制备陶瓷基复合材料的方法

文档序号:1205284 发布日期:2020-09-01 浏览:23次 >En<

阅读说明:本技术 制备陶瓷基复合材料的方法 (Method for preparing ceramic matrix composite material ) 是由 J·塔格特 于 2019-01-17 设计创作,主要内容包括:公开了一种制备陶瓷基复合材料的方法。用包含溶剂、基质粘合剂和颗粒的浆料对预制件进行一次或多次浸渗。通过利用溶剂和粘合剂之间不同的化学或物理性能,实现浸渗之间的溶剂去除。(A method of making a ceramic matrix composite is disclosed. The preform is infiltrated one or more times with a slurry comprising a solvent, a matrix binder, and particles. Solvent removal between impregnations is achieved by exploiting the different chemical or physical properties between the solvent and the binder.)

制备陶瓷基复合材料的方法

1.技术领域

本公开涉及一种制备陶瓷基复合材料的方法。具体而言,本公开涉及将基质材料浸渗(infiltration)到复合材料的预制件中。

2.相关技术

陶瓷基复合材料(CMC)是复合材料的一个子类,也是陶瓷的一个子类。CMC将陶瓷纤维嵌入陶瓷基质中,以形成陶瓷纤维增强陶瓷材料。基质和纤维可以包括任何陶瓷材料或碳和碳纤维。

氧化物陶瓷材料分为两类:单片式(monolithic)氧化物陶瓷和氧化物陶瓷基复合材料(CMC)。单片式氧化物陶瓷材料包含纯氧化物陶瓷粉末,该纯氧化物陶瓷粉未经过热压且在超过1600℃被烧结。氧化物CMC包含用氧化物陶瓷纤维增强的氧化物陶瓷基质。氧化物纤维比单片式具有改善的机械性质。由于纤维增强的精巧性,通常使用液体浆料来制备氧化物CMC,所述液体浆料被涂覆到氧化物纤维/织物上(例如预浸渍(“预浸”))或者是液体浸渗到氧化物纤维预制件中(例如溶胶凝胶法)。

碳(C)、碳化硅(SiC)、氧化铝(Al2O3)和莫来石(Al2O3-SiO2)纤维通常用于CMC。将颗粒(称为“晶须”或“片晶”)嵌入基质中。基质材料包括C、SiC、氧化铝和莫来石。

制造过程通常由以下三个步骤组成:(1)将纤维铺叠(lay-up)并固定成期望形状的预制件;(2)浸渗基质材料;以及(3)最终的机加工,以及如果需要,进行如涂覆或浸渍等进一步处理,以降低孔隙率。

大多数氧化物CMC是二维(2D)多层铺叠。这通常通过用含有粘合剂的溶剂化氧化铝基质浆料对干织物进行预浸来完成。也就是说,浆料包含溶剂、基质粘合剂和颗粒。基质是热固性的且仅部分被固化,以便在后续加工过程中易于处理。预浸氧化物CMC随后将经受将基质材料完全固化的温度。

然后从预浸织物上切下用于氧化物CMC复合材料的层片,并将其铺叠在真空袋中(用于高压釜处理)或压制处理以压实。一旦完成此操作,就进行烤箱固化和烧结工艺步骤以完成加工。在需要额外的致密化的情况下,则通常使用包含20%至60%(重量分数)固体的各种稀释浆料进行真空浸渗,以改善通过硬化氧化物CMC的浸渗。

另一种常见的加工方法是铺叠一叠干燥的2D层片或三维(3D)预制件,并用氧化铝浆料浸渗。在这种方法中,将干燥的层片堆叠在两个工具板(压板)之间,并将其浸渗在具有高固体含量(通常为75%或更高重量分数的固体)的氧化物浆料配方的浆料浴中。随后进行固化步骤和烧结步骤。然后使氧化物CMC硬化并“独立(free standing)”,这意味着不再需要置于工具中。

