全双工网络中的全双工扩展器

文档序号:1220562 发布日期:2020-09-04 浏览:5次 >En<

阅读说明:本技术 全双工网络中的全双工扩展器 (Full duplex extender in full duplex network ) 是由 戴维·B·鲍勒尔 克拉克·V·格林 艾哈姆·Al-班纳 于 2018-12-18 设计创作,主要内容包括:在一个实施例中,一种方法在相同频带中接收下游信号和上游信号。下游信号和上游信号被分离成第一路径和第二路径。使用第一路径的下游信号和使用第二路径的上游信号在模拟域中被放大。该方法将下游信号和上游信号彼此隔离,并将下游信号在下游发送给订户设备,并将上游信号向全双工节点发送。(In one embodiment, a method receives a downstream signal and an upstream signal in the same frequency band. The downstream signal and the upstream signal are separated into a first path and a second path. Downstream signals using the first path and upstream signals using the second path are amplified in the analog domain. The method isolates the downstream signal and the upstream signal from each other and transmits the downstream signal downstream to the subscriber device and transmits the upstream signal towards the full duplex node.)

全双工网络中的全双工扩展器

背景技术

全双工通信(诸如全双工(FDX)电缆数据服务接口规范(DOCSIS))是一种数据传送系统,其中,下游流量和上游流量都在相同频带中传送。例如,下游流量可以从头端传送到FDX节点,然后FDX节点将该流量传送到位于下游的订户设备。上游流量在与下游流量相同频带中通过FDX节点从订户设备被传送到头端。

为了传送全双工流量,网络被转换为N+0架构,这意味着网络中的放大器被移除并被FDX节点替换。由于FDX传输与传统模拟放大器不兼容,因此替换了放大器。例如,传统的模拟放大器使用双工滤波器以在上游放大路径和下游放大路径之间提供隔离。双工滤波器防止放大器振荡,但是使用双工滤波器仅仅由于上游和下游通信发生在不同的频带中而起作用。因此,当上游和下游流量在相同频带中传送时,传统模拟放大器将无法使用。

将放大器转换为FDX节点以使用N+0架构可能会显著增加部署网络以使用全双工传输所需的成本和时间线。成本增加是因为FDX节点使用从头端到节点的光纤连接,并且被替换的放大器经由同轴电缆连接而不是经由光纤连接。当FDX节点替换传统的模拟放大器时,提供商需要用光纤替换同轴电缆,这不仅增加了成本,而且用光纤替换同轴电缆也需要花费时间。

发明内容

附图说明

图1描绘了根据一些实施例的用于放大全双工信号的简化系统。

图2描绘了根据一些实施例的系统的更详细的示例。

图3描绘了根据一些实施例的FDX再生器的示例。

图4描绘了根据一些实施例的FDX中继器的示例。

图5A描绘了根据一些实施例的FDX双开关放大器的示例。

图5B描绘了根据一些实施例的FDX双向开关放大器的示例。

图6描绘了根据一些实施例的用于处理全双工信号的方法的简化流程图。

图7示出了根据一个实施例的配置有FDX扩展器的专用计算机系统的示例。

具体实施方式

本文描述的是用于全双工通信系统的技术。在下面的描述中,出于解释的目的,阐述了许多示例和具体细节以便提供对一些实施例的透彻理解。由权利要求书限定的一些实施例可以单独地或与下面描述的其他特征组合地包括这些示例中的一些或全部特征,并且可以进一步包括本文描述的特征和概念的修改和等同形式。

一些实施例提供了用于放大全双工信号的全双工(FDX)扩展器。全双工信号在相同频带中传输上游和下游流量。FDX扩展器可用于全双工网络中的模拟放大。FDX扩展器可以在相同频带中接收下游信号和上游信号,其中,从全双工(FDX)节点接收下游信号,而上游信号则来自订户设备。然后,FDX扩展器将下游信号和上游信号分离为分离的路径。使用第一路径放大下游信号,并且使用第二路径放大上游信号。在一些实施例中,FDX扩展器隔离下游信号和上游信号。理解用于将下游信号和上游信号彼此隔离的不同方法,并且将在下面更详细地描述。放大后,FDX扩展器将下游信号在下游发送到订户设备,并将上游信号发送到FDX节点。FDX扩展器允许在全双工网络中执行放大,而不必用FDX节点替换放大器。例如,可以在全双工系统中维持从FDX节点到FDX扩展器的模拟连接(诸如经由同轴电缆连接),同时继续提供放大功能。

