一种氢气传感器及其制备方法

文档序号:1228032 发布日期:2020-09-08 浏览:7次 >En<

阅读说明:本技术 一种氢气传感器及其制备方法 (Hydrogen sensor and preparation method thereof ) 是由 谢波 丁伯胜 王一涛 于 2020-06-23 设计创作,主要内容包括:本发明涉及一种氢气传感器及其制备方法,包括氢气气敏膜、导电电极和绝缘衬底,所述氢气气敏膜附着于绝缘衬底表面,通过导电电极测量氢气气敏膜的电阻或导电值,所述氢气气敏膜包括至少一层钯基纳米粒子组装薄膜和至少一层金属有机物框架涂层,所述金属有机物框架涂层将钯基纳米粒子组装薄膜完全包裹。本发明中金属有机物框架涂层材料的多孔结构使其能在一定程度上隔离较大尺寸的气体分子,提高氢气气敏的选择性。此外,由于金属有机物框架材料对钯或合金粒子之间的表面修饰作用,还能提高纳米粒子气敏膜对氢气的响应值。(The invention relates to a hydrogen sensor and a preparation method thereof, and the hydrogen sensor comprises a hydrogen gas-sensitive film, a conductive electrode and an insulating substrate, wherein the hydrogen gas-sensitive film is attached to the surface of the insulating substrate, the resistance or the conductive value of the hydrogen gas-sensitive film is measured by the conductive electrode, the hydrogen gas-sensitive film comprises at least one layer of palladium-based nanoparticle assembly film and at least one layer of metal organic framework coating, and the palladium-based nanoparticle assembly film is completely wrapped by the metal organic framework coating. The porous structure of the metal organic framework coating material can isolate gas molecules with larger size to a certain extent, and the selectivity of hydrogen gas sensitivity is improved. In addition, the metal organic framework material can modify the surfaces of palladium or alloy particles, so that the response value of the nano particle gas-sensitive film to hydrogen can be improved.)

一种氢气传感器及其制备方法

技术领域

本发明涉及气体传感技术领域,特别涉及一种钯基纳米粒子组装薄膜@金属有机物框架复合氢气气敏膜纳米粒子在氢气传感器上的构筑与应用。

背景技术

氢气作为能源的一种形式,具有高的燃烧效率,且产物水具有无污染等优点,有潜力替换传统的化石燃料。然而,氢气作为一种易燃易爆气体,在生产、储存和使用过程中存在安全隐患问题,且氢气属于无色、无嗅、无味气体,在发生氢气泄漏时,无法被人的感官系统所发觉。因此,开发具备实际应用价值的氢气传感技术是实现氢能规模化应用的重要安全保障。目前,基于量子隧道效应的钯(palladium,Pd)基纳米结构氢气传感器以其优异的传感性能受到了学界和业界的广泛关注(参见Sensors, 19 (2019) 4478–4518;Sensorsand Actuators B: Chemical, 255 (2018) 1841–1848;ACS Applied Materials &Interfaces, 10 (2018) 44603–44613;CN 200910028487.3)。然而,此类传感器仍然存在传感选择性较差的共性技术难题,这限制了其商用化进程。一种提高传感选择性的思路是在钯基敏感材料表面设置隔离层,通过隔离层的微孔结构过滤干扰气体成分,一个典型的例子是用聚甲基丙烯酸甲酯(PMMA)有机膜包覆钯纳米粒子薄膜,实现了对氢气的高选择性响应(参见ACS Applied Materials & Interfaces, 9 (2017) 27193–27201)。然而,有机物的包裹在实现隔离干扰气体的同时也对传感器响应灵敏度和响应速度造成了一定的负面影响。如何在不降低传感性能的前提下,解决钯基氢气传感器的响应选择性较差的问题仍然是一项富有挑战性的任务。

发明内容

本发明的目的在于克服上述现有技术的不足,提供一种氢气传感器,实现氢气响应选择性和响应性能双优化的目的。

为实现上述目的,本发明提出了一种氢气传感器,包括氢气气敏膜、导电电极和绝缘衬底,所述氢气气敏膜附着于绝缘衬底表面,通过导电电极测量氢气气敏膜的电阻或导电值,所述氢气气敏膜包括至少一层钯基纳米粒子组装薄膜和至少一层金属有机物框架涂层,所述金属有机物框架涂层将钯基纳米粒子组装薄膜完全包裹,且钯基纳米粒子组装薄膜嵌埋于金属有机物框架涂层中。

