冲击吸收部件

文档序号:1219701 发布日期:2020-09-04 浏览:28次 >En<

阅读说明:本技术 冲击吸收部件 (Impact absorbing member ) 是由 铃木利哉 中泽嘉明 钱谷佑 吉田亨 于 2019-01-28 设计创作,主要内容包括:本发明提供一种冲击吸收部件,即使在汽车内部的靠外侧没有较大空间,也能够进行碰撞时的冲击吸收。本发明的冲击吸收部件具备:汽车的外装件(10);第1加强部件(122),与外装件(110)邻接地配置,在与延伸方向正交的截面中,与外装件(110)正交的方向的高度大于沿着外装件(110)的方向的宽度;第2加强部件(124),与外装件(110)邻接地配置,在与延伸方向正交的截面中,与外装件(110)正交的方向的高度大于沿着外装件(110)的方向的宽度;交叉部,第1加强部件(122)与第2加强部件重叠地交叉而成;以及接合部,在交叉部处将第1加强部件(122)与第2加强部件进行接合。(The invention provides an impact absorbing member which can absorb impact during collision even if a large space is not arranged near the outer side of the inner part of an automobile. The impact absorbing member of the present invention includes: an outer part (10) of a motor vehicle; a 1 st reinforcing member (122) that is disposed adjacent to the outer package (110), and that has a larger height in a direction orthogonal to the outer package (110) than width in a direction along the outer package (110) in a cross section orthogonal to the extending direction; a 2 nd reinforcing member (124) which is disposed adjacent to the outer package (110), and which has a larger height in a direction perpendicular to the outer package (110) than width in a direction along the outer package (110) in a cross section perpendicular to the extending direction; an intersection part where the 1 st reinforcing member (122) and the 2 nd reinforcing member overlap and intersect; and a joining portion that joins the 1 st reinforcing member (122) and the 2 nd reinforcing member at the intersection portion.)

冲击吸收部件

技术领域

本发明涉及一种冲击吸收部件。

背景技术

以往,为了保护汽车的乘员,在汽车内部、在预想被输入冲击的部位配置冲击吸收部件。作为这样的冲击吸收部件,例如已知有车门防撞杆。例如,在下述专利文献1中记载有汽车的车门防撞杆的构造。

现有技术文献

专利文献

专利文献1:日本特开平5-319092号公报

发明内容

发明要解决的课题

以往的冲击吸收部件为了确保冲击吸收量而由较粗的构造物构成。因此,对于在汽车内配置的部位存在制约。此外,当考虑到碰撞时的变形时,如果在汽车的尽可能外侧(更远离乘员)设置冲击吸收部件,则即使冲击吸收部件的变形量较大也不会与乘员接触,因此能够安全且有效地吸收冲击。

但是,由于在汽车内部的靠外侧没有能够设置较粗构造物的较大空间,因此难以配置较粗部件。

本发明是鉴于上述问题而完成的。本发明的目的在于提供一种新颖且改进了的冲击吸收部件,即使在汽车内部的靠外侧没有较大空间,也能够进行碰撞时的冲击吸收。

用于解决课题的手段

为了解决上述课题,根据本发明的一个观点,提供一种冲击吸收部件,具备:汽车的外装件;第1部件,与上述外装件邻接地配置;第2部件,与上述外装件邻接地配置;交叉部,上述第1部件与上述第2部件重叠地交叉而成;以及接合部,在上述交叉部处将上述第1部件与上述第2部件进行接合,在上述第1部件的与延伸方向正交的截面中,与上述外装件正交的方向的上述第1部件的高度大于沿着上述外装件的方向的上述第1部件的宽度,在上述第2部件的与延伸方向正交的截面中,与上述外装件正交的方向的上述第2部件的高度大于沿着上述外装件的方向的上述第2部件的宽度。

上述接合部可以是基于激光焊接的接合部。此外,上述接合部也可以是基于结构粘接剂的接合部。

此外,也可以为,在上述交叉部处,第1上述部件和第2上述部件的与上述外装件正交的方向的厚度减小。

此外,也可以为,在第1上述部件被配置于上述外装件侧的两个上述交叉部之间具有第2上述部件被配置于上述外装件侧的上述交叉部。

此外,也可以为,第1上述部件或第2上述部件横穿上述外装件。

此外,也可以为,在第1上述部件或第2上述部件的长度方向的至少1处,具有在与上述外装件相反侧被支承的被支承部,第1上述部件或第2上述部件的交叉部与上述被支承部的距离为具有上述被支承部的第1上述部件或第2上述部件的长度的1/3以内。

此外,也可以为,上述被支承部是第1上述部件或第2上述部件的端部。

此外,也可以为,上述被支承部与上述外装件以外的其他部件接合。

此外,也可以为,上述第1上述部件或上述第2上述部件是将板材折弯而成的中空构造,具有与上述外装件邻接的第1面、以及从上述第1面分离配置的第2面,与上述延伸方向正交的上述第2面的宽度大于与上述延伸方向正交的上述第1面的宽度。