系统概述

图1描绘了根据一些实施例的用于放大全双工信号的方法的简化系统100。系统100包括FDX节点102、扩展器104和订户110。将理解,可以包括网络的其他组件,诸如可以包括其他FDX节点102和扩展器104。此外,尽管未示出,但是头端可以位于FDX节点102的上游。在一些实施例中,FDX节点102可以是远程物理(PHY)设备的一部分,该远程物理(PHY)设备可以被定位成更靠近订户的房屋,诸如位于订户所在邻域中的节点中。重定位的物理设备称为远程物理设备(RPD)。FDX节点102将诸如数字网络(诸如经由光纤)接收的以太网接口之类的数字接口上的分组转换为混合光纤同轴(HFC)网络上的诸如射频(RF)信号之类的模拟信号。FDX节点102经由模拟网络(诸如经由同轴电缆)将RF信号发送到位于订户房屋内的调制解调器。

全双工信号可以包括不同类型的流量,诸如数据和视频。在下游方向上,来自头端的信号通过扩展器104通过FDX节点102发送到订户110。一组订户可以连接到分接头112,该分接头提供与订户110的连接。订户110可以包括订户设备,诸如接收下游信号并发送上游信号的调制解调器。在一些实施例中,调制解调器包括电缆调制解调器,但是可以理解其他设备,诸如网关。在上游方向,订户110通过扩展器104和FDX节点102向头端发送上游信号。

在下游方向上,FDX节点102可以从头端接收下游信号并且使用全双工逻辑106来处理下游信号。如上所述,FDX节点102可以经由数字网络接收分组。然后,FDX节点102将下游信号发送到扩展器104。经由模拟网络发送下游信号。扩展器104然后在模拟域中放大下游信号。同样,在上游方向上,扩展器104接收上游信号,并且可以在模拟域中放大上游信号。然后,扩展器104向头端发送上游信号,该上游信号最终到达FDX节点102。经由模拟网络发送上游信号。

扩展器104在相同频带中接收下游信号和上游信号,该频带可以是包括下游信号和上游信号两者的频率的范围。在一些实施例中,下游信号和上游信号是同时发送的,但是在其他实施例中,可以在不同的时间发送。扩展器104可以使用隔离和放大逻辑108来处理下游信号和上游信号,隔离和放大逻辑108可以分离在相同频带中发送的下游信号和上游信号。然后,隔离和放大逻辑108可以使用第一路径来放大下游信号,并且使用第二路径来放大上游信号。在模拟域中进行放大,同时将下游信号和上游信号彼此隔离。在放大之后,扩展器104可以向订户110发送下游信号,并且向头端发送上游信号。

在一些实施例中,FDX扩展器104可以替换网络中的传统模拟放大器。FDX扩展器104的使用允许在网络中发送全双工流量,而不必用FDX节点102替换传统模拟放大器。而且,FDX节点102和FDX扩展器104之间的连接可以是传输模拟信号,诸如射频(RF)信号,其可以通过同轴电缆而不是光纤被传输。这意味着从FDX节点102到FDX扩展器104的下游方向上的信号可能在模拟域中。如果使用了光纤,则从FDX节点102到另一个FDX节点的通信可能在数字域中,这将要求如在背景技术中所述,两个FDX节点102之间替换同轴电缆。

图2描绘了根据一些实施例的系统100的更详细的示例。在网络中,包括将信号耦合到订户110的各种分接头112-1至112-18。另外,可以在各种位置中包括不同类型的FDX扩展器104,以在网络中的不同点处进行放大。

