一种复合载体钌基催化剂在乙炔氢氯化反应中的应用

文档序号:1233990 发布日期:2020-09-11 浏览:13次 >En<

阅读说明:本技术 一种复合载体钌基催化剂在乙炔氢氯化反应中的应用 (Application of composite carrier ruthenium-based catalyst in acetylene hydrochlorination ) 是由 王小艳 宋晓玲 周军 李国栋 陈万银 李静 张学鲁 郑伟玲 庞晓东 赵忠峰 司江 于 2020-06-22 设计创作,主要内容包括:本发明公开了一种复合载体钌基催化剂在乙炔氢氯化反应中的应用,该催化剂的复合载体由磷/膦酸锆浸渍负载于活性炭上构成,其主要制备过程为用水溶解锆前驱体,加入除灰干燥的活性炭,充分搅拌浸渍,后滴加磷/膦酸溶液,充分搅拌静置,水洗干燥焙烧制备而成。将该载体浸渍负载三氯化钌、醋酸钌、三联吡啶氯化钌中任意一种制备得到乙炔氢氯化反应无汞钌基催化剂。本发明所制备的催化剂具有活性高、选择性好,生产方法简单、对环境友好等特点,为进一步电石法聚氯乙烯行业无汞化工业进程再添新动力。(The invention discloses an application of a composite carrier ruthenium-based catalyst in acetylene hydrochlorination, wherein the composite carrier of the catalyst is prepared by impregnating and loading phosphorus/zirconium phosphonate on active carbon, and the preparation process mainly comprises the steps of dissolving a zirconium precursor by water, adding ash-removed and dried active carbon, fully stirring and impregnating, then dropwise adding a phosphorus/phosphonic acid solution, fully stirring and standing, washing, drying and roasting. The carrier is dipped and loaded with any one of ruthenium trichloride, ruthenium acetate and ruthenium terpyridyl chloride to prepare the mercury-free ruthenium-based catalyst for acetylene hydrochlorination. The catalyst prepared by the invention has the characteristics of high activity, good selectivity, simple production method, environmental friendliness and the like, and is a new power for further adding a mercury-free industrial process in the calcium carbide process polyvinyl chloride industry.)

一种复合载体钌基催化剂在乙炔氢氯化反应中的应用

技术领域

本发明属于催化技术领域,具体涉及一种磷/膦酸锆复合载体钌基催化剂的制备及其在乙炔氢氯化反应中的应用。

背景技术

聚氯乙烯是世界五大合成树脂之一,广泛应用于工业、农业、建材等国民经济重要领域。合成方法主要有电石乙炔法、乙烯法和二氯乙烷裂解法、乙烷氧氯化法等。我国能源结构决定了电石法聚氯乙烯生产工艺长期占据着主导地位。

氯乙烯由乙炔和氯化氢为原料,HgCl2/AC为催化剂反应合成。氯化汞易挥发,属剧毒物质,对环境及操作人员的健康都有负面影响,且含汞污染物的治理回收较难,对行业的可持续发展和创建环境友好型经济造成了巨大危害,国际社会出台限汞条约、欧盟全面限制汞交易、国内汞资源匮乏等,使得电石法聚氯乙烯行业面临生存危机。

无汞催化剂的开发是解决问题的根本途径。近几年有关乙炔氢氯化无汞催化剂的研发方向归纳总结主要分为:贵金属无汞催化剂、非贵金属无汞催化剂、非金属无汞催化剂等。目前非贵金属无汞催化剂主要研究方向以Cu、Sn、Bi等化合物为主活性组分,但由于易团聚、易流失、易积碳等问题使得催化剂寿命较短,无法大规模工业化应用。非金属无汞催化剂主要对载体进行优化结构处理,主要集中在氮掺杂碳材料,但其活性低稳定性差,工业化应用尚远。贵金属催化剂主要研究以Au、Ru、Pd、Pt、Rh、Ir等贵金属为主活性组分,其中Au系无汞催化剂有较优的活性及稳定性,是目前最有希望工业化应用的非汞催化剂,但金基催化剂价格昂贵,工业化存在诸多亟需解决的问题。钌的价格远低于金的价格,其优异的催化剂性能受到较多的关注及研究。然而,低含量的钌催化剂存在活性低,三氯化钌水溶液不稳定,反应过程中易团聚,在高浓度乙炔气氛中易还原,与载体相互作用较弱,反应温度区间较窄等问题,针对上述钌催化剂存在的问题,较多科研机构从改变钌价态及化合物、添加助剂复配、配体络合配位、离子液体、制备方法、载体改性等方面进行研究。