经过固化/烧结的“独立”氧化物CMC可以通过将氧化物CMC额外地(一次或多次)浸入到具有含低重量分数氧化物固体的氧化物浆料配方的浆料浴中而再次被浸渗。接着再进行固化步骤和烧结。然后,使用更稀释的浆料重复再浸渗和固化/烧结步骤(以提高浸渗),直到达到期望的密度和孔隙率。

使用这些方法的氧化物CMC很耗时,并且可能难以在具有复杂几何形状的复合材料中实施。对于2D氧化铝预浸料方法,存在几个显著的困难。这些困难包括:

·由于氧化物预浸料通常具有差的悬垂性并且流动特性往往较差(由于浸渗的亚微米颗粒的缘故),因此,用氧化物CMC预浸料铺叠复杂的形状具有挑战性。

·在层片中不引起褶皱或其它异常的情况下,很难在锐半径或锐利的边缘周围形成层片,尤其是使用偏轴层片的情况下。

·特别是在使用偏轴层片的情况下,用于复杂部件的层片套件可能会相当大(许多不同尺寸和结构的层片)。这可使组装变得耗时,并且可导致人为的铺叠错误。

·层片铺叠、真空装袋和高压釜循环可能很慢且劳动强度大。

此外,浆料浸渗也有困难,这些困难包括:

·额外的浆料浸渗会“封闭”外表面,并使CMC的内部孔隙难以接近。也就是说,在之后的加工循环中,浆料颗粒可能不会浸渗到CMC孔的中心中。CMC的外表面可能会变得致密,孔隙率较低,并阻止基质渗入仍然具有多孔区域的CMC中心。为了使内部多孔区域可接近,可能需要其它加工步骤,例如机加工。

·浴中的额外浆料浸渗可能会导致基质堆积在不期望的位置中,从而需要进行最终的机加工来维持氧化物CMC的尺寸公差。

发明内容

本公开描述了一种制备陶瓷基复合材料的方法,该方法包括用具有溶剂、基质粘合剂和颗粒的浆料浸渗编织的预制件。在不固化基质粘合剂的情况下去除至少一些溶剂。重复浸渗和溶剂去除,直到获得预制件的期望特性。期望特性通常是选自由密度、孔隙率和纤维体积分数组成的组中的至少一种。在获得期望特性之后,固化浆料并且烧结预制件。

在一个实施方案中,通过利用溶剂和基质粘合剂之间的化学或物理性质(例如但不限于,沸点温度或蒸气压)的差异来去除至少一些溶剂。

在一个实施方案中,将预制件加热到高于溶剂的沸点并低于基质粘合剂的沸点的温度以蒸发溶剂,所述溶剂然后随浆料浸渗到预制件中,并且,蒸发的溶剂被排出。在特定的实施方案中,溶剂为异丙醇或丙酮,基质粘合剂为硅酸铝或硅烷,并且,固体颗粒是氧化物陶瓷材料。

在某些实施方案中,考虑与基质粘合剂组合的溶剂可以是水,并且颗粒可以是二氧化硅。更具体而言,在某些实施方案中,颗粒可以是胶体二氧化硅。

在一些实施方案中,固体颗粒具有在1纳米至1000纳米范围的尺寸分布。在一些实施方案中,浆料具有按重量计在50%至85%之间的固体颗粒和按重量计在15%至50%之间的溶剂。具体而言,在一些实施方案中,浆料具有按重量计在75%至81%之间的固体颗粒和按重量计在19%至25%之间的溶剂。

在一些实施方案中,氧化物陶瓷材料选自由氧化铝、二氧化锆和氧化钇稳定的氧化锆(yttria-stabilized zirconia)组成的组。

附图说明

包括附图以提供对本发明的进一步理解,所述附图并入本说明书中并构成本说明书的一部分。本文呈现的附图示出了本发明的不同实施方案,其与说明书一起用于解释本发明的原理。在附图中:

图1示出了用于通过浆料浸渗来致密化CMC的一般系统配置。

图2是所公开方法的实施方案的流程图;以及

图3示出了各种类型的3D纤维架构。

具体实施方式

本公开中的术语“包含(comprising、comprises)”可以意指“包括(including、includes)”,或者可以具有美国专利法中的术语“包含”通常被赋予的含义。如果是在权利要求书中使用,则术语“基本上由……组成(consisting essentially of、consistsessentially of)”具有美国专利法赋予它们的含义。在以下公开内容中将描述本发明的其它方面,或者从以下公开内容中(且在本发明的范围内)本发明的其它方面将显而易见。

在以下描述中,术语“线(thread)”、“纤维(fiber)”、“丝束(tow)”和“纱线(yarn)”可互换使用。如本文所用,“线”、“纤维”、“丝束”和“纱线”可指单丝、复丝纱线、加捻纱、复丝丝束、变形纱、编织丝束、包覆纱(coated yarn)、双组分纱以及由本领域普通技术人员已知的任何材料的拉伸断裂纤维制成的纱线。纱线可以由碳、尼龙、人造丝、玻璃纤维、棉、陶瓷、芳纶、聚酯、金属、聚乙烯玻璃和/或其它具有期望的物理性质、热性质、化学性质或其它性质的材料制成。

“浆料”是指固体(例如颗粒,诸如陶瓷颗粒)在液体载体(溶剂)中的分散体,其还可以包含添加剂,例如粘合剂、表面活性剂、分散剂等。

“CMC”是指陶瓷基复合材料。CMC的子类别包括“氧化物CMC”。

为了更好地理解本发明、通过其应用实现的本发明的优点和目的,参考所附的描述性内容,其中在附图中示出了本发明的非限制性实施方案,并且其中相应的部件由相同的参考标记标识。

本公开涉及一种通过浆料浸渗预制件来生产陶瓷基复合材料的方法,所述预制件例如为2D编织的(woven)层压叠层(layup)、销(pin)引导的纤维铺放产生的预制件、3D编织的预制件或在预制件/模具工具(也可互换地称为“工具”和“注射工具”)中的编成的(braided)预制件(下文中,纤维预制件类型包括在术语“预制件”或“纤维预制件”中)。本发明的方法的特征是在不使粘合剂完全固化或凝固的情况下从注射工具中去除浆料溶剂。

本发明的方法运用或利用了溶剂与粘合剂之间的化学或物理性质的差异。利用性质差异,去除溶剂而不完全固化粘合剂的过程可以更好地控制所得到的CMC的密度、孔隙率和纤维体积分数。未固化的粘合剂可使颗粒/粘合剂在模具中流动,从而允许操控设计要素,例如最终CMC设计要素,诸如密度、孔隙率和纤维体积分数等。

浸渗

在一些实施方案中,在该过程中使用的注射浆料包含包括氧化铝颗粒或氧化钇稳定的氧化锆(YSZ或ZrO2)的氧化物陶瓷材料、基质粘合剂(“粘合剂”)和溶剂。该浆料中的颗粒通常是尺寸分布为1纳米至1000纳米的亚微米级研磨颗粒。在一个实施方案中,颗粒可以是二氧化硅,并且在特定实施方案中,颗粒可以是胶体二氧化硅颗粒。浆料可以具有50%至85%(重量分数)的固体,以及15%至50%(重量分数)的溶剂。与使用50%至54%的固体相比,具有55%至85%(重量分数)的固体和15%至45%(重量分数)的溶剂的浆料更具时效性。考虑可以使用具有60%至75%(重量分数)的固体和25%至40%(重量分数)的溶剂的浆料。在特定实施方案中,氧化铝浆料具有75%至81%(重量分数)的固体以及19%至25%(重量分数)的溶剂。

所用的粘合剂可以是硅酸铝、硅烷或其它常见的基质粘合剂。所用的溶剂是高挥发性溶剂,例如异丙醇(IPA)、丙酮等。“高挥发性”是指比基质粘合剂更易挥发。在一些实施方案中,溶剂可以是水。