FDX节点102使用全双工逻辑106在下游方向上将数字信号转换为模拟信号,并且在上游方向上将模拟信号转换为数字。在下游方向上,FDX节点102中的全双工逻辑106可以包括将数字信号转换为模拟信号的数模转换器(DAC)。抗混叠滤波器204可以衰减较高的频率,以防止混叠分量被采样。然后,放大器206放大该信号。定向耦合器208将模拟下游信号耦合到分接头112-1。

在上游方向上,定向耦合器208接收模拟上游信号并将该信号耦合到放大器210,该放大器210放大上游信号。然后,模数转换器212将模拟信号转换为数字。然后可以将数字上游信号发送到头端。尽管描述了这种全双工逻辑,但是应当理解,可以理解全双工电路的其他变化。

在一些实施例中,可以使用诸如FDX再生器104-1、FDX中继器104-2和/或FDX切换放大器104-3的三种不同类型的扩展器来实现扩展器104。尽管描述了扩展器104的这种配置,但是将理解,FDX再生器104-1、FDX中继器104-2和FDX切换放大器104-3可以被放置在网络中的不同位置,并且将理解其他实现。例如,不需要在网络中实现所有三种实现,诸如可以仅使用该实现中的一种或两种。

在一个路径中,FDX节点102可以耦合到FDX中继器104-2,然后FDX中继器104-2耦合到FDX开关放大器104-3。第二路径将FDX节点102耦合到FDX中继器104-2,并且第三路径将FDX节点102耦合到FDX再生器104-1。FDX中继器104-2和FDX再生器104-1可以进一步耦合到网络中更下游的其他FDX中继器或再生器或开关放大器。

FDX扩展器104可以位于网络中的N+1、N+2等位置。例如,FDX中继器104-2可以位于网络的N+1位置,而FDX切换放大器104-3可以位于N+2位置。N+X表示法(该X是数字)表示FDX中继器104-2正在执行从FDX节点102开始的第一级放大,而FDX切换放大器104-3正在执行从FDX节点102开始的第二级放大。X是放大信号的节点数。

FDX再生器104-1、FDX中继器104-2和FDX开关放大器104-3在提供隔离的同时提供了下游和上游信号的放大。FDX再生器104-1和FDX中继器104-2可以隔离下游和上游信号,并且同时放大下游和上游信号。然而,FDX开关放大器104-3可以放大以时分双工(TDD)方式发送的下游和上游信号。即,在某个时间,订户110可以处于发射或接收模式。相反,当订户同时处于发射和接收模式时,FDX再生器104-1和FDX中继器104-2可以处理信号。例如,在相同时间段期间,第一订户可能正在接收下游传输,第二用户可能正在发送上游传输。下游和上游传输在相同时间段期间由FDX再生器104-1或FDX中继器104-2处理。

在网络中,当网络中的调制解调器正在传输,其他调制解调器看到该传输并将该传输视为噪声干扰时,会产生干扰组。干扰的大小基于调制解调器的传输功率和每个调制解调器对之间的隔离度而变化。对于某些调制解调器对,该干扰水平将严重限制受害调制解调器(例如,接收干扰的调制解调器)的下游接收信噪比(SNR)。在这种情况下,调制解调器对将分配给相同干扰组,并且不允许同时发射和接收。由于单个调制解调器可能会限制许多调制解调器的接收SNR,因此所有这些调制解调器都分配给相同干扰组。通常,这些干扰组位于彼此附近,并且具有相对较少的隔离网络元件。在其中在干扰组中的调制解调器被限制为在不同的时间进行传输的此示例中,可以使用FDX开关放大器104-3,而不会丢失网络的任何全双工功能。也就是说,FDX交换放大器104-3可能永远不会同时处理全双工流量,并且因此可以在对同时在上游和下游方向上接收和发送全双工流量没有任何负面限制的情况下使用。

在一些示例中,网络分析可以用于确定使用哪种类型的FDX扩展器。例如,FDX再生器104-1可以在网络中的耦合到大量订户110的位置中使用。而且,当耦合到限于TDD通信的少量订户110时,可以使用FDX开关放大器104-3。