此外,也可以为,上述第2面沿着上述延伸方向被分割。

此外,也可以为,上述第1上述部件或上述第2上述部件具备马氏体组织。

发明的效果

如以上说明的那样,根据本发明,即使没有较大空间,也能够进行碰撞时的冲击吸收。

附图说明

图1是表示从背面侧观察本实施方式的汽车的外装面板的状态的示意图。

图2是为了进行比较而表示现有构造的示意图,是表示在外装件的内侧配置有车门防撞杆与加强件的构成的示意图。

图3是表示加强部件的配置的一例的示意图。

图4是表示加强部件的配置的一例的示意图。

图5是表示加强部件的配置的一例的示意图。

图6是表示加强部件的配置的一例的示意图。

图7是表示加强部件的配置的一例的示意图。

图8是表示在外装件的上下方向上配置有第1加强部件、在外装件110的水平方向上配置有第2加强部件的外装面板(车门面板)的示意图。

图9是表示从图8的箭头A方向观察到的状态的示意图。

图10是详细表示图8中的第1加强部件与第2加强部件的交叉部的立体图。

图11是详细表示图8中的第1加强部件与第2加强部件的交叉部的立体图。

图12是表示图8的构成中的第1以及第2加强部件的与长度方向正交的方向的截面构成的示意图。

图13是表示对于图8以及图9通过用于评价外装面板的抗拉刚性的模拟而得到的压头140的负载载荷与位移量之间的关系的特性图。

图14是表示假定汽车的侧面碰撞(侧碰),通过载荷施加部件对外装面板施加了负载载荷的状态的示意图。

图15是表示在图8的构成中通过用于评价外装面板的侧面碰撞的性能的模拟而得到的、通过载荷施加部件300施加了载荷的情况下的行程与载荷之间的关系的特性图。

图16是表示对于图12所示的构成将板材的端部分别向相反侧折弯的例子的示意图。

图17是表示在图8所示的构成中在交叉部处对第1加强部件与第2加强部件进行粘接并通过载荷施加部件施加了载荷的情况下的外装面板的载荷(纵轴)与时间(横轴)之间的关系的特性图。

具体实施方式

以下,参照附图对本发明的优选实施方式进行详细说明。另外,在本说明书以及附图中,通过对实质上具有相同功能构成的构成要素标注相同的符号来省略重复说明。

首先,参照图1对本发明的一个实施方式的汽车的外部面板的构成进行说明。图1是表示从背面侧(汽车内侧)观察本实施方式的汽车的外装面板100的状态的示意图。此处,作为外装面板100而例示了车门面板,但外装面板100也可以是挡泥板、发动机罩、顶棚等汽车其他部位的面板。

如图1所示,外装面板100由外装件110与加强部件120构成。作为一例,面板部件112由厚度为0.4mm左右的钢板构成。外装件110以表面侧(车辆外侧)成为凸面的方式弯曲。此外,弯曲沿着上下方向(车高方向)。

加强部件120包括沿着上下方向配置的第1加强部件122以及沿着水平方向(车长方向)配置的第2加强部件124。第1加强部件122优选对外装件110的形状进行仿形而弯曲。第2加强部件124大致直线状地延伸。即,与弯曲的外装件110邻接的加强部件优选为对外装件110的邻接部位的弯曲进行仿形的形状。其原因在于,第1加强部件122与第2加强部件124如果是对外装件110进行仿形的形状,则能够与外装件110密接,优选与外装件110接合(粘接)。

图2是为了进行比较而表示现有构造的示意图。在图2中,在外装件110的内侧配置有车门防撞杆300以及加强件310。图3~图7是将本实施方式的汽车的车门面板表示为外装面板100的图。图3~图7是表示加强部件120的配置的一例的示意图。在图3所示的例子中,表示在外装面板100上仅设置了沿着上下方向配置的第1加强部件122的例子。

此外,在图4所示的例子中,表示在外装面板100上仅设置了沿着水平方向配置的第2加强部件124的例子。另外,在图5所示的例子中,表示在外装面板100上设置了沿着上下方向配置的第1加强部件122和沿着水平方向配置的第2加强部件124的例子。此外,在图6所示的例子中,表示在外装面板100上放射状地配置了加强部件120的例子。此外,在图7所示的例子中,表示在外装面板100上倾斜交叉地配置了加强部件120的例子。

图12是表示加强部件120的构成的立体图。第1加强部件122与第2加强部件124的基本构成能够成为相同。在图12中还表示了加强部件120的与长度方向正交的截面构成。加强部件120具有中空的矩形(长方形)截面。加强部件120也可以将板材130折弯来制造。在图12所示的例子中,加强部件120为长方形的截面形状,其一边的长边为16mm左右,短边为10mm左右。此外,作为一例,构成加强部件120的板材130的板厚为0.8mm左右。作为板材130能够使用钢板。