因此,CMC包含三个组分:(1)溶剂、(2)基质粘合剂和(3)颗粒。CMC包括这三个组分的任意组合。例如,溶剂可以是异丙醇、丙酮或水中的任何一种;基质粘合剂可以是硅酸铝、硅烷或其它常见的基质粘合剂中的任何一种;而颗粒可以是包括氧化铝颗粒或氧化钇稳定的氧化锆(YSZ或ZrO2)的陶瓷材料,或可以是二氧化硅(包括胶体二氧化硅)。这些组分中的每一种都可以如上所述地进行表征。

纤维预制件

可以用氧化铝纤维制造2D编织的干纤维(dry fiber)(或预浸料)叠层、三维(3D)编织预制件、通过销引导的纤维铺放产生的预制件、编成的预制件或其它预制件。2D架构可以具有包括0°/90°、0°/-45°/90°/45°或其任意组合的层压结构层片铺叠安排(schedule)。“0°/90°”铺叠安排是指:在连续层中,经纤维(warp fiber)相对于任意基准在0°和90°之间交替。“0°/-45°/90°/45°”铺叠安排提供了在连续层中经纤维相对于任意基准的角度。类似地,可以使用0°/-60°/90°/60°铺叠。

在某些情况下,预制件是近净形技术制品。即,预制件非常接近期望的最终(净)形状,这可以减少对表面精加工、机加工或研磨的需求和/或减少浪费。而且,可以缩短处理时间。

3D纤维架构可以是正交310、层片对层片320或角度连锁330,如图3所示。经向和纬向(填充)的纤维体积可根据应用而变化。例如,氧化铝纤维可以为任何纤维等级以及任何旦数或其它类似纤维。

工具和设备

图1示出了可用于实施本发明的方法来制备氧化物CMC的基质浸渗系统的简化图。该系统包括用于提供基质浆料的基质入口105以及用于从预制件(未示出)中去除基质浆料(尤其是浆料的溶剂)的基质出口110。该预制件布置于注射工具115的腔中,该腔具有与预制件互补的形状。注射工具至少分为两部分,从而可以使腔露出以容纳预制件。

注射工具115的各部件可以通过具有顶压板120a和底压板120b的压力机工具(tool press)保持在一起。压板120a、120b的用途是抵抗基质浆料的浸渗压力而将注射工具的部件保持在一起。向注射工具施加热量的加热器(未示出)可以是压力机工具的一部分或与之分开。

基质入口105包括柱式注射器125,以在正压下通过管130将基质浆料提供给注射工具115的一个或多个入口135。可以提供阀160,以在预制件的致密化期间去除溶剂时,阻止流进入预制件中。基质出口110包括真空泵150,以通过基质捕集器(trap)145和管155向注射工具115的一个或多个出口140提供负压。

在一个或多个入口135处施加于基质浆料的正压与在一个或多个出口140处施加的负压组合有助于在浸渗过程中使基质浆料在整个预制件中均匀分布。基质捕集器145可以捕获在浆料浸渗期间离开一个或多个出口140的多余浆料。施加到一个或多个出口140的负压也可以排出用于致密化预制件的溶剂。

在使用中,阀160被打开,从而使得能够在正压下将基质浆料从柱式注射器提供到注射工具中的预制件。可以通过真空泵施加负压,帮助从整个预制件中排出基质浆料。浆料离开注射工具可表明浆料已经浸渗了预制件。通过捕集器可以捕获离开注射工具的多余浆料。

在预制件的致密化过程中可以关闭阀160。在该过程的这一部分中,通过施加到一个或多个出口的负压将溶剂与基质浆料分离并将其从注射工具中排出。浆料中的固体氧化物颗粒和粘合剂保留在预制件的间隙中,从而使预制件更致密。

工艺过程

图2示出了根据本公开的制备氧化物CMC的方法的流程图200。根据普通技术人员已知的技术来制备(210)2D编织的层压叠层、3D编织预制件、通过销引导的纤维铺放产生的预制件、编成的预制件或其它预制件(通称为“预制件”)。

在步骤220中,将预制件布置在注射工具中,例如树脂转移模具工具,然后将注射工具载入到注射工具压力机230中,该压力机向注射工具施加压力以在随后的向工具施加压力期间将工具保持在一起。

