低会聚负焦度眼镜

文档序号:1256327 发布日期:2020-08-21 浏览:28次 >En<

阅读说明:本技术 低会聚负焦度眼镜 (Low-convergence negative-power glasses ) 是由 J·P·克拉尔 A·普拉姆利 G·T·齐曼伊 于 2018-12-15 设计创作,主要内容包括:一种会聚减小镜片,其中会聚减小镜片的中心法线限定z-轴,并且会聚减小镜片的中心限定正切的、居中的x-y平面,其一起限定坐标系,该会聚减小镜片包括:远距视觉区域,具有负远距视觉光焦度,以折射在距离坐标系的y-z平面的x-距离处的远距视觉区域点处平行于z-轴定向的光线,使得其延伸在远距视觉交点z-距离处与y-z平面相交;以及近距视觉区域,具有在0.5D内与远距视觉光焦度匹配的近距视觉光焦度,以在对应的y高度处折射在远距视觉区域点的x-距离处的近距视觉区域点处平行于z-轴定向的光线,使得其延伸在小于远距视觉交点z-距离的近距视觉交点z-距离处与y-z平面相交。(A convergence reducing lens, wherein a center normal of the convergence reducing lens defines a z-axis and a center of the convergence reducing lens defines a tangential, centered x-y plane, which together define a coordinate system, the convergence reducing lens comprising: a distance vision region having a negative distance vision power to refract a ray oriented parallel to the z-axis at a distance vision region point at an x-distance from the y-z plane of the coordinate system such that its extension intersects the y-z plane at a distance z-from the distance vision intersection point; and a near vision region having a near vision power that matches the distance vision power within 0.5D to refract, at a corresponding y-height, light rays oriented parallel to the z-axis at near vision region points at an x-distance from the distance vision region point such that they extend to intersect the y-z plane at a near vision intersection z-distance that is less than the distance vision intersection z-distance.)

低会聚负焦度眼镜

技术领域

本发明一般而言涉及改进的眼镜镜片,更详细地涉及减少眼睛疲劳和放松会聚并改变本体感受(proprioceptive)反馈的眼镜镜片。

背景技术

在正常视力下,个体能够聚焦在位于不同距离的物体处。理想地,个体能够聚焦在远处物体上,被称为远距视觉,并且能够聚焦在近处物体上,被称为近距视觉。眼睛的光学系统使用许多肌肉来针对远距视觉和近距视觉两者进行聚焦。当在远距视觉和近距视觉之间转换时,这些肌肉调整眼睛的各个方面。肌肉调整包括对晶状体的形状进行细微变化以调整晶状体的焦距、旋转眼球以旋转其光轴,以及改变瞳孔的大小。

老花眼(prebyopia)是随着年龄的增长由眼睛晶状体的柔韧性损失引起的近距视觉的自然劣化。老花眼可以通过佩戴“阅读”眼镜来进行部分补偿,该眼镜矫正近距视觉屈光不正,使得当眼睛注视近处物体时,眼睛不必强烈聚焦。老花眼人需要针对远距视觉和近距视觉进行不同的光学校正。但是,使用两个眼镜并以极高频率改变它们会分散注意力。为了避免不断地更换眼镜,可以使用为远距视觉和近距视觉提供不同的光学校正的双焦点。这两个视觉区域之间的过渡可能是突兀的或渐进的。后一种眼镜被称为渐进式加成镜片(PAL)。突兀变化双焦点具有将两个视觉区域分开的可见线,而PAL在具有不同屈光力的区域之间没有可见的线或边缘。

虽然取得了所有这些进步,但仍存在一些与视觉相关的不适。其中一个不适与现代数字生活方式中习惯的转变相关。越来越多的专业要求工作人员在近距离数字界面(包括计算机屏幕和移动设备)上花费大量且不断增加的工作时间。对于许多人的私人生活也是如此,花费数小时玩视频游戏、收发短信和检查蜂窝电话上的更新等。所有这些专业和行为的变化迅速增加了人们花费在以比以前更近的距离看数字屏幕、设备、显示器和监视器的时间。眼睛瞄准在近处视觉目标处的时间增加对近距视觉中所涉及的肌肉置于过高的要求,通常使它们超过舒适范围。这可能导致疲劳、不适、疼痛、或者甚至数字引起的偏头痛。到目前为止,关于这些与数字设备相关的视觉不适、疼痛和偏头痛的精确因果关系机制尚无广泛接受的共识。因此,需要可以为数字眼睛不适提供缓解的眼镜或其它视光解决方案。

发明内容

实施例包括低会聚眼镜的会聚减小(convergence-reducing)镜片,其中会聚减小镜片的中心法线限定z-轴,并且会聚减小镜片的中心限定正切的、居中的x-y平面,其一起限定会聚减小镜片的x-y-z坐标系,该会聚减小镜片包括:远距视觉区域,其具有负远距视觉光焦度、被配置为折射在距离坐标系的y-z平面x-距离处的远距视觉区域点处平行于z-轴定向的光线,使得其延伸在远距视觉交点z-距离处与y-z平面相交;以及近距视觉区域,其具有在0.5D内与远距视觉光焦度匹配的近距视觉光焦度、被配置为在对应的y高度处折射在远距视觉区域点的x-距离处的近距视觉区域点处平行于z-轴定向的光线,使得其延伸在小于远距视觉交点z-距离的近距视觉交点z-距离处与y-z平面相交。

实施例还包括会聚减小镜片,其中会聚减小镜片的中心法线限定z-轴,并且会聚减小镜片的中心限定正切的、居中的x-y平面,其一起限定会聚减小镜片的x-y-z坐标系,该会聚减小镜片包括:远距视觉区域,其具有负远距视觉光焦度、被配置为折射由源定向在距离坐标系的y-z平面的x-距离处的远距视觉区域点处的光线,以与y-z平面形成远距视觉光会聚角,其中源位于z-轴上距离坐标系的中心的交点z-距离处;以及近距视觉区域,其具有在0.5D内与远距视觉光焦度匹配的近距视觉光焦度、被配置为在对应的y高度处折射由源定向在距离坐标系的y-z平面的x-距离处的近距视觉区域点处的光线,以与y-z平面形成近距视觉光会聚角,其中源位于z-轴上距离坐标系的中心的交点z-距离处;并且近距视觉光会聚角的x-分量大于远距视觉光会聚角的x-分量。

