率是高于还是低于阈值。本领域普通技术人员可以预见其他健康状况和分析。

图1和图6中所示的示例方法100和500意在作为说明性的非限制性示例。本文描述的步骤可以顺序地或并行地执行。此外,各种步骤可以以与本文所述不同的顺序来执行,并且一些步骤可以被省略、跳过和/或重复。如本领域的技术人员将显而易见的,可以预期方法的另外或替代元素以及系统的另外或替代组件。

图7是根据本公开的示例实施方式的系统700的示意图,该系统700例如是在方法100或方法500中的任何一个中使用的系统。系统700可以包括照相机710、多孔样品板720、计算设备730(包括处理器740和存储器750)以及服务器760。多孔板720可以包括多个孔722。

相机710可以包括一个或多个光传感器,诸如电荷耦合器件(CCD)、有源像素传感器(APS)、互补金属氧化物半导体(CMOS)、FOVEON 传感器或其他传感器。如本领域普通技术人员所理解的,对于给定的应用,这种光传感器可以对感兴趣的任何波长范围敏感。在一个实施方式中,光传感器可以对与视觉光谱或视觉光谱的一部分相对应的波长范围(即,大约190nm至700nm之间的波长)敏感。另外地或可替代地,光传感器可以对红外和/或紫外范围内的波长敏感或选择性地敏感。在一个实施方式中,光传感器可以选择性地对与从制备好的样品反射、发射或透射的波长相对应的波长范围敏感,例如,与制备好的样品与比色试剂反应后的颜色相对应的波长,与荧光团的发射光谱相对应的波长,或其他范围的波长。这样的光传感器也可以是黑/白光传感器,使得在传感器敏感的范围内的所有入射光都被检测并将其记录,而不受波长的影响。

照相机710还可包括光圈712和一个或多个光学滤光器714。光学滤光器可仅使在特定波长范围内的光通过到光圈712。这样的滤光器714可以被配置为选择性地使特定波长或波长范围的光通过或被阻挡,使得照相机710仅收集特定波长或波长范围的光。例如,由滤光器714通过的波长范围可以与经处理的样品的反射、发射光谱或透射光谱有关。该波长范围可以对应于比色试剂或通过样品与比色试剂之间的反应产生的产物的颜色。以这种方式,照相机710可以仅记录期望的波长,从而减少噪声或不必要的图像内容。还考虑了光学滤光器714的另外或替代用途。

在另一示例实施方式中,分析物或总蛋白质可以被试剂中的一个或多个荧光团靶向。当被第二波长范围内的辐射激发时,荧光团可以发射第一特定波长范围内的光。因此,在这样的实施方式中,系统700可以另外包括激发源(例如,激光器),其发射第二波长范围内的光以激发荧光团。在这种情况下,滤光器可以被配置为阻挡在经处理的样品的发射光谱之外的所有波长。

如图所示,相机710通信地耦合到计算设备730。在各种实施方式中,可以使用WiFi,通过蓝牙或经由有线接口(例如,USB电缆)来实现这种通信耦合。可替代地,在一些实施方式中,相机710可以通过诸如以太网接口的有线连接耦合到计算设备730。在一些实施方式中,相机710可以是附接到或集成在移动计算设备(例如,手机)中的照相机。移动计算设备可以访问公共互联网以将图像(例如,生物细胞的候选图像或目标图像)传输到计算设备730。在一些实施方式中,照相机710可以另外地或可替代地通信耦合到服务器760。例如,在一些实施方式中,照相机710可以将图像传输到服务器760,服务器760可以执行图像处理或分析(例如,图像的后处理,关于样品中分析物或总蛋白质的浓度的测定),然后服务器760可以将结果信息传输到计算设备730。

如图所示,计算设备730包括处理器740和存储器750。存储器750包括存储在其上的指令752。存储器750可以包括易失性存储器(例如,RAM)和/或非易失性存储器(例如,硬盘驱动器)。存储器750也可以在内部通信地耦合到处理器740。处理器740可以被配置为执行存储在存储器750中的指令752(例如,以执行各种计算任务)。另外地或可替代地,存储器750可以存储图像(例如,由照相机710记录的图像)和与图像有关的信息。存储器750可以进一步存储与样品中分析物或蛋白质的测量浓度有关的信息。

存储在计算设备的存储器750中的指令752可以包括与执行本文描述的方法有关的指令。例如,指令725可以指示照相机聚焦在经处理的样品上,打开和/或关闭光圈712,生成样品的图像(例如,位于多孔板的孔722内的样品),测量光圈712打开的时间段,和/或测量光圈的尺寸。这样的指令725还可以使计算设备730将测定的时间段和/或光圈尺寸与样品中分析物或总蛋白质的浓度相关联。另外地,指令725可以涉及由照相机710产生的图像的处理。例如,指令725可以使计算设备730处理样品的图像,测量经处理的样品中蛋白质沉淀的浓度,以及/或使经处理的样品中蛋白质沉淀的浓度与样品中蛋白质的浓度相关联。

实施例1

对包含已知量的葡萄糖、白蛋白和碱性磷酸酶的经处理的样品进行成像,以使其具有均匀的亮度。绘制图像的曝光时间(即,光圈打开的时间段,快门速度)以显示曝光时间与样品中分析物的量之间的关系(即标准曲线)。