如图12所示,在折弯后的板材130的端部130a与端部130b之间也可以设置有规定的间隙。并不限定于此,端部130a与端部130b也可以密接。此外,端部130a与端部130b也可以通过焊接、粘接等来接合。加强部件120被配置为,端部130a、130b所处的面、或者与端部130a、130b所处的面相反侧的面与外装件110密接。优选为,端部130a、130b所处的面或者与端部130a、130b所处的面相反侧的面与外装件110接合。此处,将与外装件110接合或邻接的面称为底面。此外,将与底面相反侧的面称为顶面。将夹着棱线而位于底面两侧的面称为纵壁。在加强部件120的截面中,短边为底面,长边为纵壁。在端部130a、130b未被接合地配置于顶面的构成中,在加强部件120被从外装面板100的外侧(车外)按压而弯曲的情况下,截面从端部130a、130b扩开而截面形状容易崩溃。但是,当端部130a、130b被接合时,能够防止截面形状崩溃,因此能够进一步提高外装面板100的刚性。在端部130a、130b被配置于底面、且底面与外装件110接合的情况下,也能够防止由于外装件110而端部130a、130b分离且截面形状崩溃的情况。另外,加强部件120的截面构成并不限定于图12那样的端部130a、130b相面对的构成,例如也可以是端部130a、130b分离的槽型(通道)形状、或者图16所示的帽形状。无论在加强部件120的截面为长方形、槽型、帽形状中的哪一种的情况下,都能够将加强部件120的与延伸方向正交的截面的短边视为“宽度(D)”,将长边视为“高度(H)”。此外,在图16所示那样的帽形状中,在将凸缘配置在外装件110侧的情况下,将凸缘与纵壁之间的棱线彼此的间隔视为“宽度(D)”。在短边与长边所成的角不是直角的情况下,将与短边垂直方向的长边的端部之间的距离视为高度。在如以上那样定义了“宽度”和“高度”的本发明的加强部件中,加强部件的高度大于宽度。为了在外装件110上接合加强部件120,优选加强部件120的宽度大于高度,但在本发明中特意不这样设置。这是为了优先提高加强部件120针对弯曲的截面二次矩。

如以上那样,在本实施方式中,与外装件110邻接地配置的加强部件120为,在与延伸方向正交的截面中,与外装件110正交的方向的高度大于沿着外装件110的方向的宽度。由此,在从外装面板的车身外侧向内侧方向施加了碰撞载荷的情况下,能够有效地提高加强部件120的截面二次矩。加强部件120的与长度方向正交的方向的截面二次矩可以为15000mm4以下,更优选为12000mm4以下。为了满足该条件,而适当设定加强部件120的板材130的材质、板厚以及截面形状。通过满足该条件,能够提高加强部件120的塑性压曲极限,在受到碰撞载荷的输入时不容易产生塑性压曲,能够对于耐碰撞性能有效地应用基于弹性变形的反作用力。另外,基于弹性变形的反作用力的针对变形的反作用力增加量较大,而在塑性变形中针对变形的反作用力增加量较小。因此,能够将基于弹性变形的反作用力有效地应用为耐碰撞性能。另外,当增大截面二次矩时,即使是较小的弯曲也容易引起塑性压曲。在现有构造中,车门防撞杆的截面二次矩为18000mm4左右。即,在现有构造中,以发挥基于塑性变形的耐碰撞性能为前提。另一方面,在本实施方式中,使加强部件120弹性变形而发挥耐碰撞功能,因此如上述那样设定截面二次矩的上限值。由此,能够抑制塑性压曲的产生,通过弹性变形来发挥耐碰撞功能。

通过使加强部件120满足与截面二次矩相关的上述条件,由此本实施方式的外装面板100能够提高耐碰撞性能。因此,通过简化或省略现有的耐碰撞部件,能够得到进一步的轻量化效果。此外,在使用现有的耐碰撞部件的情况下,能够有助于进一步提高碰撞安全性能。

此外,加强部件120的屈服应力也可以为500MPa以上。由此,能够提高加强部件120的塑性压曲极限,更有效地应用基于弹性变形的反作用力,因此能够有效地确保碰撞性能且实现轻量化。此外,加强部件120也可以具备马氏体组织。由此,能够进一步提高耐冲击性能。

此外,例如,即使加强部件120由较细的部件构成,通过使其交叉也能够成为实用的冲击吸收部件。此外,当如现有构造那样仅有一根车门防撞杆300时,根据被施加碰撞载荷的位置的不同,有时不对车门防撞杆300施加碰撞载荷。即,车门防撞杆有可能不起作用。此外,当作为不起作用对策而设置多根车门防撞杆300时,会导致重量大幅增加。根据本实施方式,由于能够在外装面板100的整面上大范围地配置比以往轻量的加强部件120,因此能够在抑制重量增加的同时避免不起作用。进而,作为加强部件120的第1以及第2加强部件122、124相连。因此,施加到一个加强部件的碰撞载荷也会传递到另一个加强部件。即,多个加强部件能够一起吸收冲击。