附图说明

图1A-B图示了光学镜片的折射角。

图2A-C图示了单视(monovision)镜片的折射角。

图3A-B图示了引入注视会聚角的近物体。

图4A-B图示了会聚减小镜片对注视会聚角的影响。

图5A-D图示了会聚减小镜片对光传播的影响。

图6A-D图示了受会聚减小镜片影响的光传播的各方面。

图7A-B图示了各种会聚减小镜片的轮廓表示。

图8A-C图示了会聚减小镜片中的近距视觉区域的各种设计。

图9A-B图示了会聚减小镜片的z-轴透视图。

图10A-B图示了会聚减小镜片的各种实施例中的轴外(off-axis)曲率中心。

具体实施方式

通过首先描述现有眼镜的普通、单视镜片对近距视觉的注视会聚角的影响来将本发明的实施例置于上下文中。这之后将描述本发明的实施例。

图1A图示了典型的正焦度单视光学镜片1如何影响入射光线2(或简称光2)。当平行光线2入射在镜片1上时,镜片1将它们聚焦到焦点F上。

图1B放大了入射光线2的偏心或轴外部分。可见地,根据公认的光折射定律,偏心或轴外平行光线通过镜片1的成角度的或弯曲的前表面和成角度的或弯曲的后表面朝焦点F折射。通过这两个成角度的或弯曲的表面传播的光线的总体效果是它们以引入的折射角α被折射。

负光焦度单视镜片使光线折射远离光轴,使得光线的源侧延伸部分在(虚拟)焦点F处相交。习惯上说负焦度镜片具有负焦距来表征这一点。

存在不同的相关方式来表征由距离轴线径向距离r处的镜片区域折射的量。一种表征是通过折射角α本身。另一种表征是通过该相同折射角的切值,被表达为镜片的区域距镜片光学轴3的径向距离r与镜片的焦距f的比率:

tanα=r/f. (1)

该关系表明,D屈光度的光焦度的镜片(被定义为D=1/f[1/m])对于在距镜片1的轴3的径向距离r处的镜片处入射的光线引入折射角α,其中α通过以下给出:

tanα=r*D. (2)

图2A图示了具有光焦度D的简单单视镜片10。

图2B图示了以上概念,即,图2A的单视镜片10的成角度的或弯曲的表面在远离镜片的轴的区域中引入折射角α。由于折射角α的大小仅取决于距轴的径向距离,因此iso-α轮廓,即,其中折射角α的大小相等的点,形成同心圆。所示圆圈的半径约为r=2.8mm,r=5.6mm,r=8.4mm,r=11.2mm和r=14.1mm。公式(2)提供了tanα,即,折射角α的切值作为半径r和光焦度D的乘积给出。这里,D的单位是[1/m],并且r的单位是[m]。由于r的典型值是1-20毫米,并且D的值是几个屈光度[1/m],因此tanα并且因此α取10-3-10-1范围内的值。作为示例,对于r=1mm,并且D=1[1/m],tanα=10-3。为了获得更易于管理的数值,可以定义“折射屈光度”或“rD”,即,100*tanα。在此定义下,tanα=0.01的折射角的折射屈光度为1rD。因此,返回到图2B,对于1D光焦度镜片,在所示的圆圈上,折射屈光度取值为0.28rD、0.56rD、0.84rD、1.12rD和1.41rD。在本文档中,折射角将通常用折射屈光度来表达。另外,如提到的,由于折射角小,因此可以互换使用这些角及其切值。

图2B的下图图示了折射角α的x-分量αx,其中x-y坐标系基于镜片10的中心处,其轴在镜片10的平面内是水平和垂直的,如图所示。有若干种彼此类似的方法定义αx。一个实际的定义是其中是从在图2B的平面中笔直向下的y-轴的负轴或下半部分测得的角度,如图所示。结合公式(2)并且使用即长度r的径向向量的x坐标,得到简单关系:

αx=x*D. (3)

图2B中的下图示出通常作为角度的函数的αx。上图示出了使用sin(±45)=±0.7,沿着+45度和沿着-45度线的αx的特定值。这些值是:αx=±0.2rD、±0.4rD、±0.6rD、±0.8rD和±1.0rD,如图所示(为了清楚起见,删除了单位rD)。

αx的类似定义包括其更精确地考虑了折射光线2的投影的几何形状。但是,对于目前的小角度,这两个定义产生非常相似的数值。最终,该公式可以扩展到与光轴3不平行但是与光轴3形成角度β的光线2。通常,这种扩展将通过取决于角度β产生与物体角度相关的表达。但是,值得注意的是,这样的β相关公式可以在α中扩展。这样的扩展将以α中的前导阶再现等式(2)。

αx表征折射角α的x-分量,其又确定了眼镜的佩戴者需要转动她/他的注视以集中于这些光线的程度。镜片10的区域中的αx越大,穿过该区域的光2越多地被镜片10折射并且佩戴者必须相对于镜片10更多地转动她/他的注视以与该折射光2对准。

图2C图示了图2B的镜片10的iso-αx轮廓,其连接αx假设相同的值的各点。可见地,对于光焦度D的单视镜片10,iso-αx轮廓是近似地与y-轴平行的直线,因为αx仅取决于轮廓的点的x坐标。对于其中线性近似开始获得校正的较大的光焦度和半径,iso-αx轮廓开始径向向外凸出靠近x-轴。所示的iso-αx轮廓值适用于正焦度镜片。对于负焦度镜片,鼻/左轮廓获取正值,并且右/颞轮廓获取负值。

图3A图示了当人注视远处物体时,左眼和右眼的注视方向基本上是平行的。因此,不存在注视方向的会聚,并且眼睛肌肉根本没有紧张。在这种情况下,通过眼睛5的中心指向远处物体的两个z-轴3与两个眼睛光轴9重合。来自远处物体的光线2在其到达眼睛5的视网膜的途中进入眼睛然后传播通过眼睛晶状体7。这些平行的z-轴3将用作参考,以表征在下一个近物体处定向的注视的注视会聚角。

图3B图示了当人注视附近物体时,左眼和右眼的注视朝彼此倾斜或旋转,每个注视与z-轴3形成非零的注视-会聚角β。由于注视-会聚角β表征两只眼睛的注视朝彼此的会聚,因此在之后注视-会聚角β将具体指眼睛的整体注视-旋转角的x-分量。注视-会聚角β的这种约定使其类似于折射角αx的x-分量,从而简化了描述。