现在,下面将更详细地描述不同类型的FDX扩展器104。

FDX再生器104-1

图3描绘了根据一些实施例的FDX再生器104-1的示例。尽管描述了FDX再生器104的这种配置,但是应当理解,可以理解所描述的逻辑的变化。在FDX再生器104-1中,上游路径和下游路径可以包含相同的功能元件。

FDX再生器104-1包括被称为FDX调制解调器功能300和FDX主功能301的两个接口。FDX调制解调器功能300执行实现调制解调器的功能。另外,FDX主功能301可以执行由FDX节点102执行的功能。FDX调制解调器功能300和FDX主功能301的使用在FDX再生器104-1的网络侧接口上提供调制解调器接口,并且FDX主功能301在订户侧接口上提供与FDX节点102中包含的类似的接口。

FDX再生器104-1包括下游路径和上游路径。在下游方向上,定向耦合器302接收下游信号,并且可以将到下游路径中的下游信号耦合到放大器304。放大器302在模拟域中放大信号。放大将被描述为在FDX调制解调器功能300和FDX主功能301两者中执行,但是将理解的是,放大可以仅在FDX调制解调器功能300和FDX主功能301之一中执行。例如,仅在发射侧执行放大,诸如在下游方向上在FDX主功能301中以及在上游方向上在FDX调制解调器功能300中。

在放大之后,模数转换器306将模拟信号转换为数字信号。然后,解码器/控制器308可以对信号进行解码,这完全解构了信号,并且然后重构了信号。解构可能会为数字信号生成单独的码字。解码器/控制器308将表示出在打算被重发的波形的时间上的瞬时功率的码字转换为在该波形内的被编码的基本数据内容。在ADC 306的输入端存在一个模拟波形,该波形代表随着通过网络发送的复合信号的功率。ADC306在一系列特定时刻测量该功率,并报告与时间样本中的瞬时功率成比例的一系列码字。解码器/控制器308执行获取这些样本并将其解调为基带信号的附加步骤,从而其产生信号的实际数据内容。

解码器/控制器308然后对数据进行重新调制/重新编码,然后将数据作为一系列码字馈送到数模转换器(DAC)310,该一系列码字再次将在时间上的瞬时功率表示为一系列码字。DAC 310接收码字,并且将码字转换成具有与码字值匹配的功率的模拟波形。模数转换和数模转换用于隔离网络侧接口和订户侧接口。即,在下游路径或上游路径中,接收器侧与发射器侧隔离。

然后,抗混叠滤波器312可以衰减较高的频率,以防止混叠分量被采样。放大器314然后可以放大信号。定向耦合器316沿下游方向将信号耦合到订户110。

在上游方向上,定向耦合器316可以接收源自订户110的上游信号,并且将上游信号耦合到放大器318,该放大器318放大该信号。然后,模数转换器320将模拟信号转换为数字。解码器/控制器308然后可以对信号进行解码,然后对信号进行编码,这对信号进行解构并重构信号。数模转换器322将数字信号转换为模拟。抗混叠滤波器324接收信号并衰减较高的频率。放大器326然后可以放大信号。定向耦合器302然后可以在上游方向上耦合上游信号。

FDX再生器104-1还可通过消除串扰来隔离下游路径和上游路径。例如,串扰消除逻辑328可以消除在下游方向和上游方向之间发生的任何串扰,诸如防止FDX再生器104-1的发射器破坏出现在FDX再生器104-1的接收器上的信号。当通过定向耦合器316在下游发送下游信号时发生串扰,但随后通过放大器318将一些下游信号引向上游方向。类似地,当通过定向耦合器302向上游发送上游信号时,会发生串扰,但随后通过放大器304将一些上游信号引向下游方向。串扰逻辑328可以通过根据频率和相移创建信号的逆来消除沿上游方向发送的少量下游信号。并且,串扰逻辑328类似地消除沿下游方向发送的上游信号。串扰逻辑328在下游信号和上游信号之间提供隔离。