进而,在外装件110与加强部件120接合的情况下,能够抑制在碰撞变形时加强部件120的变形较大的情况下的加强部件120的倾倒(以长度方向为轴的旋转),能够进一步提高耐碰撞性能。此外,在碰撞变形时在邻接的加强部件120之间的区域的外装件上产生张力这一点也是有效的。当使外装件110变薄时,其刚性消失,容易凹陷(挠曲)而起不到吸收冲击的作用。但是,当将外装件110与加强部件120接合时,外装件110有时会有助于吸收冲击。通过将外装件110与加强部件120接合来约束外装件110,由此在加强部件120变形了的情况下,变形部位周围的外装件110被向面内方向拉伸。外装件110即使没有厚度方向的刚性,也具有面内方向的抗拉强度,因此能够抵抗拉伸的变形,提高冲击吸收部件的性能。

另外,加强部件120优选沿着外装件110配置一定程度以上的长度。具体而言,加强部件120在全长的1/3以上的区域中与外装件110密接。即,在本实施方式中,通过将加强部件120与外装件110密接地接合来抑制加强部件120的倾倒,进而在外装件110的变形时对外装件110作用拉力而提高耐碰撞功能。

特别是,优选第1加强部件122的长度方向沿着外装件110的弯曲配置。即,优选配置为,第1加强部件122的长度方向成为上下方向。由此,第1加强部件122被配置为,朝向汽车外侧突出。其结果,第1加强部件的弯曲的凸弯曲部能够提高耐碰撞功能。

此外,加强部件120以横切(横穿)外装件110的方式构成。在本实施方式中,加强部件120的截面二次矩较小、而屈服应力较高(弹性变形区域较大)。因此,在外装面板100的整体中通过部件整体来承受碰撞时的载荷、冲击,因此优选使加强部件120尽可能变长。此外,通过使加强部件120以横切外装件110的方式构成,由此能够提高承受了碰撞载荷的加强部件用于得到反作用力的支点(以往相对于其他部件的接触点)的设定自由度。此外,通过使加强部件120尽可能变长,由此能够扩大在碰撞时能够承受冲击的范围。即,能够避免加强部件120不起作用。

以下,对由于设置加强部件120而产生的外装面板100的耐碰撞功能的提高进行说明。图8是表示以第1加强部件122的长度方向成为外装件110的上下方向的方式配置、以第2加强部件124的长度方向成为外装件110的水平方向的方式配置的外装面板100(车门面板)的示意图,详细表示图5的构成。此外,图9是表示从图8的箭头A方向观察到的状态的示意图。在图8中,表示从表面侧(汽车外侧)观察外装面板100的状态。在图8中,在透视了外装件110的状态下表示第1加强部件122与第2加强部件124的配置。此外,图8所示的压头140是在后述的图13中表示结果的用于评价外装面板100的抗拉刚性的模拟中按压外装面板100的部件。

在图8中,第1加强部件122由配置在外装面板100的上下方向两端的支承部220支承。此外,第2加强部件124由配置在外装面板100的水平方向两端的支承部230支承。更具体而言,第1加强部件122的两端被外装件110和支承部220夹持而支承。同样地,第2加强部件124的两端被外装件110和支承部230夹持而支承。此外,在图8中,第1加强部件122与第2加强部件124的交叉部中的车辆的上下方向外侧或前后方向外侧的交叉部、与由支承部220或支承部230支承的第1加强部件122或第2加强部件124的被支承部之间的距离,为第1加强部件122或第2加强部件124的长度的1/3以内。由此,在由于碰撞而产生的载荷施加于加强部件120的情况下,例如,施加于第2加强部件124的载荷从交叉部施加于第1加强部件122,由于从交叉部到由支承部220支承的第1加强部件122的被支承部为止的距离较近,因此能够通过弹性变形来高效地承受由于碰撞而产生的载荷。

在图8中表示了如下例子:通过在第1加强部件122与第2加强部件124的交叉部设置凹部122a、124a而使其交叉,由此将第1加强部件122与第2加强部件124配置在同一平面上。另外,在图8中也可以构成为,将第1加强部件122与第2加强部件124以编入的方式配置,在邻接的交叉部处,第1加强部件122与第2加强部件124的上下的配置不同。当将第1以及第2加强部件122、124以编入的方式配置时,第1加强部件122与第2加强部件124彼此的载荷传递效率变得良好。由此,在碰撞时能够通过第1以及第2加强部件122、124有效地确保冲击吸收功能。

另一方面,如后所述,在将第1加强部件122与第2加强部件124的交叉部进行了接合的情况下,能够大幅度提高耐碰撞性能。因此,在将第1加强部件122与第2加强部件124的交叉部进行了接合的情况下,也可以不将第1加强部件122与第2加强部件124以编入的方式配置。由此,不需要用于编入的工序,能够降低制造成本。但是,通过并用编入和交叉部的接合,能够使耐碰撞性能成为最高。

此外,通过将第1加强部件122与第2加强部件124交叉部进行接合,能够降低制造成本。在将第1加强部件122与第2加强部件124分别安装于外装件110的情况下,工序较烦杂。在将接合后的第1加强部件122与第2加强部件124集中安装于外装件110的情况下,容易进行制造。即,能够降低制造成本。