如前所述,眼球通过外部附着于眼睛的肌肉旋转。特别地,横向、x-方向旋转由内直肌和外直肌控制,并且垂直旋转由上直肌和下直肌以及上斜肌和下斜肌控制。当左眼和右眼的内直肌收缩时,这些眼睛的注视朝彼此会聚。长时间将他/她的眼睛瞄准近处物体(诸如电子屏幕、数字屏幕、移动电子设备的屏幕、工作相关的纸张或者甚至书籍)的人需要持续地收缩内直肌和上斜肌,并且因此对它们施加了很大的张力。这种“数字眼睛疲劳”可能导致疲劳,从而导致头痛,最终导致偏头痛,这是由现代数字生活方式的需求引起的。

数字生活方式可以引起其它形式的视疲劳或眼疲劳,以及其它类型的会聚障碍,包括本体感受差异和固视差异。本体感受差异是指眼睛有意识地聚焦的位置与物体在空间中所位于的位置的感知之间的不平衡。这种差异取决于不同的因素。具有本体感受差异的患者的大脑可以弥补这种差异。但是,这样做可能会过度刺激三叉神经,导致患者出现头痛、眼疲劳、眼周围疼痛、视力模糊、颈部疼痛、干眼以及其它一般症状的视疲劳。

特别值得一提的一类症状是计算机视觉综合症(CVS),估计其影响超过1亿美国人。计算机视觉综合症是指长时间观看近距视觉计算机设备之后感到的身体的眼睛不适。CVS可能包括或引起多种疲劳症状,并且因此可能对健康、身体、情绪和生产力产生负面影响。

另一类症状以慢性日常头痛(CDH)的名称而为人所知。据估计,CDH症状影响超过3千万美国人。这些患者患有表现为慢性日常头痛的三叉神经的过度刺激。各种因素和诱因被认为是造成慢性日常头痛的原因。在其病因尚未达成共识的情况下,患有CDH的患者仅限于试图减轻症状的治疗选择。但是,申请人指出,大部分慢性日常头痛患者表现出中央视觉系统、外周视觉系统和神经系统如何相互作用之间不一致的客观迹象。因此,申请人提出通过开发眼镜镜片来减轻视疲劳、CVS和CDH的根本原因,该眼镜镜片改变了注视会聚并解决了所观察到的未对准。

图4A图示了与图3B的无眼镜的情况相比,负焦度(单视)眼镜10'可以使眼睛将注视会聚角β减小到有限的程度,因为折射角α的x分量αx在鼻区域中为正,如关于图2C所解释的。由此,这些负焦度单视眼镜10'可以在某种程度上缓解由数字设备引起的眼疲劳、视力疲劳、计算机视觉综合症、CDH和本体感受差异的症状。但是,这种缓解常常是不够的,甚至对于负焦度单视眼镜的佩戴者,眼疲劳和视力疲劳也持续存在。

图4B图示了可以进一步减少并且经常消除由眼疲劳、视力疲劳、计算机视觉综合症和负焦度镜片的本体感受差异引起的症状的会聚减小眼镜100'中的会聚减小镜片100的实施例。具有会聚减小镜片100的会聚减小眼镜100'具有经适当修改的折射角α,其在它们的佩戴者看附近物体(诸如,看数字设备)时减小注视-会聚角β。减小的注视-会聚角β需要眼睛在鼻子方向上的较小旋转,因此减轻了眼睛的内直肌和上斜肌的连续收缩和拉力。这种减少的肌肉拉力减少并通常消除数字偏头痛。

图5A-B详细图示了眼睛疲劳减少镜片100或减轻眼睛疲劳和相关的数字眼睛不适的会聚减小镜片100的实施例。贯穿本申请,术语眼睛疲劳减少镜片100和会聚减小镜片100将被互换使用和处理。为了清楚起见,仅示出了会聚减小眼镜100'的会聚减小镜片100中的一个。下面的描述适用于具有适当修改(诸如经过鼻子的镜反射)的会聚减小眼镜100'的其它镜片。示出了戴眼镜者的鼻子以供参考。会聚减小镜片100的实施例可以如下定义x-y-z坐标系。会聚减小镜片100的中心法线可以限定z-轴3,并且会聚减小镜片100的中心区域可以限定正切的居中x-y平面。坐标系的中心可以位于会聚减小镜片100的中心。采用的惯例是x-轴相对于眼镜100'是“水平的”,并且因此穿过左和右会聚减小镜片100的中心。相应地,y-轴是垂直的。虽然眼镜中的镜片并非总是圆形的,并且因此其中心的定义可能不会清晰地定义,但是镜片制造过程的标准产品是圆碟,通常称为圆盘(puck),随后从其切出镜片。这些圆碟或圆盘的中心是明确定义的。可以为特定镜片定义中心概念的自然扩展或改编,从而锚定x-y-z坐标系的定义。有时,为了简便起见,将x-y-z坐标系简称为坐标系。

利用该x-y-z坐标系,并且参考图5A,会聚减小镜片100可以包括具有负远距视觉光焦度的远距视觉区域110,其被配置为折射由源(或物体,见下文)11定向在距离(x-y-z)坐标系的中心的远距视觉x-距离xPd处的远距视觉区域点Pd处的光线2,以传播到眼睛为中心的代表性位置8。在一些实施例中,眼睛为中心的代表性位置8可以是眼睛中心8本身。在其它实施例中,它可以是位于位置8处的传感器,或者位于跨位置8的屏幕,其中眼睛为中心的代表性位置8位于z-轴3上,在与源的方向相反的方向上距离镜片的坐标系的中心15-25mm的范围内的z-距离处。后面这些眼睛为中心的代表性位置8可以更适合并且可访问用于测量和表征。例如,可以采用全尺寸的眼睛模型来代替眼睛5,包括被定位并用来代表眼睛晶状体7和眼睛的角膜的透镜。该眼睛模型可以绕y-方向的轴旋转、位于眼睛为中心的代表性位置8处。

图5B图示了会聚减小镜片100还可以包括近距视觉区域120,其具有在0.5屈光度D内与负远距视觉光焦度匹配的近距视觉光焦度、被配置为折射由源11定向在距离坐标系的中心的近距视觉x-距离xPn处的近距视觉区域点Pn处的光线2,以传播到在对应的y高度处的眼睛为中心的代表性位置8的x-z位置。

图5A和图5B中的眼睛为中心的代表性位置8的x-z位置是(至少近似)相同的,而对应的y高度是不同的,这是因为远距视觉区域110和近距视觉区域120的y高度是不同的。由于图5A-D以x-z横截面示出了实施例,因此仅图示了眼睛为中心的代表性位置8的一致的x-z位置。