磷/膦酸锆是一类具有规整层状结构的阳离子型化合物,具有较大比表面积和表面电荷,具备良好的离子交换特性,在化学、光学、电子学、聚合物改性、复合材料、功能型材料等领域都有较多的应用。亦可以应用于催化剂领域。

西安凯立新材料股份有限公司公开的专利《一种用于乙炔氢氯化反应的复合载体催化剂及其应用》,该专利复合载体由纳米级无机氧化物沉积在活性炭上,无机物为二氧化铈、二氧化钛、二氧化锆、三氧化二镧,占0.5%~8.0%;采用连续两步沉积-沉淀法制备而成。无机氧化物前驱体为硝酸铈、硫酸氧钛、硝酸锆、硝酸镧中任意一种或两种,以氢氧化钾或氨水为沉淀剂,形成氢氧化物,后氮气气氛下350~650℃焙烧得到载体,以金、钌为主活性组分。该催化剂整体性能较优,但无工业化应用报道。

中科院大连化物所张宗超、王志光等人在2017年公开了专利《一种柱撑层状磷酸锆负载镍基催化剂及其制备方法和应用》公开了该催化剂以硅柱撑层状a-磷酸锆介孔材料为载体,过渡金属负载在载体上制备得到。用有机醇胺对a-磷酸锆进行胶体化改性,然后以长链季铵盐为导向剂引入有机硅进行自组装,得到硅柱撑层状磷酸锆前驱体,然后将可溶性金属盐混合溶液等体积浸渍在前驱体上,经干燥、焙烧、还原活化制备得到镍基催化剂,主要用于含芳烃的C-O键或烷基C-O键有机化合物加氢脱氧反应。

发明内容

为解决乙炔氢氯化合成氯乙烯工序中汞污染问题,本发明提供一种复合载体钌基催化剂应用于乙炔氢氯化反应中,解决低含量的钌基催化剂活性低、稳定性差的问题。

本发明的技术方案是:一种复合载体钌基催化剂在乙炔氢氯化反应中的应用,包括将磷/膦酸锆浸渍后负载于活性炭上的复合载体,和包含三氯化钌、醋酸钌、三联吡啶氯化钌中任意一种负载于活性炭上的主活性组分。复合载体与活性组分浸渍于活性炭上,活性炭经过水洗除灰。

如上所述复合载体由下述方法制备而得:称取一定量的锆前驱体加水溶解,加入已除灰干燥后的活性炭,充分搅拌浸渍2~4h,然后滴加磷/膦酸溶液,充分搅拌反应后静置4~8h,水洗干燥,最后经焙烧制备而成。

如上所述焙烧过程除去过量的磷/膦酸,使磷/膦酸锆与活性炭结合后的热性能、化学性能、层状结构和机械强度更加稳定、固化;最终制成的催化剂应用在乙炔氢气氯化反应中。

如上所述锆前驱体包含氯化锆、氧氯化锆、碳酸锆、硫酸氧锆等可溶性锆盐的至少一种,锆的质量占活性炭质量的百分比为0.02%~2%。

如上所述磷/膦酸包含磷酸、羟基乙叉二膦酸、氨基三甲叉膦酸、乙二胺四甲叉膦酸、二己烯三胺五甲叉膦酸、苯基膦酸的至少一种,磷/膦酸的摩尔量与锆盐的摩尔量比为1~10。