可以在数字或模拟域中执行串扰消除。即,串扰逻辑328可以在将模拟信号转换成数字信号之后执行串扰消除,或者可以在将模拟信号转换成数字信号之前执行串扰消除。在FDX再生器104-1中,在解码器/控制器308的输入和输出侧都执行串扰消除,以防止FDX再生器104-1的发射器破坏在FDX再生器104-1的接收器上出现的信号。需要在两侧进行消除,因为串扰可能会在解码器/控制器308的两侧发生。

FDX中继器104-2

图4描绘了根据一些实施例的FDX中继器104-2的示例。在该示例中,上游路径和下游路径包括相同的功能元件。FDX中继器104-2和FDX再生器104-1之间的一个区别是数字化信号没有在FDX中继器104-2中被完全解构和重构。而是,数字化信号包括整个频谱的数字码字,而不是如关于FDX再生器104-1所描述的单独码字。数字化信号可以以数字格式包括在原始频谱中,并且代表整个频谱的功率。

与FDX再生器104-1相似,FDX中继器104-2包括网络侧接口和订户侧接口,其分别被展示为FDX调制解调器功能400和FDX主功能401。FDX中继器104-2还包括下游路径和上游路径。在下游方向上,定向耦合器402接收下游信号,并且可以将到下游路径中的下游信号耦合到放大器404。放大器404在模拟域中放大信号。将会理解,不需要如关于FDX再生器104-1所描述的那样在ADC和DAC转换的两侧上都执行放大。

在放大之后,模数转换器406将模拟信号转换为数字。然后,可以将数字信号发送到数模转换器(DAC)408以将数字信号转换为模拟。与FDX再生器一样,模数转换和数模转换用于隔离网络侧接口和订户侧接口。即,在下游路径或上游路径中,接收器侧与发射器侧隔离。

然后,抗混叠滤波器410可以衰减较高的频率,以防止混叠分量被采样。放大器412然后可以在模拟域中放大信号。定向耦合器414在下游方向上耦合信号。

在上游方向上,定向耦合器414可以接收上游信号并将上游信号耦合到放大器416,该放大器416在模拟域中放大该信号。然后,模数转换器418将模拟信号转换为数字。数模转换器420将数字信号转换为模拟。抗混叠滤波器422接收信号并衰减较高的频率。放大器424然后可以在模拟域中放大信号。定向耦合器402在上游方向上耦合上游信号。

FDX中继器104-2还可以通过消除串扰来隔离下游路径和上游路径。例如,串扰消除逻辑426可以通过消除串扰来隔离上游路径和下游路径。串扰消除逻辑426可以消除在模数转换器406和数模408之间以及在模数转换器418和数模转换器420之间的数字化信号中的串扰。串扰逻辑426可以执行下游路径和上游路径两者上的串扰消除。串扰消除逻辑426可以类似于FDX再生器104-1的串扰消除逻辑328。消除方法与在串扰消除逻辑426之间类似,可以类似串扰消除逻辑328,但是不必相同。在一些实施例中,FDX再生器104-1具有用于如何可以实现消除的选项的超集。FDX中继器104-2可以具有这些选项的子集。在一些实施例中,可以使用提供足够的串扰抑制的任何形式的消除。

在FDX中继器104-2和FDX再生器104-1中,可以在模拟域、数字域或部分在模拟域中执行消除,以便减少相对于消息信号的串扰幅度,然后在数字域中执行进一步消除。

FDX开关放大器104-3

图5A和5B描绘了根据一些实施例的FDX开关放大器104-3的不同示例。图5A包括分开的上游和下游放大器,并且图5B包括在两个方向之间切换的单个放大器。FDX双开关放大器104-3可以在时分双工(TDD)模式下运行。在该示例中,不同时处理上游信号和下游信号。因此,FDX双开关放大器104-3可以被放置至网络的末端,并耦合到发送或接收相互干扰的信号的订户110。在该示例中,订户110不能同时发射或接收,并且因此FDX双开关放大器104-3的TDD模式是可接受的,因为正在使用TDD发送上游和下游信号。