本发明的创新点在于:由于金属有机物框架涂层具有可调控孔道结构,具有气体分离的巨大优势,本发明将金属有机物框架和钯基纳米粒子组装薄膜以完全包裹和嵌埋的形式相结合组成氢气气敏膜,并将该氢气气敏膜应用于氢气传感器上,当上述氢气气敏膜接触到一定浓度的氢气时,氢气分子会透过金属有机物框架涂层,并且进一步通过扩散溶解在钯基纳米粒子组装薄膜中,造成晶格膨胀,改变组装薄膜中粒子间的面间距,导致薄膜整体的电阻或电导值发生变化,提高纳米粒子的化学活性,能显著增强对氢气响应的灵敏度和响应速度;此外,由于金属有机物框架涂层的孔道结构能够有效的过滤其他气体,使纳米粒子表面能暴露更多的活性位点,进而提升器件的响应选择性和传感性能;其中纳米粒子点阵中量子隧穿是主要的导电机制,纳米粒子数密度要大于渗流阈值,确保通过组装薄膜中的电流能被测出。

作为优选,还包括至少一层有机高分子涂层,所述有机高分子涂层覆盖在金属有机物框架涂层表面。通过设置有机高分子涂层,用于包覆钯基纳米粒子组装薄膜和金属有机物框架涂层,对氢气气敏膜表面形成稳定坚固的薄膜结构,并进一步提高传感选择和起到一定的防水防湿效果。

作为优选,所述有机高分子涂层的厚度为1~100nm,该厚度的有机高分子涂层具有较好氢气透过性,例如,聚甲基丙烯酸甲酯、聚二甲基硅氧烷、聚乙烯吡咯烷酮等。

作为优选,所述钯基纳米粒子组装薄膜中的纳米粒子尺寸为1~50nm纳米粒子。

作为优选,所述金属有机物框架涂层的孔径大于氢气分子的动力学尺寸,金属有机物框架涂层起到过滤气体分子提高传感选择性的作用,通过将其孔径设置为大于氢气分子的动力学尺寸(0.29nm),例如,ZIF-8和ZIF-67等,使氢气能通过扩散机制与钯基纳米粒子组装薄膜发生相互作用,能达到氢气分子在纳米粒子表面的选择性吸附,使传感器获得较高的选择性。此外,由于金属有机物框架涂层对纳米粒子表面的化学修饰作用,使其化学活性增强,因此,也提高钯基纳米粒子组装薄膜的氢传感性能。

一种氢气传感器的制备方法,所述气敏膜的制备过程包括以下步骤:(1)将金属有机物框架涂层覆盖在钯基纳米粒子组装薄膜表面,使钯基纳米粒子组装薄膜嵌埋于金属有机物框架涂层中;

(2)将有机高分子溶液覆盖在金属有机物框架涂层表面,得到复合氢气气敏膜。

作为优选,所述钯基纳米粒子组装薄膜的制备过程包括以下步骤:

采用磁控等离子体气体聚集法制备钯基纳米粒子,溅射气为氩气,缓冲气为氩气,将钯基纳米粒子沉积于带有一对导电电极绝缘衬底表面,钯基纳米粒子的覆盖率通过检测沉积时电极两端的电流值确定。

本发明的有益效果:本发明通过钯基纳米粒子组装薄膜、金属有机物框架涂层和有机高分子涂层相互结合形成的氢气气敏膜,对氢气具有良好的选择性,同时金属有机物框架涂层对钯基纳米粒子组装薄膜的包覆还进一步增加了氢气传感性能,提高氢气响应选择性和响应性能,提高氢气传感器件的性能;有机高分子涂层对氢气气敏膜表面形成稳定坚固的薄膜结构,并进一步提高传感选择和起到一定的防水防湿效果。

发明的特征及优点将通过实施例及附图进行详细说明。

附图说明

图1是本发明的结构示意图。

图2是气敏膜实时电流响应的曲线图。

图3是气敏膜响应值的示意图。

图4是气敏膜选择性响应值的示意图。

1-氢气气敏膜、2-导电电极、3-绝缘衬底、11-钯基纳米粒子组装薄膜、12-金属有机物框架涂层、13-有机高分子涂层。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明了,下面通过实施例,对本发明进行进一步详细说明。但是应该理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。