如上所述乙炔氢氯化反应催化剂的主活性组分包含三氯化钌、醋酸钌、三联吡啶氯化钌中的至少一种,钌的质量含量为0.01%~1%,最优为0.05%~0.3%。

如上所述焙烧时采用惰性气体保护,焙烧温度为150~350℃,焙烧时间为1~8h。

本发明所述的一种复合载体钌基催化剂在乙炔氢氯化反应中的应用,该催化剂的复合载体是磷/膦酸锆浸渍负载于活性炭上构成,磷/膦酸锆具有规整的层状结构,磷/膦酸锆不溶于水,能耐强的酸度和一定的碱度,热稳定性和机械强度强,化学稳定性高等优点,磷/膦酸锆结合在活性碳多孔结构的相对外表面,规整了相对杂乱的活性碳外表面,增加了比表面积,增强剂活性炭的热稳定性及强度,大大减少了因反应局部过热而导致的活性炭孔道结构塌陷、自我堵塞的现象。也使得金属钌基活性组分在浸渍过程中进入相对有序的层状孔道结构中,分布更均匀,且钌与磷/膦酸锆之间相互作用形成较为稳定的配位体,增加活性位点,大幅提高了活性位点的分散性及均匀性,避免局部反应过热的团聚现象及副反应的发生,减缓了积碳生成速率,大幅降低了催化剂中钌化合物的含量。该催化剂整体性能优,经济性高,对环境友好,为电石法聚氯乙烯行业的可持续发展提供了技术保障。

具体实施方式

为了更好的说明本发明,举以下实例。但本发明的范围并不局限于实例,其要求保护的范围记载于权利要求的权项中。

实施例1

选择柱状煤质活性炭载体30g,水洗除灰干燥后待用。称取氯化锆0.0153g用80ml冷水溶解,倒入活性炭充分搅拌后浸渍2h;称取0.0645g磷酸用10ml水稀释,后逐滴滴加进活性炭中,有白色絮状物生成,不断搅拌直至磷酸滴加完,静置6h后搅拌均匀倾倒浸渍液,再用蒸馏水水洗2遍干燥,后在氮气氛下300℃焙烧4h既得催化剂载体。

称取0.0924g三氯化钌加入60ml水溶解,倒入前一步处理好的活性炭充分搅拌,常温放置6h后,80℃烘箱干燥6h左右直至无明显浸渍液,升温至105℃干燥8h既得钌基无汞催化剂。

上述催化剂研磨筛分取40目~120目颗粒4g装入固定床反应器中进行乙炔氢氯化反应,常压,温度140℃,乙炔空速180h-1,乙炔转化率为89%,氯乙烯选择性99%;反应50h后,乙炔转化率为85%,氯乙烯选择性99%。

实施例2

选择柱状木质活性炭载体30g,水洗除灰干燥后待用。称取氧氯化锆0.0530g用80ml水溶解,倒入活性炭充分搅拌浸渍3h;称取0.0508g羟基乙叉二膦酸用10ml水分散稀释,后逐滴滴加进活性炭中,不断搅拌直至膦酸滴加完,静置4h后搅拌均匀倾倒浸渍液,再用蒸馏水水洗2遍干燥,后在氮气氛下300℃焙烧4h既得催化剂载体。

称取0.1231g三氯化钌加入60ml水溶解,倒入前一步处理好的活性炭充分搅拌,常温放置5h后,70℃烘箱干燥7h左右直至无明显浸渍液,升温至105℃干燥8h既得钌基无汞催化剂。

上述催化剂研磨筛分取40目~120目颗粒4g装入固定床反应器中进行乙炔氢氯化反应,常压,温度135℃,乙炔空速180h-1,乙炔转化率为93%,氯乙烯选择性99%;反应50h后,乙炔转化率为92%,氯乙烯选择性99%。

实施例3

选择粉状椰壳活性炭载体30g,水洗除灰干燥后待用。称取碳酸锆0.1360g用70ml水溶解,倒入活性炭充分搅拌浸渍2h;称取0.1967g氨基三甲叉膦酸用10ml水分散稀释,后逐滴滴加进活性炭中,不断搅拌直至膦酸滴加完,静置3h后搅拌均匀倾倒浸渍液,再用蒸馏水水洗3遍干燥,后在氮气氛下300℃焙烧4h既得催化剂载体。