图5A描绘了根据一些实施例的FDX双开关放大器104-3的示例。调制解调器/控制器512可以控制开关504和508,以将上游信号耦合到上游路径,并将下游信号耦合到下游路径。例如,调制解调器/控制器512基于耦合到FDX双开关放大器104-3的订户110是处于发射模式还是接收模式来控制开关504和508。调制解调器/控制器512接收下游信号,并确定订户处于接收模式。当没有接收到下游信号时,调制解调器/控制器512确定订户处于发射模式。当订户110被设置为在时隙中接收下游信号时,调制解调器/控制器512控制开关504和508将下游信号耦合到放大器506。类似地,当订户110正在发射上游信号时出现时隙的时候,调制解调器/控制器512控制开关504和508将上游信号耦合到放大器510。

在下游方向上,FDX双开关放大器104-3可以在定向耦合器502处接收下游信号。定向耦合器502然后可以将下游信号发送到开关504,诸如射频(RF)开关。调制解调器/控制器512控制开关504以将下游信号耦合到下游放大器506,其然后可以在模拟域中放大信号。然后将下游信号发送到开关508。调制解调器/控制器512控制开关508以连接到下游路径,并将下游信号在下游方向耦合到订户110。

在上游方向上,调制解调器/控制器512控制开关508以将上游信号耦合到放大器510。放大器510然后在模拟域中放大信号。调制解调器/控制器512控制开关508,以然后将上游信号耦合到定向耦合器502。然后,定向耦合器502在上游方向向FDX节点102发送上游信号。

在以上配置中,两个不同的放大器和路径分别用于放大下游信号和上游信号。这使用多个放大器,但仅使用两个开关,这可以简化开关逻辑。在此示例中,上游和下游路径由TDD隔离,并且不使用串扰消除或模数/数模转换。

图5B描绘了根据一些实施例的FDX双向开关放大器104-3的示例。在该实施例中,使用单个放大器,并且控制开关以将上游和下游信号通过不同的路径耦合到相同放大器526。下游和上游路径的一部分可以经过类似的组件,诸如开关和放大器526。但是,所采取的总路径在下游路径和上游路径之间是不同的。即,与上游路径相比,下游路径通过不同的开关序列耦合。

调制解调器/控制器532在订户110处于发射模式或接收模式的不同时隙中控制开关522、524、528和530。在一示例中,接收下游信号的调制解调器/控制器532可以使用下游信号来确定订户110何时处于发射模式或接收模式。例如,当接收到下游信号时,调制解调器/控制器532从定向耦合器520接收信号,并确定该时隙是针对处于接收模式的订户110的。然后,调制解调器/控制器532控制开关522、524、528和530以将信号耦合到下游路径。当没有接收到下游信号时,调制解调器/控制器532控制开关522、524、528和530以将信号耦合到上游路径。

在下游方向上,定向耦合器520可以将下游信号耦合到开关522。调制解调器/控制器532控制开关522以将信号耦合到开关524。然后,调制解调器/控制器532控制开关524以将信号耦合至放大器526。放大器526然后可以在模拟域中放大信号并将该信号耦合到开关528。调制解调器/控制器532控制开关528将信号耦合到开关530,该开关随后向下游发送信号。

在上游方向上,调制解调器/控制器532控制开关530以将信号耦合至开关524。从开关524,调制解调器/控制器532控制开关524以将上游信号耦合至放大器526以进行放大。然后,调制解调器/控制器532控制开关528和开关522以将上游信号发送到定向耦合器520。

方法流程

图6描绘了根据一些实施例的用于处理全双工信号的方法的简化流程图600。在602,FDX扩展器104接收相同频带中的下游信号和上游信号。如上所述,在一些实施例中,可以同时接收下游信号和上游信号。在其他实施例中,可以在不同时间接收下游信号和上游信号。

在604处,FDX扩展器104将下游信号和上游信号分离为分离的路径。如上所述,不同类型的FDX扩展器104可以不同地分离下游信号和上游信号。

在606处,FDX扩展器104使用第一路径放大下游信号并且使用第二路径放大上游信号。在一些示例中,可以使用不同的放大器来放大下游信号和上游信号。但是,可以使用相同的放大器来放大下游信号和上游信号,但是可以使用不同的路径将下游信号和上游信号耦合到放大器。