由于近距视觉区域120的光焦度可以非常接近,并且在一些实施例中,等于远距视觉区域110的光焦度,因此会聚减小镜片100的实施例可以被称为单视(mono-vision)镜片或独视(single-vision)镜片。这方面可以将这些镜片与其它近距视觉和远距视觉光焦度不同的传统双焦镜片区分开来。

为了清楚起见,在本文档中,术语“光焦度”是指与镜片的焦距f特别相关的光焦度,并且以与焦距成反比的屈光度D测量:D=1/f。此外,图5A可以是在高的正y坐标处的会聚减小镜片100的横截面,而图5B可以图示在较低的负y坐标处的相同会聚减小镜片100的横截面。在本文档中,有时将光线描述为在远距视觉区域110和近距视觉区域120中以相同的x-距离撞击会聚减小镜片100。自然地,对于远距视觉区域110,以较高/正y值撞击x-距离,而对于近距视觉区域120,以较低/负y值撞击相同的x-距离。

在图5A-B的实施例中,近距视觉x-距离xPn小于远距视觉x-距离xPd,如图所示。可见地,由于在这些实施例中,近距视觉x-距离xPn小于远距视觉x-距离xPd,因此该会聚减小镜片100的佩戴者可以在通过近距视觉区域120看源11时相对于当佩戴者通过远距视觉区域110(在对应的y高度处)看相同的源11时的情况朝z-轴3更靠近地旋转他/她的眼睛的眼睛光轴9,从而减小注视会聚角β,如下面进一步描述的。如图5B所指示的,减小的注视-会聚角β转换为眼睛5的减小张力的旋转。相应地,会聚减小镜片100也可以被称为减少眼睛疲劳的镜片100。由于这个原因,会聚减小眼镜100'提供了急需的一般地减少眼睛疲劳、数字偏头痛、CVS、CDH、本体感受差异、固视差异、视力疲劳和会聚性障碍的医学益处。

在共同未决且共同拥有的专利申请US 15/289,157:“Eye-strain reducinglens”;US 15/289,163:“Low convergence spectacles”;以及US 15/289,194:“Lens withoff-axis curvature center”(这三个均属于J.P.Krall、A.Plumley和G.T.Zimanyi)中描述了在远距视觉区域中具有非负光焦度的相关的减少眼睛疲劳的镜片。当前描述的实施例与在这三个申请中描述的实施例之间的不同点在于,非负焦度镜片会加剧近距视觉区域中的眼睛疲劳,而这里描述的负焦度镜片可以将眼睛疲劳降低至有限程度。但是,虽然有所减少,但申请人发现,在与患者一起工作时,通常需要进一步的减轻。这里描述的减轻眼睛疲劳的眼镜100'可以提供眼睛疲劳的这种进一步的减轻。

双焦眼镜具有与通常的远距视觉区域分开的近距视觉区域。通过使这两个视觉区域的会聚或屈光性质也不同,可以赋予这种眼镜附加的减少眼睛疲劳的医学益处。

这里描述的独视或单视会聚减小镜片100的区别特征是它们具有近距视觉区域120,其具有与远距视觉区域110的屈光力不同的屈光力,尽管这两个区域具有匹配的光焦度。这与刚刚提到的其中两个视觉区域的屈光力和光焦度都不同的双焦点镜片形成对比。至少由于以下原因,这是一种定性的、至关重要的区别。

(1)双焦眼镜已经具有两个具有不同光学性质-光焦度的视觉区域。因此,镜片设计者可能想到使另外的光学性质(诸如屈光力)也不同,以减少会聚。但是,在单视镜片中,对于设计者来说,想到并创建近距视觉区域以在其中近距视觉区域的光焦度与镜片的远距视觉区域的光焦度相同的镜片中传递不同的折光力远非显而易见。

(2)眼镜镜片的全球市场在2015年世界范围内销售了超过10亿件,仅在美国就超过3.2亿件。据估计,美国75%的人口,或者约2亿4千万人佩戴某种视觉纠正眼镜。到目前为止,当今在美国销售的最广泛的眼镜市场部分,约整个市场的90%,具有单视镜片,并且只有约10%或2千万-2千5百万人佩戴双焦镜片。单视镜片的大多数年轻和中青年佩戴者根本不需要双焦镜片。一些行业调查估计遭受或报告计算机视觉综合症的人数超过1亿人。前面我们已引用了基于不同的症状和定义估计潜在患者在3千万的其它来源。因此,将会聚减小近距视觉区域引入到单视眼镜中将把会聚减小技术的范围从双焦镜片的市场部分的每年小的1千万至2千万件扩大到单视眼镜的市场部分的每年1亿多件。因此,这里描述的单视眼镜将极大地拓宽可以向其提供会聚减少技术的医学益处的人群。

(3)具有零或接近零的光焦度的会聚减小的单视眼镜将在质量上把市场渗透扩宽到另一个广泛类别。这些眼镜将为根本不需要光焦度校正并且因此到目前为止没有考虑佩戴眼镜的人提供会聚减小的医学益处。由于这个原因,零或接近零的光焦度单视眼镜将极大地扩展进一步向其提供会聚减小的医学益处的人口群体的部分。

最后,已提到在现今的视光学实践中,大多数医生对眼睛疲劳的原因有不同的理论,因此提供非常不同的治疗和程序来缓解眼睛疲劳或视力疲劳。视光师经常开处方切换到配有蓝光滤光片的眼镜,或建议使用加湿器。因此,开具利用这里描述的会聚减小技术的眼镜依赖于关于导致眼睛疲劳的原因的非常不同的医学见解,以及真正不同于当今大多数视光学从业者所开具的减轻眼睛疲劳的创造性治疗。

在本专利文档中,术语单视镜片或独视镜片在更广义上使用。自然,其范围包括其前表面和后表面均具有单个曲率半径的镜片。除此之外,该术语还可以包括其形状具有超出单个曲率半径的分量的镜片。示例是非球面分量,其中分量可以以不同的方式定义,包括Zernike分解。通常,引入非球面分量以补偿镜片的光学变形。有若干个因素可能会导致光学变形:镜片的有限厚度、折射率的各方面,以及光线的远轴外行为等。也可以不为补偿变形而是为了获得光学益处引入非球面分量。术语单视还可以包括将单个光焦度与焦度中立的益处相结合的镜片形状。典型示例包括圆柱体、像散或彗差,它们被引入到单视镜片以补偿对应的视觉变形。单视镜片的范围不包括双焦点镜片。总而言之,在所描述的会聚减小镜片100中,远距视觉区域110或近距视觉区域120中的至少一个可以包括非球面分量、焦度中立分量、圆柱体、彗差或像散分量。