图10以及图11是详细表示图8中的第1加强部件122与第2加强部件124的交叉部的立体图。图10对应于图8所示的交叉部C1,图11对应于图8所示的交叉部C2。在交叉部C1处,第2加强部件124相对于第1加强部件122位于车辆的外侧方向(外装件110侧)。由此,能够将第1以及第2加强部件122、124以编入的方式配置。在第1加强部件122设置凹部122a、在第2加强部件124设置凹部124a,由此第1加强部件122与第2加强部件124被配置在同一平面上。此外,在交叉部C2处,第1加强部件122相对于第2加强部件124位于车辆的外侧方向。在交叉部C2处,在第1加强部件122设置凹部122a、在第2加强部件124设置凹部124a,由此第1加强部件122与第2加强部件124被配置在同一平面上。

另外,虽然省略图示,但第1以及第2加强部件122、124不一定需要以编入的方式配置,由于向外装面板100组装时的施工上的理由等,也可以将第1加强部件122的全部相对于第2加强部件124的全部配置在外装面板侧,或者相反地,也可以将第2加强部件124的全部相对于第1加强部件122的全部配置在外装面板侧。

在将第1加强部件122的全部相对于第2加强部件124的全部配置在外装面板侧的情况下、或者将第2加强部件124的全部相对于第1加强部件122的全部配置在外装面板侧的情况下,在第1加强部件122与第2加强部件124的交叉部处,通过粘接剂或焊接(激光焊接)将第1加强部件122与第2加强接合部件124进行接合。交叉部的接合也可以并用粘接剂和焊接。即便在将第1加强部件122与第2加强部件124相互交替地配置在外装件110侧的、编入那样的配置的情况下,也可以同样地将第1加强部件122与第2加强部件124进行接合。由此,如后所述,能够将碰撞时的耐力提高到2倍左右。关于第1加强部件122与第2加强部件124的接合,例如使图10、图11所示的凹部122a与凹部124a密接,并通过粘接剂或焊接来进行。

如此,通过在第1加强部件122与第2加强部件124的交叉部处将两者进行接合,由此能够抑制各个加强部件在碰撞时的旋转。其结果,能够大幅度提高耐碰撞性能。

在本发明的实施方式中,在第1加强部件122与第2加强部件124的交叉部处将第1加强部件122与第2加强部件124进行接合,是以提高耐碰撞性能为目的而进行的。换言之,第1加强部件122与第2加强部件124的交叉部处的第1加强部件122与第2加强部件124的接合,并不是以抑制外装板的振动、提高外装板的抗拉刚性为目的而进行的。在以抑制外装板的振动、提高外装板的抗拉刚性为目的的情况下,通过与外装板邻接地设置平板的加强部件,就能够足够实现该目的。与此相对,在本发明的实施方式中,为了提高耐碰撞性能,而使第1加强部件122与第2加强部件124交叉,且在交叉部处特意将第1加强部件122与第2加强部件124进行接合。通过成为这种构成,能够大幅度提高外装面板100的耐碰撞性能。

此外,通过在第1加强部件122与第2加强部件124的交叉部处将第1加强部件122与第2加强部件可靠地进行接合,由此能够提高耐碰撞性能。关于第1加强部件122与第2加强部件124的交叉部处的第1加强部件122与第2加强部件124的接合,如上所述,优选为基于粘接剂和/或激光焊接的接合。另一方面,例如在使用了胶粘剂等的粘接的情况下,无法确保较大的强度,而无法提高耐碰撞性能。外装面板100也存在汽车碰撞的情况,在使用了胶粘剂等的粘接中,在汽车碰撞时第1加强部件122与第2加强部件124的粘接会简单地被破坏,难以将外装面板用作为耐碰撞部件。

此外,通过在第1加强部件122与第2加强部件124的交叉部处将第1加强部件122与第2加强部件进行接合,由此即使是图12所示那样的具有长方形的截面形状的加强部件,也能够抑制加强部件的倾倒。因此,在使加强部件的截面形状成为图12所示那样的长方形形状的情况下,能够通过抑制倾倒来提高耐碰撞性能。

在将第1加强部件122与第2加强部件进行接合时使用的结构粘接剂所需要的粘接强度,虽然也依存于构造件的形状,但优选拉伸抗剪强度为20MPa以上。如果是这样的结构粘接剂,则能够抑制加强部件的旋转(倾倒)。作为结构粘接剂的种类,能够列举环氧系、丙烯酸系、聚氨酯系苯酚系等。

此外,从交叉部延伸出的加强部件120的与加强部件120的长度方向正交的截面相对于来自车外方向的载荷的截面二次矩为15000mm4以下。通过设置交叉部,能够缩短在输入碰撞载荷时施加于加强部件120的弯曲变形的支点与作用点之间的距离,因此能够进一步提高相对于变形的反作用力增加量。因此,通过设置交叉部,提高碰撞性能。

此外,通过使交叉部为两处以上,由此能够进一步缩短在输入碰撞载荷时施加于加强部件120的弯曲变形的支点与作用点之间的距离。因此,能够进一步提高加强部件120相对于变形的反作用力增加量。此外,由于能够使冲击载荷向其他多个加强部件120传播而使其承受,因此能够得到更高的反作用力。由此,进一步提高碰撞性能。