在608处,FDX扩展器104将下游信号发送给订户设备,并将上游信号发送给FDX节点102。将理解的是,向订户设备发送下游信号可以通过其他FDX扩展器104、分接头112或其他网络设备发送信号。另外,向FDX节点102发送上游信号可以将上游信号发送给其他FDX扩展器104。

因此,FDX扩展器104在全双工网络中提供放大而不必将每个放大器转换为FDX节点102。这允许网络使用放大而无需将网络转换为N+0网络。FDX扩展器104使用不同的技术隔离上游和下游信号。例如,串扰消除逻辑可以被使用,和/或是TDD模式。

系统

图7示出了根据一个实施例的配置有FDX扩展器104的专用计算机系统700的示例。计算机系统700包括总线702、网络接口704、计算机处理器706、内存708、存储设备710和显示器712。

总线702可以是用于传递信息的通信机制。计算机处理器706可以执行存储在内存708或存储设备708中的计算机程序。可以使用任何合适的编程语言来实现一些实施例的例程,包括C、C++、Java、汇编语言等。可以采用不同的编程技术,例如过程或面向对象。该例程可以在单个计算机系统700或多个计算机系统700上执行。此外,可以使用多个计算机处理器706。

内存708可以存储用于执行上述技术的指令,诸如源代码或二进制代码。内存708还可用于在要由处理器706执行的指令的执行期间存储变量或其他中间信息。内存708的示例包括随机存取存储器(RAM)、只读存储器(ROM)或两者。

存储设备710还可以存储用于执行上述技术的指令,诸如源代码或二进制代码。存储设备710可以另外存储由计算机处理器706使用和操纵的数据。例如,存储设备710可以是由计算机系统700访问的数据库。存储设备710的其他示例包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘驱动器、磁盘、光盘、CD-ROM、DVD、闪存、USB存储卡或计算机可以从中读取的任何其他介质。

内存708或存储设备710可以是供计算机系统700使用或与其结合使用的非暂时性计算机可读存储介质的示例。该非暂时性计算机可读存储介质包含用于控制被配置为执行一些实施例描述的功能的计算机系统700的指令。当由一个或多个计算机处理器706执行时,指令可以被配置为执行在一些实施例中描述的内容。

计算机系统700包括用于向计算机用户显示信息的显示器712。显示器712可以显示用户用来与计算机系统700交互的用户界面。

计算机系统700还包括网络接口704,以通过诸如局域网(LAN)或广域网(WAN)的网络提供数据通信连接。也可以使用无线网络。在任何这样的实现中,网络接口704发送和接收电、电磁或光信号,其携带表示各种类型的信息的数字数据流。

计算机系统700可以通过网络714上的网络接口704来发送和接收信息,该网络714可以是内联网或因特网。计算机系统700可以通过网络714与其他计算机系统700交互。在一些示例中,客户端-服务器通信通过网络714发生。而且,一些实施例的实现可以通过网络714分布在计算机系统700上。

一些实施例可以在非暂时性计算机可读存储介质中实现,以由指令执行系统、装置、系统或机器使用或与其结合使用。该计算机可读存储介质包含用于控制计算机系统以执行由一些实施例描述的方法的指令。该计算机系统可以包括一个或多个计算设备。当由一个或多个计算机处理器执行时,指令可以被配置为执行在一些实施例中描述的内容。

如本文的说明书和所附的整个权利要求书中所使用的,除非上下文另外明确指出,否则“一”、“一种”和“该”包括复数引用。而且,如本文的说明书和所附的整个权利要求书中所使用的,除非上下文另外明确指出,否则“在...中”的含义包括“在...中”和“在...上”。

上面的描述示出了各种实施例以及一些实施例的方面可以如何被实现的示例。以上示例和实施例不应被认为是仅有的实施例,而是被呈现以说明如所附权利要求所限定的一些实施例的灵活性和优点。基于以上公开和所附权利要求,可以采用其他布置、实施例、实现方式和等同方案,而不脱离如权利要求所限定的范围。

20页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用户终端以及无线通信方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!