如图1所示,本发明一种氢气传感器,包括氢气气敏膜1、导电电极2和绝缘衬底3,氢气气敏膜1包括至少一层钯基纳米粒子组装薄膜11、至少一层金属有机物框架涂层12和至少一层有机高分子涂层13,金属有机物框架涂层12将钯基纳米粒子组装薄膜11完全包裹,且钯基纳米粒子组装薄膜11嵌埋于金属有机物框架涂层12中,提高氢气响应选择性和响应性能,金属有机物框架涂层12附着于绝缘衬底3表面,通过两侧的一对导电电极2测量氢气气敏膜1的电阻或导电值,有机高分子涂层13覆盖在金属有机物框架涂层12表面,对氢气气敏膜1表面形成稳定坚固的薄膜结构,并进一步提高传感选择和起到一定的防水防湿效果。

为了更好的理解本发明,本发明中的钯基纳米粒子组装薄膜11、金属有机物框架12、有机高分子溶液和氢气气敏膜1的制备如下:

(1)钯基(Pd)纳米粒子组装薄膜11的制备:采用磁控等离子体气体聚集法制备钯基纳米粒子,溅射气为氩气,缓冲气为氩气,溅射功率为20~30w均可,将Pd纳米粒子沉积于带有一对导电电极2绝缘衬底3表面,纳米粒子的覆盖率通过检测沉积时电极两端的电流值确定。

(2)金属有机物框架(MOF)的制备:以MOF中一类沸石咪唑酯骨架结构材料(Zeolitic Imidazolate Frameworks, ZIFs)的ZIF-8为例,采用化学合成的方法,将一定量的Zn(NO3)2·6H2O和2-甲基咪唑溶解于甲醇溶剂中,并进行磁力搅拌数小时,使其反应完全,后续再进行多次离心、洗涤操作。

(3)有机高分子溶液的制备:以聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)为例:将不同分子量的PMMA粉末溶解于苯甲醚溶剂中,通过控制加入PMMA的质量,可配制不同质量百分数的PMMA溶液。

(4)一种具有复合材料层结构的Pd纳米粒子组装薄膜的制备:使用台式匀胶机,转速控制在1000~4000 r/min,将ZIF-8纳米晶体通过旋涂方法覆盖在Pd纳米粒子表面,使Pd纳米粒子嵌埋于MOF中,再将PMMA溶液使用旋涂工艺覆盖在ZIF-8涂层的表面,得到[email protected]@PMMA复合氢气气敏膜1。

[email protected]@PMMA复合氢气气敏膜1的性能进行测试。

(1)气敏膜的氢气响应测试:将气敏膜置于腔体中并通入一定量氢气,在两端电极施加偏压,分别测量Pd纳米粒子、具有ZIF-8涂层的Pd纳米粒子和具有PMMA、ZIF-8涂层的Pd纳米粒子组装薄膜的电流值。电流值的变化反映出气敏膜对氢气的响应性能,其中,响应值=(I H2I 0) /I 0 ×0.9×100%,如图2和图3分别示出20 sccm流量下,气敏膜对6000 ppm氢气浓度的实时电流响应曲线和响应值。可以看出含有ZIF-8涂层的复合膜的氢气响应值明显高于单质钯纳米粒子薄膜。

(2)气敏膜的氢气选择性测试:一氧化碳(CO)是很容易导致Pd中毒失去响应能力的干扰气体。为此,在腔体中通入一定量氢气的同时,通入一定量的CO,在两端电极施加偏压,分别测量Pd纳米粒子、具有PMMA、ZIF-8涂层的Pd纳米粒子气敏膜的电流值,图4示出20sccm流量下,气敏膜对6000 ppm氢气浓度和1% CO浓度选择性响应值。结果显示,Pd纳米粒子薄膜在通入CO的情况下,对氢气的响应值明显下降约30%;而带有ZIF-8和PMMA涂层的复合薄膜在通入CO的情况下,响应值仅略有下降。说明该复合气敏膜具备较好的CO隔离性能,体现了较好的氢气选择性。

由此可见,具有该复合气敏膜的氢气传感器不仅能够提高氢气的的传感性能,提高氢气响应选择性和响应性能,同时还具有一定的防水防湿效果。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种 1,8-萘二胺修饰电极的制备方法及其在银离子检测中的应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类