称取0.1847g三氯化钌加入60ml水溶解,倒入前一步处理好的活性炭充分搅拌,常温放置4h后,60℃烘箱干燥7h左右直至无明显浸渍液,升温至105℃干燥9h既得钌基无汞催化剂。

上述催化剂粉状4g装入固定床反应器中进行乙炔氢氯化反应,常压,温度130℃,乙炔空速180h-1,乙炔转化率为97%,氯乙烯选择性99%;反应50h后,乙炔转化率为97%,氯乙烯选择性99%。

实施例4

选择柱状混合型活性炭载体30g,水洗除灰干燥后待用。称取硫酸氧锆0.2716g用90ml水溶解,倒入活性炭充分搅拌浸渍4h;称取0.4303g乙二胺四甲叉膦酸用10ml水分散稀释,后逐滴滴加进活性炭中,不断搅拌直至膦酸滴加完,静置2h后搅拌均匀倾倒浸渍液,再用蒸馏水水洗4遍干燥,后在氮气氛下250℃焙烧4h既得催化剂载体。

称取0.0826g醋酸钌加入60ml水溶解,倒入前一步处理好的活性炭充分搅拌,常温放置3.5h后,80℃烘箱干燥5h左右直至无明显浸渍液,升温至105℃干燥7h既得钌基无汞催化剂。

上述催化剂研磨筛分取40目~120目颗粒4g装入固定床反应器中进行乙炔氢氯化反应,常压,温度160℃,乙炔空速180h-1,乙炔转化率为88%,氯乙烯选择性97%;反应50h后,乙炔转化率为85%,氯乙烯选择性97%。

实施例5

选择椰壳柱状活性炭载体30g,水洗除灰干燥后待用。称取氧氯化锆0.3179g用70ml水溶解,倒入活性炭充分搅拌浸渍3h;称取0.8791g二己烯三胺五甲叉膦酸用10ml水分散稀释,后逐滴滴加进活性炭中,不断搅拌直至膦酸滴加完,静置4h后搅拌均匀倾倒浸渍液,再用蒸馏水水洗3遍干燥,后在氮气氛下350℃焙烧4h既得催化剂载体。

称取0.1111g三联吡啶氯化钌加入60ml水溶解,倒入前一步处理好的活性炭充分搅拌,常温放置5h后,80℃烘箱干燥6h左右直至无明显浸渍液,升温至105℃干燥8h既得钌基无汞催化剂。

上述催化剂研磨筛分取40目~120目颗粒4g装入固定床反应器中进行乙炔氢氯化反应,常压,温度160℃,乙炔空速180h-1,乙炔转化率为80%,氯乙烯选择性88%;反应50h后,乙炔转化率为72%,氯乙烯选择性86%。

实施例6

选择煤质柱状活性炭载体30g,水洗除灰干燥后待用。称取硫酸氧锆0.9053g用75ml水溶解,倒入活性炭充分搅拌浸渍2h;称取0.8318g苯基膦酸用10ml水分散稀释,后逐滴滴加进活性炭中,不断搅拌直至膦酸滴加完,静置5h后搅拌均匀倾倒浸渍液,再用蒸馏水水洗4遍干燥,后在氮气氛下250℃焙烧3h既得催化剂载体。

称取0.0743g醋酸钌加入60ml水溶解,倒入前一步处理好的活性炭充分搅拌,常温放置5h后,75℃烘箱干燥6h左右直至无明显浸渍液,升温至110℃干燥8h既得钌基无汞催化剂。

上述催化剂研磨筛分取40目~120目颗粒4g装入固定床反应器中进行乙炔氢氯化反应,常压,温度180℃,乙炔空速180h-1,乙炔转化率为85%,氯乙烯选择性93%;反应50h后,乙炔转化率为82%,氯乙烯选择性91%。

实施例7

选择木质柱状活性炭载体30g,水洗除灰干燥后待用。称取氧氯化锆1.0598g和硫酸氧锆0.9053g用80ml水溶解,倒入活性炭充分搅拌浸渍3h;称取3.2226g磷酸用10ml水分散稀释,后逐滴滴加进活性炭中,不断搅拌直至磷酸滴加完,静置6h后搅拌均匀倾倒浸渍液,再用蒸馏水水洗2遍干燥,后在氮气氛下300℃焙烧2h既得催化剂载体。