在这里及后面的文字中,光传播被描述为由源11始发或可互换地源自物体11。源11可以是激光指示器或主动产生光线2的另一个定向光源。在一些其它实施例中,物体11可以不是有源光源,而是可以将入射光作为所描述的光2朝会聚减小镜片100反射的物体或镜子,其中入射光源自其它地方。从光传播的角度来看,这两种情况可以互换。物体11或源11可以在与会聚减小镜片100的x-y平面相距z-距离zo/s处。

在会聚减小镜片100的实施例中,远距视觉区域110可以被配置为折射由源11或物体11定向在远距视觉x-距离XPd处的远距视觉区域点Pd处的光线2,从而以远距视觉注视-会聚角βd与坐标系的y-z平面相交;而近距视觉区域120可以被配置为折射由在源11定向在近距视觉x-距离XPn处的近距视觉区域点Pn处的光线2,从而以近距视觉注视-会聚角βn与y-z平面相交。在会聚减小镜片100的这些实施例中,近距视觉注视-会聚角βn可以小于远距视觉注视-会聚角βd。通常,折射光2与y-z平面以注视会聚角βn/d相交发生在眼睛为中心的代表性位置8处。

这里,注视-会聚角βd和βn表征眼睛注视的会聚,因此它们可以对应于眼睛的整体3d维度旋转角度的x-分量,类似于整体折射角α的x-分量αx

相对于远距视觉区域110中的注视-会聚角βd,近距视觉区域120中的注视-会聚角βn的减小是当佩戴者通过会聚减小镜片100的近距视觉区域120看物体11时,她/他不需要将她/他的眼睛旋转离开z-轴3与通过镜片100的远距视觉区域110看相同物体的情况一样多的第二表达。因此,与通过远距视觉区域110在对应的y高度或者甚至通过类似的常规负焦度镜片10看相同物体相比,当通过近距视觉区域120看物体时,会聚减小镜片100的实施例确实减小了其佩戴者的注视的会聚角β。

在会聚减小镜片100的一些实施例中,远距-视觉区域110可以被配置为将由源11定向或来自其的在远距-视觉x-距离XPd处的远距-视觉区域点Pd处的光线2折射远距-视觉折射角αd,而近距-视觉区域120可以被配置为将由源11定向或来自其的在近距-视觉x-距离XPn处的近距-视觉区域点Pn处的光线2折射近距-视觉折射角αn。在会聚减小镜片100的这样的实施例中,近距-视觉折射角αn的x-分量αn x可以大于远距-视觉折射角αd的x-分量αd x。这是第三种表达,当镜片100的佩戴者通过近距-视觉区域120看物体11时,相对于在适当的y高度通过远距-视觉区域150看相同物体11,镜片100正在减小注视-会聚β。

会聚减小镜片100的注视会聚减小方面的以上三个相关表达式在图5B中被表示为加方框的不等式。这里重复这些不等式:

xPn<xPd, (4)

βnd,以及 (5)

αd xn x, (6)

全部针对同一固定物体或源,距离zo/s。会聚减小镜片100的实施例满足这三个不等式(4)-(6)中的至少一个。

会聚减小镜片100的实施例的以上描述也清楚地表达了确定镜片是否是会聚减小镜片的审核协议。

(1)当镜片的佩戴者通过镜片的远距视觉区域看物体时,可以直接测量所描述的距离XPd和角度αd x和βd,之后通过测量当佩戴者通过镜片的对应近距视觉区域看时对应的距离XPn以及角度αn x和βn,并且然后比较测得的角度和距离以验证它们是否满足所描述的三个不等式(4)-(6)中的至少一个。对于其中角度的变化小的镜片,可以使用眼睛跟踪或眼睛成像系统来确定佩戴者的注视角度的变化以检测小的变化和差异。

(2)代替测量佩戴者的注视的角度和方向,也可以使用具有实际参数的眼睛模型。眼睛模型可以包括直径为约20-25mm(诸如24mm)、可绕定位在眼睛为中心的代表性位置8处的y-轴旋转的盘。眼睛模型的前部可以被定位在镜片100后面10-15mm处,眼睛为中心的代表性位置8在镜片100后面约20-30mm处。眼睛模型可以包括适当的模型镜片,其总光焦度大约等于角膜的大约40-45D的光焦度加上眼睛晶状体7的大约15-25D的光焦度。定向光源,诸如激光指示器或等效物可以代替源11被部署。可以将其光指向远距-视觉区域,然后分别指向被审核镜片的近距-视觉区域。眼睛模型可以被适当地旋转,使得在两种情况下,在通过模型镜片折射之后,光都通过眼睛模型的眼睛为中心的代表性位置8。然后可以测量上述不等式(4)-(6)的角度和距离,以确定上述三个不等式中的至少一个是否适用于被审核的镜片。

(3)最后,不涉及佩戴者的眼睛或甚至眼睛模型的测量也可以足以确定被审核的镜片是否是会聚减小镜片100的实施例。通过将激光指示器从源11的位置指向镜片,使得其光在被镜片折射之后传播通过眼睛为中心的代表性位置8的候选点,大约沿着z-轴3在镜片100的中心后面20-30mm处,可以在固定的光学平台上审核镜片。可以例如通过在与源11相对的一侧上在镜片100的y-z平面中实现屏幕来跟踪光的传播。激光指示器11的光可以被定向在被审核镜片的远距视觉区域处并且随后通过被审核镜片的近距视觉区域,从而确保在两种情况下折射光在距离代表眼睛中心8的坐标系的中心的相同z-距离处与y-z平面相交。如上所述,这样的代表性位置可以在z-轴3上在镜片的中心后面20-30mm。一旦前面讨论的角度和距离针对定向在远距视觉和然后近距视觉区域处的光被测量,如果在图5B中的并且在上面的不等式(4)-(6)中讨论的三个不等式中的至少一个,对于测得的角度和距离成立,则镜片是会聚减小镜片100的实施例。

当在以上列出的审核协议(1)-(3)中光线由源11或源8r从远距视觉区域110到近距视觉区域120重定向时,调整图5A-B中的眼睛为中心的代表性位置8或图5C-D中的图像11r(统称:图像)的“对应的y高度”可以如下以各种方式执行。(1)佩戴者可以将他/她的注视的方向从固定的会聚减小镜片100的远距视觉区域110改变为近距视觉区域120;(2)眼睛模型的光轴可以倾斜;或者(3)可以改变激光指示器的方向。这些协议使会聚减小镜片100以及物体/源11或源8r(统称:源)的y高度保持固定。此类协议可以被称为“图像调整协议”,用于审核被审核的镜片是否满足不等式(4)-(6)中的任何一个。