通过具有CMOS光传感器和单色颜色空间的PLD725MU-T USB 3.0照相机(PixelLINK)拍摄经处理的样品的图像。该照相机包括一个物镜,其放大倍率为10倍,数值光圈为0.28。物镜的焦距为20mm,焦深约为3.5μm。具有更长焦距的管形透镜被耦合到物镜,以便于照相机的放大和聚焦。管型透镜的焦距为200mm。使用适配器将透镜以最佳距离耦合到照相机,用于将图像聚焦到照相机的图像传感器上。

根据上述方法进行的测量在图8A-C中示出。图8A示出了标准曲线,该标准曲线示出了实验样品中的葡萄糖量与预定时间段之间的关系。通过制备阴性对照样品、1mM葡萄糖样品和20mM葡萄糖样品获得该曲线。为了固定阴性对照样品,使用了以下试剂:590μL的去离子水、10μL辣根过氧化物酶(HRP)、10μL葡萄糖氧化酶、100μL 4-氨基安替吡啉和100μL在95%乙醇中的1,7-二羟基萘。为了固定1mM葡萄糖样品,使用了以下试剂:580μL去离子水、10μL辣根过氧化物酶、10μL葡萄糖氧化酶、100μL 4-氨基安替吡啉、100μL在95%乙醇中的1,7-二羟基萘溶液和10μL葡萄糖。为了固定20mM葡萄糖样品,使用了以下试剂:380μL去离子水、10μL辣根过氧化物酶、10μL葡萄糖氧化酶,100μL 4-氨基安替吡啉、100μL在95%乙醇中的1,7-二羟基萘和200μL葡萄糖。向每个载玻片加入600μL样品(阴性,1mM和20mM)并成像,以获得图8A所示的曲线。

图8B示出了关联曲线,其示出了实验样品中白蛋白的量与预定时间段之间的关系。通过制备阴性对照样品,1mg/mL白蛋白样品和5mg/mL白蛋白样品获得该曲线。为了固定阴性对照样品,使用了以下试剂:880μL PBS缓冲液(pH 4.2)和120μL溴甲酚绿(pH 4.2)。为了固定1mg/mL白蛋白样品,使用了以下试剂:870μL PBS缓冲液(pH 4.2)、120μL溴甲酚绿(pH 4.2)和10μL白蛋白。为了固定5mg/mL白蛋白样品,使用了以下试剂:830μL PBS缓冲液(pH 4.2)、120μL溴甲酚绿(pH 4.2)和50μL白蛋白。向每个载玻片加入600μL样品(阴性,1mg/mL和5mg/mL)并成像,以获得图8B中所示的曲线。

图8C示出了关联曲线,其示出了实验样品中碱性磷酸酶的量与预定时间段之间的关系。通过制备阴性对照样品、1μg/mL碱性磷酸酶样品和10μg/mL碱性磷酸酶样品获得该曲线。为了固定阴性对照样品,使用了以下试剂:1mL BCIP/NBT底物(5-溴-4-氯-3-吲哚磷酸酯/硝基四氮唑蓝)和1mL 1M HCl。为了固定1μg/mL碱性磷酸酶样品,使用了以下试剂:990μL BCIP/NBT底物、10μL碱性磷酸酶和1mL 1M HC以l终止反应。为了固定10μg/mL碱性磷酸酶样品,使用了以下试剂:900μL BCIP/NBT底物、100μL碱性磷酸酶和1mL 1M HCl以终止反应。向每个载玻片加入600μL样品(阴性、1μg/mL和10μg/mL)并成像,以获得图8C所示的曲线。

实施例2

将165μL尿样添加到1485μL的3,5-二硝基苯甲酰氯在300mM磷酸盐缓冲液(pH12.4)的溶液中,以获得经处理的样品。用实施例1中所述的照相机拍摄165μL经处理的样品的图像。

图9提供了通过照相机生成的样品的图像,其示出了肌酸酐的量,例如,范围为0至1000mg/dL。

将另外165μL尿样添加到2475μL邻苯二酚紫试剂(去离子水中的0.28mM邻苯二酚紫、0.16mM钼酸钠、120mM琥珀酸和1mM草酸钠)的溶液中,以获得经处理的样品。如上所述对165μL的经处理的样品成像。将经处理的样品的快门速度与标准曲线进行比较,该标准曲线是通过将快门速度相对于已知蛋白质浓度作图而获得的。在图10中提供了已知蛋白质的量(例如,从0至500mg/dL)与根据本公开的方法测量的快门速度之间的关系的示例性关联。

在整个说明书中,除非上下文另外要求,否则词语“包括(comprise)”和“包含(include)”以及变体(例如,“comprises”、“comprising”、“includes”、“including”)将被理解为暗示包含所陈述的组件,特征,元素或步骤或组件、特征、元素或步骤的组,但不排除任何其他整体或步骤或整体或步骤的组。

如说明书和所附权利要求书中所使用的,单数形式“一”、“一个”和“该”包含复数指代物,除非上下文另外明确指出。

上面的详细描述参照附图描述了所公开的系统、设备和方法的各种特征和功能。尽管本文已经公开了各个方面和实施方式,但是其他方面和实施方式将是显而易见的。本文公开的各个方面和实施方式仅出于说明的目的,而无意于进行限制,其真实范围由所附权利要求指示。

在附图中,除非上下文另外指出,相似的符号通常标识相似的组件。本文和附图中描述的示例性实施方式并不意味着是限制性的。在不脱离本文提出的主题的范围的情况下,可以使用其他实施方式,并且可以进行其他改变。容易理解的是,可以以各种不同的配置来布置、替换、组合、分离和设计如本文一般地描述以及在附图中示出的本公开的各方面,本文明确地构想了所有这些配置。

36页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种从血液诊断癌症的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!