称取0.0616g三氯化钌加入60ml水溶解,倒入前一步处理好的活性炭充分搅拌,常温放置5h后,75℃烘箱干燥6h左右直至无明显浸渍液,升温至110℃干燥8h既得钌基无汞催化剂。

上述催化剂研磨筛分取40目~120目颗粒4g装入固定床反应器中进行乙炔氢氯化反应,常压,温度140℃,乙炔空速160h-1,乙炔转化率为85%,氯乙烯选择性95%;反应50h后,乙炔转化率为80%,氯乙烯选择性93%。

实施例8

选择煤质柱状活性炭载体30g,水洗除灰干燥后待用。称取氧氯化锆1.5896g用80ml水溶解,倒入活性炭充分搅拌浸渍2h;称取1.4502g磷酸和4.4256g氨基三甲叉膦酸用10ml水分散稀释,后逐滴滴加进活性炭中,不断搅拌直至磷/膦酸滴加完,静置4h后搅拌均匀倾倒浸渍液,再用蒸馏水水洗3遍干燥,后在氮气氛下300℃焙烧2h既得催化剂载体。

称取0.2064g醋酸钌加入70ml水溶解,倒入前一步处理好的活性炭充分搅拌,常温放置4h后,85℃烘箱干燥7h左右直至无明显浸渍液,升温至110℃干燥6h既得钌基无汞催化剂。

上述催化剂研磨筛分取40目~120目颗粒4g装入固定床反应器中进行乙炔氢氯化反应,常压,温度140℃,乙炔空速180h-1,乙炔转化率为95%,氯乙烯选择性98%;反应50h后,乙炔转化率为94%,氯乙烯选择性98%。

实施例9

选择木质柱状活性炭载体30g,水洗除灰干燥后待用。称取氯化锆0.6131g用80ml水溶解,倒入活性炭充分搅拌浸渍2h;称取1.1474g乙二胺四甲叉膦酸和0.8318g苯基膦酸用10ml水分散稀释,后逐滴滴加进活性炭中,不断搅拌直至膦酸滴加完,静置4h后搅拌均匀倾倒浸渍液,再用蒸馏水水洗3遍干燥,后在氮气氛下250℃焙烧2h既得催化剂载体。

称取0.4444g三联吡啶氯化钌加入80ml水溶解,倒入前一步处理好的活性炭充分搅拌,常温放置6h后,85℃烘箱干燥7h左右直至无明显浸渍液,升温至105℃干燥7h既得钌基无汞催化剂。

上述催化剂研磨筛分取40目~120目颗粒4g装入固定床反应器中进行乙炔氢氯化反应,常压,温度180℃,乙炔空速180h-1,乙炔转化率为97%,氯乙烯选择性98%;反应50h后,乙炔转化率为96.5%,氯乙烯选择性98%。

实施例10

选择复合型柱状活性炭载体30g,水洗除灰干燥后待用。称取碳酸锆0.1088g用80ml水溶解,倒入活性炭充分搅拌浸渍4h;称取0.7213g二己烯三胺五甲叉膦酸用10ml水分散稀释,后逐滴滴加进活性炭中,不断搅拌直至膦酸滴加完,静置5h后搅拌均匀倾倒浸渍液,再用蒸馏水水洗2遍干燥,后在氮气氛下350℃焙烧3h既得催化剂载体。

称取0.0924g三氯化钌和1.2386g醋酸钌加入80ml水溶解,倒入前一步处理好的活性炭充分搅拌,常温放置6h后,85℃烘箱干燥7h左右直至无明显浸渍液,升温至105℃干燥7h既得钌基无汞催化剂。

上述催化剂研磨筛分取40目~120目颗粒4g装入固定床反应器中进行乙炔氢氯化反应,常压,温度140℃,乙炔空速180h-1,乙炔转化率为98%,氯乙烯选择性99%;反应50h后,乙炔转化率为97%,氯乙烯选择性99%。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种碘源存储柜

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!