在步骤240、242、244、246、248和250中,对注射工具和压力机中的预制件进行第一次浆料浸渗。在步骤240中,将浆料在正压下注入到注射工具的入口中并注入到工具内的预制件中。可以施加负压或真空压力(242)来帮助浆料均匀地分散在整个预制件中。

在特定实施方案中,浆料是包含亚微米级氧化铝颗粒和硅烷粘合剂的IPA溶剂化混合物。例如,预制件可以是标称尺寸为8.56”×8.56”×0.938”(21.7cm×21.7cm×2.4cm)的飞机天线窗户外壳。可以在200-250psi(10340-12930mmHg)的压力下以约50cc/min的流速将浆料注入到注射工具中。除了上述飞机天线窗户外壳实例外,氧化物CMC还可以用于其它应用中,包括涡轮排气结构、天线罩、导弹、卫星和其它高温环境应用。

然后释放在注射工具上的浆料的压力,并且通过加热注射模具工具来将热量施加到预制件中的浆料上(244)。当浆料达到预定温度时,启动溶剂去除步骤246以从预制件中排出溶剂。可以使用真空泵在注射工具的出口处施加负压,帮助排出溶剂。在去除溶剂之后,在步骤248中去除热量并使注射工具冷却。从浆料中去除溶剂使得浆料的固体氧化物颗粒留在了预制件的间隙中,从而使预制件更致密。

通过利用溶剂和粘合剂之间的不同物理性质,可以在不完全固化基质粘合剂的情况下去除溶剂。物理性质的差异包括不同的沸点、相图、蒸气压方程和曲线、反应性等。也就是说,粘合剂被“B阶段化(B-staged)”。“B阶段化”是从粘合剂中去除至少一些溶剂从而允许结构是阶段化的(指仅部分固化的固体)的过程。

在特定实施方案中,可以使用溶剂和基质粘合剂之间的沸点温度差来使溶剂汽化但是避免固化基质粘合剂。在一个实例中,浆料是包含亚微米级氧化铝颗粒和硅烷粘合剂的IPA溶剂化混合物。在此实例中,在大气压下施加热量以将浆料的温度提高到IPA溶剂的沸点180°F(82.5℃),该温度低于硅烷粘合剂的固化温度250°F(121.1℃)。因此,使浆料的温度升高至约180°F(82.5℃)将导致IPA溶剂汽化或蒸发,而不会固化硅烷基质粘合剂。可以将真空吸入压力(suction pressure)施加到注射工具上,以排出蒸发的溶剂。例如,可以使用20inHg(508mmHg)的吸入压力。

去除溶剂会在预制件中形成自由/开放的孔隙。也就是说,通过从预制件中的粘合剂中去除溶剂来在预制件中形成开放的体积。例如,如果浆料为按重量计80%的固体和20%的溶剂,那么,去除的溶剂会导致一些孔隙保留在预制件中。

在步骤250中,确定氧化物CMC是否具有期望的密度、孔隙率和/或纤维体积分数。如果氧化物CMC不具有期望的密度、孔隙率和/或纤维体积分数,则可以用相同或不同的浆料配方按照步骤240-250进行第二次浆料浸渗。

在第二次浸渗中,用浆料填充因第一次溶剂去除而在预制件中形成的开放体积。然后对第二次浸渗除去溶剂,从而为额外的浸渗(如果需要的话)产生自由/开放的孔隙。重复此过程,直到达到期望的CMC密度、孔隙率和/或纤维体积分数为止。

在特定实施方案中,使用与第一次浸渗相同的浆料配方。在该实施方案中,不需要稀释或替代的浆料配方。如在上面所述的实施方案中,在飞机天线窗户外壳的第一次浸渗中,可以将浆料在200-250psi(10340-12930mmHg)的压力下以约50cc/min的流速注入到注射模具中。在第二次浸渗中浆料的体积通常小于第一次浸渗中的浆料体积。