但是,对于每种情况,都可以定义和执行类似的替代“镜片调整协议”,其中通过抬高或降低镜片本身,同时保持源和图像的y高度固定,会聚减小镜片100的y高度而不是图像或源的y高度被调整。对于这些协议,近距视觉区域120的眼睛为中心的代表性位置8的“对应的y高度”与远距视觉区域110的相同。这些镜片调整协议还可以用于审核被审核的镜片是否满足不等式(4)-(6)中的任何一个,从而以等效的方式捕获会聚减小镜片100的实施例。

第三类替代方式,“源调整协议”将图像和会聚减小镜片100的y高度都保持固定,而是调整源的y高度。如前所述,这些源调整协议可以用于审核被审核镜片是否满足不等式(4)-(6)中的任何一个,从而以等效方式捕获会聚减小镜片100的实施例。

总之,在会聚减小镜片100或减少眼睛疲劳的镜片100的实施例中,近距视觉x-距离xPn可以小于如由图像调整协议、镜片调整协议或源调整协议中的至少一个确定的远距视觉x-距离xPd。稍后将相对于图5C-D和图7A-D描述还有的其它审核协议。

会聚减小镜片100可以包括渐进区域140,其中渐进区域点Pp的x-距离xPp,或者渐进区域注视-会聚角βP,或者渐进区域折射角的x-分量αp x中的至少一个在其近距视觉区域值和其远距视觉区域值之间过渡。形式上,以下不等式中的至少一个在渐进区域140中成立:xPn<xPp<xPd;或βnpd;或αd xp xn x。这种渐进区域140的示例将在图7A-B中详细描述。

图5A-B图示了物体/源11可以是近处物体,其位于距离坐标系的z-轴3的大于会聚减小镜片100的半径的源x-距离处,并且在10cm到100cm之间的源z-距离处。如图所示,这种偏心、轴外源11可以很好地表示与眼镜佩戴者的鼻子对准的近处物体。

图5C-D图示了会聚减小镜片100的其它方面。图5C-D的实施例的特征在很大程度上类似于图5A-B的特征。这些特征是由传播光线2的路径的可逆性引起的。为了指示通过路径反转图5C-D中的源和图像与图5A-B中的源和图像相关,使用添加了“r”的对应的标签。

在这些介绍性考虑的情况下,会聚减小镜片100的一些实施例可以具有远距视觉区域110,其具有负远距视觉光焦度、被配置为由源8r定向在距离坐标系的中心的远距视觉x-距离xPd处的远距视觉区域点Pd处的光线2,以传播到图像点11r。图像点11r,在某种意义上图5A-B中的实施例的物体/源11的反向对,可以位于距离镜片100的x-y平面的z-距离zI处。源8r,在某种意义上图5A-B中的实施例的眼睛为中心的代表性位置8的反向对,可以位于z-轴3上距离坐标系的中心的源z-距离zs处。

会聚减小镜片100的该实施例还可以包括近距视觉区域120,其具有在0.5D内与远距视觉光焦度匹配的近距视觉光焦度、被配置为在对应的y高度处折射由位于距离坐标系的中心相同的源z-距离zs处的源8r定向的位于距离坐标系的中心近距视觉x-距离xPn处的近距视觉区域点Pn处光线2,以传播到图像点11r的x-z位置。在这些实施例中,类似于图5A-B的实施例的不等式(4),近距视觉x-距离xPn可以小于远距视觉x-距离xPd

图5C和图5D中的图像点11r的x-z位置(至少近似)相同,而对应的y高度是不同的,这是因为远距视觉110和近距视觉区域120的y高度是不同的。由于图5A-D以x-z横截面示出了实施例,因此仅图示了图像点11r的一致的x-z位置。

如前所述,在一些实施例中,可以定义类似的协议,其中会聚减小镜片100的y高度而不是图像点11r的y高度被调整,使得光线2的y方向角在从远距视觉区域110切换到近距视觉区域120时,不需要被调整。最后,在还有的其它替代实施例中,当将光线2从远距视觉区域110重定向到近距视觉区域120时,可以调整源8r的y高度,同时保持会聚减小镜片100和图像点11r的y高度。如前所述,图像调整、镜片调整和源调整协议可以定义会聚减小镜片100的紧密相关的实施例。

在一些实施例中,可以配置远距视觉区域110,使得通过以相对于坐标系的y-z平面的远距视觉注视会聚角βd定向光线2,源8r可以定向光线2以经由在远距视觉区域点Pd处的折射来传播到图像点11r;并且可以配置近距视觉区域120,使得通过以相对于坐标系的y-z平面的近距视觉注视会聚角βn定向光线2,源8r可以定向光线2以经由在近距视觉区域点Pn处的折射来传播到图像点11r的x-z位置。在这些实施例中,类似于上述不等式(5),近距视觉注视会聚角βn可以小于远距视觉注视会聚角βd

在一些实施例中,远距视觉区域110可以被配置为以远距视觉折射角αd折射由源8r定向在远距视觉区域点Pd处的光线2,以传播到图像点11r。近距视觉区域120可以被配置为以近距视觉折射角αn折射由源8r定向在近距视觉区域点Pn处的光线2,以传播到图像点11r的x-z位置。在实施例中,类似于上面的不等式(6),近距视觉折射角αn的x-分量αn x可以大于远距视觉折射角αd的x-分量αd x

如前所述,会聚减小镜片100可以包括渐进区域140,其中渐进区域点Pp的x-距离xPp、渐进区域注视会聚角βp和渐进区域折射角的x-分量αp x中的至少一个在其近距视觉区域值和其远距视觉区域值之间过渡。

图7A-B图示了从z-轴方向看镜片的x-y平面的会聚减小镜片100的实施例的正视图。图7A示出了会聚减小镜片100的iso-αx折射角轮廓线。在所示的会聚减小镜片100中,远距视觉区域110中的折射角α的x分量αd x遵循等式(3),而近距视觉区域120中的折射角α的x分量αn x在下鼻象限引入了+0.4rD(屈光度)移位:αn x=αd x+0.4rD,或者,等效地:Δαn x=+0.4rD。这可以从近距视觉区域120中的垂直iso-αx轮廓与远距视觉区域110中的iso-αx轮廓对准并向右偏移两行看出。