此外,在交叉部处,在第1以及第2加强部件122、124上设置了凹部122a、124a,由此第1加强部件122与第2加强部件124的与外装件110正交方向的厚度减少。由此,即使在包括交叉部在内的附近区域中,也能够使第1以及第2加强部件122、124与外装件110密接地接合,能够有效地提高碰撞性能。

进而,通过设置交叉部,由此在交叉部处第1加强部件122与第2加强部件124相互约束。由此,例如,在加强部件120的截面为长方形、且短边侧与外装件110密接的情况下,能够抑制在受到碰撞时加强部件120产生倾倒而长边侧接近外装件110的情况。此外,通过将第1以及第2加强部件122、124以编入的方式配置,由此能够抑制在受到碰撞时加强部件120产生倾倒而长边侧接近外装件110的情况。如果缩短交叉部的间隔,则以较短的间隔进行旋转抑制的约束,因此第1以及第2加强部件122、124变得更难以倾倒。由此,能够抑制由于加强部件120的倾倒而引起的截面二次矩的降低,能够抑制耐碰撞性能的降低。

作为冲击吸收部件,为了避免冲击吸收部件相对于载荷输入方向进行刚体移动,而需要被某个部件支承而承受冲击载荷。由于从外装件110输入载荷,因此承受冲击载荷的支承部220、230被设置在加强部件120的与外装件110相反的一侧。此时,在向加强部件120的载荷输入点(交叉部)与支承部220、230较近的情况下,能够以较少的变形得到较高的反作用力。另外,在外装面板100为车门面板的情况下,与车门内面板、前立柱、中立柱、侧边梁等抵接的部位相当于支承部220、230。此外,在车门以外的外装面板100的情况下,也可以使支承部220、230与其他车身构造件抵接而进行支承。例如,如果是顶棚的面板,则与顶棚侧轨、前侧上边梁、后侧上边梁等抵接的部位相当于支承部220、230。此外,关于支承部220、230与这些车身构造件的抵接,也可以设置其他支承部件而经由该支承部件来抵接并进行支承。

在加强部件120中,支承部220、230所支承的被支承部是加强部件120的端部。如此,通过支承加强部件120的端部,能够将加强部件120整体应用于冲击吸收。此外,通过将被支承部与外装件以外的其他部件进行接合,还能够在载荷输入方向以外的方向上约束被支承部,在提高碰撞性能的同时,还能够有助于防止加强部件120的倾倒等。此外,被支承部也可以设置在加强部件120的端部以外。

图12是表示图8的构成中的第1以及第2加强部件122、124的与长度方向正交方向的截面构成的示意图。如图12所示,第1以及第2加强部件122、124具有长方形的截面形状,作为一例为纵16mm左右、横10mm左右。

在图12所示的构成中,长方形的截面形状的短边侧与外装件110密接。由此,为了确保所希望的截面二次矩,能够构成具有效率最高的截面形状的加强部件120。另一方面,当为了确保截面二次矩而将长边侧加长时,在受到冲击时加强部件120容易变得沿着轴向旋转而倾倒。当加强部件120倾倒时,截面二次矩降低,但通过将加强部件120与外装件110接合,能够抑制加强部件120的倾倒(旋转)。

图16是表示对于图12所示的构成将板材130的端部130a和端部130b分别向相反侧折弯的例子的示意图。将图16的形状称为帽形状。

在图16所示的构成中,也是长方形的截面形状的短边侧与外装件110密接。此时,可以将具有端部130a、130b的凸缘侧作为底面而与外装件110密接,也可以将具有端部130a、103b的凸缘侧的相反侧作为底面而与外装件110密接。由此,为了确保所希望的截面二次矩,而能够构成具有效率最高的截面形状的加强部件120。此外,通过将加强部件120与外装件110接合,能够抑制加强部件120的倾倒(旋转)。

接着,基于图14以及图15说明对于本实施方式的外装面板100、将碰撞时考虑在内而评价了弯曲强度的结果。图14是表示在图8的构成中,假定汽车的侧面碰撞(侧碰),并通过载荷施加部件300对外装面板100施加了负载载荷的状态的示意图。

图15是表示在图8的构成中,通过载荷施加部件300施加了载荷的情况下的行程与载荷之间的关系的特性图。在图15中表示为了评价耐碰撞功能而施加比图13大的载荷,使其产生与碰撞时相当的行程的情况。在图15中,虚线所示的特性表示为了进行比较而以相同条件评价了图2所示的现有构造的情况下的特性。此外,实线所示的特性对应于不将第1加强部件122和第2加强部件124与外装件110接合的参考例1,双点划线所示的特性对应于将第1加强部件122和第2加强部件124与外装件110接合了的参考例2。