浸渗完成后,将注射工具和预制件加热至一定温度以固化252预制件中的基质粘合剂。在基质粘合剂固化之后,在步骤254中从注射工具中移除热量,并使工具冷却。将注射工具从压力机256中移除。然后将CMC脱模(即从注射工具中移除)(258)并对其进行烧结(260)。典型的烧结温度是1000℃至1200℃。

其它实施方案在所附权利要求书的范围内。

权利要求书(按照条约第19条的修改)

1.一种制备陶瓷基质复合材料的方法,包括:

用具有溶剂、基质粘合剂和固体颗粒的浆料浸渗预制件;

在不固化所述基质粘合剂的情况下除去至少一些所述溶剂;以及

重复所述浸渗和去除所述溶剂,直到获得所述预制件的期望特性,

其中所述期望特性是选自由密度、孔隙率和纤维体积分数组成的组中的至少一种。

2.根据权利要求1所述的方法,其中所述去除至少一些所述溶剂包括利用所述溶剂和所述基质粘合剂之间的化学或物理性质的差异。

3.根据权利要求2所述的方法,其中所述化学或物理性质是沸点温度。

4.根据权利要求2所述的方法,其中所述化学或物理性质是蒸气压。

5.根据权利要求3所述的方法,包括:

用所述浆料浸渗所述预制件;

将所述预制件加热至高于所述溶剂的沸点并低于所述基质粘合剂的沸点的温度以蒸发所述溶剂;以及

排出蒸发的溶剂。

6.根据权利要求5所述的方法,其中

所述溶剂为异丙醇或丙酮;

所述基质粘合剂是硅酸铝或硅烷,以及

所述固体颗粒是氧化物陶瓷材料。

7.根据权利要求6所述的方法,其中所述固体颗粒具有在1纳米至1000纳米范围的尺寸分布。

8.根据权利要求7所述的方法,其中所述浆料具有按重量计在50%至85%之间的固体颗粒和按重量计在15%至50%之间的溶剂。

9.根据权利要求8所述的方法,其中所述浆料具有按重量计在75%至81%之间的固体颗粒和按重量计在19%至25%之间的溶剂。

10.根据权利要求8所述的方法,其中所述氧化物陶瓷材料选自由氧化铝、二氧化锆和氧化钇稳定的氧化锆组成的组。

11.根据权利要求1所述的方法,包括:

在实现所述期望特性后固化所述浆料;以及

烧结所述预制件。

12.根据权利要求5所述的方法,其中

所述溶剂是水;

所述基质粘合剂是硅酸铝或硅烷,并且

所述固体颗粒是二氧化硅。

13.根据权利要求12所述的方法,其中所述固体颗粒具有在1纳米至1000纳米范围的尺寸分布。

14.根据权利要求13所述的方法,其中所述浆料具有按重量计在50%至85%之间的固体颗粒和按重量计在15%至50%之间的溶剂。

15.根据权利要求14所述的方法,其中所述浆料具有按重量计在75%至81%之间的固体颗粒和按重量计在19%至25%之间的溶剂。

16.根据权利要求12所述的方法,其中所述固体颗粒是胶体二氧化硅。

17.根据权利要求12所述的方法,包括:

在实现所述期望特性后固化所述浆料;以及

烧结所述预制件。

18.根据权利要求1所述的方法,其中所述固体颗粒具有在1纳米至1000纳米范围的尺寸分布。

19.根据权利要求1所述的方法,其中所述浆料具有按重量计在50%至85%之间的固体颗粒和按重量计在15%至50%之间的溶剂。

20.根据权利要求19所述的方法,其中所述浆料具有按重量计在55%至85%之间的固体颗粒和按重量计在15%至45%之间的溶剂。

21.根据权利要求20所述的方法,其中所述浆料具有按重量计在75%至81%之间的固体颗粒和按重量计在19%至25%之间的溶剂。

22.根据权利要求1所述的方法,其中所述预制件的类型选自由二维(2D)干纤维(或预浸料)叠层、2D编织层压叠层、销引导的纤维铺放产生的预制件、三维(3D)编织预制件以及编成的预制件组成的组。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:提高植物产量的肥料和植物生长促进剂以及提高植物产量的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!