会聚减小镜片100还可以包括渐进区域140,其中折射角的x-分量αp x从与远距视觉区域110相关的αd x值变化到与近距视觉区域120相关的αn x值。渐进区域140被成形为使得渐进区域140中的折射角α的x-分量αp x平滑地插在αd x和αn x之间:αd x<αp x<αn x。此外,至少部分地在远距视觉区域110和近距视觉区域120之间的该渐进区域140可以被配置为折射由源11定向在渐进x-距离xPp处的渐进区域点Pp处的光线2,以传播到眼睛为中心的代表性位置8;其中渐进x-距离xPp可以在近距视觉x-距离xPn与远距视觉x-距离xPd之间:xPn<xPp<xPd。最终并且对应地,渐进区域140的注视会聚角βp也可以平滑地插在远距视觉区域110和近距视觉区域120中的其值之间:βnpd

图7B示出了图7A的会聚减小镜片100中的光焦度的iso-屈光轮廓线。在会聚减小镜片100的一些实施例中,远距视觉区域110可以具有D屈光度的远距视觉负光焦度。近距视觉区域120可以具有在0.5D内与远距视觉光焦度匹配的近距视觉光焦度;并且过渡区域可以连接远距视觉区域110和近距视觉区域120。在一些实施例中,近距视觉光焦度可以在0.25D内与远距视觉光焦度匹配。在渐进焦度镜片中,引入过渡区域以平滑地在远距视觉光焦度和不同的近距视觉光焦度之间插入光焦度,从而减小光学变形。在本发明的会聚减小镜片100中,过渡区域的原点是不同的:其光焦度不是光焦度变化所必需的,而是仅由变化的渐进区域折射角αp x引起。在所示的情况下,过渡区域的位置主要是鼻部,因此被表示为鼻过渡区域130n。在一些实施例中,过渡区域可以具有鼻和颞区域两者。一般而言,图7A的渐进区域140仅与图7B的鼻过渡区域130n相关但不一定重合。

在一些实施例中,近距视觉区域120的面积可以大于5mm2。在一些实施例中,近距视觉区域120的面积可以大于10mm2

图8A-C图示会聚减小眼镜100'的各种设计。一般而言,近距视觉区域120的大部分可以占据会聚减小镜片100的下部或下鼻象限。在一些实施例中,如图所示,近距视觉区域120的一小部分也可以延伸到下部颞象限。

图8A图示了在一些实施例中,近距视觉区域120可以是椭圆形的。图8B示出了成形为象限的近距视觉区域120。最后,图8C示出了类似通道的近距视觉区域120。在其它实施例中,近距视觉区域120可以具有其它形状,包括三角形、矩形、细长区域、对角线区域或走廊。在还有的其它实施例中,近距视觉区域可以是基本上圆形的,或者是指向下方的D形。

图9A-B图示了会聚减小镜片100的两个实施例,其可以实现并提供会聚减小镜片100的上述特性,特别是示出了满足前面描述的三个不等式(4)-(6)中的至少一个的镜片100的配置和设计。

图9A图示了会聚减小镜片100的实施例可以包括前表面140f,其具有在距离坐标系的中心的鼻向x-距离处接触远距视觉区域110中的前表面140f的远距视觉前正切145fd;以及在相同的鼻向x-距离处但在对应的通常较低的y高度处接触近距视觉区域120中的前表面140f的近距视觉前正切145fn。(为了透明起见,正切仅通过其标记来区分)。会聚减小镜片100还可以包括后表面140r,其具有在相同的x-距离处接触远距视觉区域110中的后表面140r的远距视觉后正切145rd,以及在相同的x-距离处在对应的较低y高度处接触近距视觉区域120中的后表面140r的近距视觉后正切145rn。这四个正切145由虚线表示。远距视觉前正切145fd和远距视觉后正切145rd形成远距视觉区域会聚角γdvr,而近距视觉前正切145fn和近距视觉后正切145rn形成近距视觉区域会聚角γnvr。在图9A中,近距视觉区域120中的前表面140f和后表面140r相对于远距视觉区域110靠近镜片100的中心向内旋转,因此近距视觉区域会聚角γnvr大于远距视觉区域会聚角γdvr

γdvrnvr. (7)

这种不等式是设计实现三个不等式(4)-(6)中的至少一个的会聚减小镜片100的一种方式。其它若干种设计也可以与此不等式保持一致。在一些情况下,不等式(7)中角度不等式可以仅由不同的正切中的一个单独驱动,诸如近距视觉前正切145fn相对于远距视觉前正切145fd向内旋转,而后正切145rn和145rd相同。

在一些情况下,会聚减小镜片100可以是弯月形镜片100,如图所示。还应该注意的是,这些角度γnvr和γdvr取决于正切拟合到表面140r和140f的x-距离:γnvr=γnvr(x)并且γdvr=γdvr(x)。将确定角度γnvr(x)和γdvr(x),并在距离坐标系的中心相同的鼻向x-距离处进行比较。

图9B示出了会聚减小镜片100的另一种镜片设计,其以另一种方式实现了三个不等式(4)-(6)中的至少一个。在这种设计中:

γnvr=γdvr. (8)

代替修改表面正切,在这些实施例中,远距视觉区域110具有远距视觉z-轴3;近距视觉区域120具有近距视觉z-轴3,并且近距视觉z-轴3相对于远距视觉z-轴3在鼻方向上成角度、旋转或扭曲。图示了从+y轴方向俯视镜片时的扭曲。在其中远距视觉区域110自然定位的镜片100的最高y高度处的远距视觉z-轴3可以基本上平行于整个镜片z-轴3。朝其中近距视觉区域120自然定位的较低的y高度渐进,镜片的x-y平面被旋转,使得z-轴3在鼻方向上被旋转。图9B中示出了两个旋转的或扭曲的横截面。中间横截面可以对应于渐进区域140,并且底部最扭曲的横截面可以对应于近距视觉区域120,其具有扭曲的近距视觉z-轴。在替代性表示中,近距视觉区域120中的z-轴3相对于远距视觉区域110中的z-轴3逆时针旋转。

应该注意的是,图9B的实施例的制造过程可能非常容易,因为该过程可能涉及形成具有期望的光焦度的镜片,然后加热该镜片直到其材料软化到允许会聚减小镜片100及其z-轴3在预期的近距视觉区域120中以期望的程度扭曲的程度。显然,可以通过组合图9A和图9B的实施例来形成一些会聚减小镜片100。