如图15所示,在参考例1的构成中,特别是在行程为50mm以上的情况下,载荷变得高于现有构造。即,参考例1能够得到高于现有构造的冲击吸收性能。此外,在参考例2的构成中,在行程的大致整个区域中,载荷变得高于现有构造。即,参考例2能够得到比参考例1更高的冲击吸收性能。如上所述,在现有构造中,以使车门防撞杆300等耐冲击部件塑性变形的情况为前提,因此随着行程变大而产生塑性变形。因此,在现有构造中,与参考例1、参考例2相比,与行程的增加相伴随的载荷的增加率变低。另一方面,在参考例1、参考例2中,由于在弹性变形的范围内进行冲击吸收,因此与行程的增加相伴随的载荷的增加率变得比现有构造更大。因此,根据图8的构成例,例如即使在发生了电线杆等与车门面板碰撞的柱侧碰的情况下,也能够得到较大的冲击吸收性能。

模拟的结果,根据图8的构成,在参考例1、参考例2的任一个中,即使行程达到75mm左右也不会发生塑性压曲。因此,根据本实施方式,能够将加强部件120作为弹性部件来吸收碰撞的冲击。另外,在参考例1中,在行程65mm左右、载荷暂时地降低,这是因为由于未将加强部件120与外装件110接合,因此在加强部件120的一部分产生了倾倒。但是,通过如参考例2那样将加强部件120与外装件110进行接合,由此能够抑制这样的加强部件120的倾倒。除此之外,如上所述,通过在加强部件120设置交叉部、或者将方向不同的加强部件120以编入的方式配置,由此也能够抑制加强部件120的倾倒。

图17是表示在图8所示的构成中,在交叉部处将第1加强部件122与第2加强部件124进行接合,并通过载荷施加部件300施加了载荷的情况下的外装面板100的载荷(纵轴)与时间(横轴)之间的关系的特性图。另外,试验对象未将第1加强部件122与第2加强部件124以编入的方式配置。在图17中,为了评价由于交叉部处的第1加强部件122与第2加强部件124的接合而产生的耐碰撞性能,分别表示在交叉部处进行了接合的情况(实线(实施例))和在交叉部处未进行粘接的情况(点划线(参考例))的特性。

如图17所示,在施加载荷之后的初期阶段,在交叉部处进行了接合的情况(实线)和在交叉部处未进行接合的情况(点划线)下的特性中未产生较大差异,但是在外装面板100产生了变形的后期,在交叉部处进行了接合的情况(实线)和在交叉部处未进行接合的情况(点划线)下的特性中产生较大差异。在时刻t=12的时间点,在交叉部处进行了粘接的情况(实线)下,与在交叉部处未进行粘接的情况(点划线)相比,产生2倍左右的载荷。因此,通过在交叉部处将第1加强部件122与第2加强部件124进行粘接,由此能够大幅度提高耐碰撞性能。

另外,第1加强部件122与第2加强部件124也可以不是独立的部件,例如,也可以将1张钢板加工成格子状且截面为薄型的冲压成型品,并使第1与第2加强部件122、124一体化。在该情况下,进行分支的部位成为交叉部。

此外,外装件110以及加强部件120并不限定于钢材,例如也可以由铝等非铁金属等构成。进而,例如也可以通过CFRP来形成外装件110,并在外装件110的背面侧配置相当于第1以及第2加强部件122、124的肋。在该情况下,相当于第1以及第2加强部件122、124的肋也可以一体成型。在该情况下,将进行分支的部位(十字状的部位)视为交叉部。进而,相当于第1以及第2加强部件122、124的肋也可以与外装件110一体成型,在该情况下,相当于第1以及第2加强部件122、124的肋被视为与外装件110接合的部件。

如以上说明的那样,根据本实施方式的加强部件120,能够可靠地提高外装件110的耐冲击性能。进而,根据加强部件120,还能够提高外装件110的抗拉刚性。在以下,对由于加强部件120而产生的抗拉刚性的提高进行说明。

如上所述,第1以及第2加强部件122、124与外装件110接触。由此,由第1以及第2加强部件122、124以及外装件110的轮廓包围的各区域的面积比外装件110整体的面积小,因此在外力作用于外装件110的情况下容易较早地产生张力,因此能够大幅度提高外装件110的抗拉刚性。进而,更优选将外装件110与加强部件120进行接合,在外装件110产生了变形时,通过邻接的加强部件120之间的区域的外装件110较早地产生张力,能够更进一步提高抗拉刚性。

此外,如上所述,通过将加强部件120的屈服应力设为500MPa以上,由此即使在外力作用于加强部件120的情况下,也能够防止产生塑性变形,因此能够有效地确保抗拉刚性而实现轻量化。

此外,加强部件120为,沿着外装件110配置一定程度以上的长度。具体而言,加强部件120在全长的1/3以上的区域中与外装件110密接。通过将加强部件120密接配置于外装件110,由此即使在外装件110的薄壁化程度较大的情况下(例如从原厚度0.7mm薄壁化到0.5mm以下),也能够提高外装面板100的抗拉刚性。更优选为,通过将加强部件120与外装件110密接地接合,由此在外装件110的变形时能够对外装件110作用拉力,而进一步提高外装面板100的抗拉刚性。

特别是,第1加强部件122沿着外装件110的曲率方向在上下方向上配置。由此,能够提高以朝向汽车外侧突出的方式弯曲的凸弯曲部的抗拉刚性。此外,外装件110具有从汽车外侧观察以朝向内侧突出的方式弯曲的凹弯曲部,与凹弯曲部重叠的加强部件120与外装件110密接。与凸弯曲部相比,凹弯曲部对于来自汽车外侧的载荷的抗拉刚性较差,因此通过在该部位密接配置加强部件120,由此能够有效地提高外装面板整体的抗拉刚性。

此外,加强部件120也可以为,与长度方向正交的方向的截面二次矩为15000mm4以下。通过使加强部件120满足与截面二次矩相关的上述条件,能够使加强部件120成为较小的截面形状,即使在为了提高抗拉刚性而配置了多根第1以及第2加强部件122、124的情况下,也不会导致较大的重量增加,能够有效地提高抗拉刚性。对于图8所示那样的从交叉部伸出的加强部件120也可以同样地,使与长度方向正交的方向的截面二次矩为15000mm4以下。当存在交叉部时,从交叉部伸出的加强部件120所夹持的外装件的区域的面积变得比外装面板整面的面积窄,板厚相对于加强部件120所夹持的面积的比例相对地增加,因此能够进一步提高抗拉刚性。因此,通过设置交叉部,能够有效地提高抗拉刚性。

此外,当使交叉部为两处以上时,外装件110的被邻接的加强部件120夹持的各个区域进一步变窄。其结果,板厚相对于各个区域的面积的比例相对地增加,因此能够进一步提高抗拉刚性。由此,能够有效地提高抗拉刚性。

此外,在交叉部处,在第1以及第2加强部件122、124上设置了凹部122a、124a,由此第1加强部件122与第2加强部件124的与外装件110正交方向的厚度减少。由此,即使在包括交叉部在内的附近区域中,也能够使第1以及第2加强部件122、124与外装件110密接或接合,能够有效地提高抗拉刚性。

图13是表示对于图8以及图9,为了评价抗拉刚性而通过模拟得到的压头140的负载载荷与位移量之间的关系的特性图。在图13所示的模拟结果中,表示了外装件110的厚度为0.4mm,不将第1加强部件122和第2加强部件124与外装件110进行接合的情况(参考例1,实线所示的特性),以及将第1加强部件122和第2加强部件124与外装件110进行了接合的情况(参考例2,双点划线所示的特性)。此外,在图13所示的模拟结果中,为了进行比较,还表示了外装件110的厚度为0.7mm且没有加强部件的情况下的特性(点划线),以及外装件110的厚度为0.4mm且没有加强部件的情况下的特性(虚线)。

当前所使用的一般汽车的外装件、即外装面板的厚度为0.7mm左右,相当于点划线的特性。如图13所示,在将第1加强部件122和第2加强部件124与外装件110进行了接合的参考例2(双点划线)中,与外装件110的厚度为0.7mm且没有加强部件的情况下的特性(点划线)相比,能够得到相对于负载载荷的位移量为同等以上的结果。特别是,在参考例2中,当载荷超过80[N]时,与点划线的特性相比,相对于负载载荷的位移量大幅度降低。此外,在不将第1加强部件122和第2加强部件124与外装件110进行接合的参考例1的特性(实线)中,与点划线的特性相比,相对于负载载荷的位移量稍大,但当负载载荷成为200[N]左右时,与点划线的特性相同。因此,根据本实施方式,即使在将外装件110的厚度设为0.4mm而比现状大幅变薄的情况下,也能够可靠地抑制抗拉刚性降低的情况。由此,能够使外装件110的厚度降低到例如0.4mm左右,能够使外装面板100大幅度轻量化。

此外,如图13中虚线的特性所示,在外装件110的厚度为0.4mm且没有加强部件的情况下的特性中,与其他特性相比,相对于负载载荷的位移量显著增大。这表示当按压外装面板时、外装件110会较大地变形。因此,在厚度为0.4mm且没有加强部件的情况下,难以用作为汽车的外装面板。

如以上说明的那样,根据本实施方式,通过将多个第1加强部件122和多个第2加强部件124配置成格子状而与外装件110密接,并利用弹性变形主体来吸收碰撞载荷,由此能够大幅度提高耐碰撞性能。因此,能够提供一种实现轻量化并且耐碰撞性能优异的汽车的外装面板。

此外,通过对于由0.4mm左右的薄板构成的外装件110配置加强部件120并使其与外装件110密接,由此能够大幅度提高抗拉刚性。由此,即使在用户触摸由薄板构成的外装面板100或者用户按压外装面板100的情况下,也能够可靠地抑制外装面板100的变形。

以上,参考附图对本发明的优选实施方式进行了详细说明,但本发明并不限定于该例子。显然,只要是具有本发明所属技术领域的通常知识的人,便能够在权利要求书所记载的技术思想范围内想要各种变更例或修正例,应当理解这些变更例或修正例当然也属于本发明的技术范围。

符号的说明

100:外装面板;110:外装件;120:加强部件;122:第1加强部件;124:第2加强部件。

27页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:混合动力组件的轴流耦合器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!