接下来,将描述图6A-D的实施例。图6A示出了会聚减小镜片100的实施例可以包括远距视觉区域110,其具有负远距视觉光焦度、被配置为折射在距离坐标系的y-z平面的x-距离xPd处的远距视觉区域点Pd处平行于z-轴3定向的光线2,使得其延伸(虚线)在远距视觉交点z-距离zId处与y-z平面相交。会聚减小镜片100还可以包括近距视觉区域120,其具有在0.5D内与远距视觉光焦度匹配的近距视觉光焦度、被配置为在对应的y高度处折射在等于远距视觉区域点Pd的xPd的x-距离xPn(xPn=xPd)处的近距视觉区域点Pn处平行于z-轴3定向的光线2,使得其延伸在小于远距视觉交点z-距离的近距视觉交点z-距离zIn处与y-z平面相交:

zIn<zId. (9)

在会聚减小镜片100的一些实施例中,远距视觉区域110可以被配置为以远距视觉折射角αd折射在x-距离xPd处的远距视觉区域点Pd处平行于z-轴3定向的光线2。近距视觉区域120可以被配置为以近距视觉折射角αn在对应的y高度处折射在x-距离xPn(xPn=xPd)处的近距视觉区域点Pn处平行于z-轴3定向的光线2。在实施例中,近距视觉折射角αn的x-分量αn x可以大于远距视觉折射角αd的x-分量αd x

αd xn x. (10)

这里以及随后,折射角α和注视会聚角β是指角度的大小。在会聚减小镜片100的一些实施例中,远距视觉区域110可以被配置为折射在x-距离xPd处的远距视觉区域点Pd处平行于z-轴3定向的光线2,使得其延伸以远距视觉注视会聚角βd与y-z平面相交。近距视觉区域120可以被配置为在对应的y高度处折射在相同的x-距离xPn=xPd处的近距视觉区域点Pn处平行于z-轴3定向的光线2,使得其延伸以近距视觉注视会聚角βn与y-z平面相交。在实施例中,近距视觉注视会聚角βn可以大于远距视觉注视会聚角βd

βdn. (11)

不等式(9)-(11)表征图6A-B的实施例,类似于不等式(4)-(6)表征图5A-B的实施例。会聚减小镜片100的实施例可以满足三个不等式(9)-(11)中的至少一个。

如前所述,会聚减小镜片100的实施例还可以包括至少部分地在远距视觉区域110和近距视觉区域120之间的渐进区域140,其被配置为折射在与远距视觉区域点相同的x-距离xPp处xPp=xPn=xPd的渐进区域点Pp处平行于z-轴3定向的光线2,使得其延伸在近距视觉交点z-距离zIn和远距视觉交点z-距离zId之间的渐进交点z-距离zIp处与y-z平面相交:zIn<zIp<zId

图6C-D描述了通过反转光线2的路径而与图6A-B的实施例相关的实施例,但是具有一些必要的调整。图6C图示了会聚减小镜片100的实施例可以包括具有负远距视觉光焦度的远距视觉区域110,其被配置为折射由源15r定向在距离坐标系的y-z平面x-距离XPd处的远距视觉区域点Pd处的光线2,以与y-z平面形成远距视觉光会聚角δd,其中源15r位于距离坐标系的中心的交点z-距离ZId处的z-轴3上。镜片100还可以包括近距视觉区域120,其具有在0.5D内与远距视觉光焦度匹配的近距视觉光焦度、被配置为折射由源15r定向在距离坐标系的y-z平面的与远距视觉点Pd相同的x-距离XPn:XPn=XPd处的近距视觉区域点Pn处的光线2,以与y-z平面形成近距视觉光会聚角δn。这里,源15r可以在与zId相同的交点z-距离zIn处:zIn=zId。相应地,远距视觉注视会聚角βd也等于近距视觉注视会聚角βnd=βn。在这样的实施例中,近距视觉光会聚角δn的x-分量δd x可以大于远距视觉光会聚角δd的x-分量δd x

δd xn x. (12)

相应地,在会聚减小镜片100的一些实施例中,远距视觉区域110可以被配置以远距视觉折射角αd折射由源15r定向在距离坐标系的y-z平面的x-距离XPd处的远距视觉区域点Pd处的光线2。此外,近距视觉区域120可以被配置为以近距视觉折射角αn折射由在距离坐标系的y-z平面的x-距离XPn处的近距视觉区域点Pn处的源15r定向的光线2。在实施例中,近距视觉折射角αn的x-分量αn x可以大于远距视觉折射角αd的x-分量αd x

αd xn x. (13)

不等式(12)-(13)表征图6C-D的实施例,类似于不等式(4)-(6)表征图5C-D的实施例。图5A-D的实施例的若干个公开的特征也适用于图6A-D的实施例。

图10A-B示出了减少眼睛疲劳的镜片100或会聚减小镜片100的其它实施例。这些实施例的特征在于镜片表面的曲率和它们对应的曲率中心的偏心位置的描述。在一些细节中,减少眼睛疲劳的镜片100或会聚减小镜片100的实施例可以具有限定z-轴3的会聚减小镜片的中心法线。该z-轴3通常也是远距视觉区域110的z-轴3。会聚减小镜片100的中心区域还可以限定正切的、居中的x-y平面。该z-轴3和x-y平面一起限定x-y-z坐标系。

会聚减小镜片100可以包括具有负远距视觉光焦度的上述远距视觉区域110,其具有曲率半径为Rdf和远距视觉前曲率中心CCdf的远距视觉前表面140df,以及具有曲率半径为Rdr和远距视觉后曲率中心CCdr的远距视觉后表面140dr。会聚减小镜片100还可以包括具有在远距视觉光焦度的0.5D内的光焦度的近距视觉区域120,其具有曲率半径为Rnf和近距视觉前曲率中心CCnf的近距视觉前表面140nf,以及具有曲率半径为Rnr和近距视觉后曲率中心CCnr的近距视觉后表面140nr;其中近距视觉前曲率中心x(CCnf)的x-坐标可以是相对于远距视觉前曲率中心x(CCdf)的x-坐标鼻向的,或者近距视觉后曲率中心x(CCnr)的x-坐标可以是相对于远距视觉后曲率中心x(CCdr)的x-坐标颞方向的。在不等式中表达上述属性,并且使用x-轴的方向性,使得位于右侧颞方向上的点具有比位于左侧鼻方向上的点更大的x坐标,这些条件被写为:

x(CCnf)<x(CCdf),或者(14)

x(CCnr)>x(CCdr). (15)

图10A示出了在一些典型实施例中,远距视觉表面140df和140dr的CCdf前和CCdr后曲率中心位于z-轴3上,因此它们的x坐标为零。以正式的术语,x(CCdf)=x(CCdr)=0。在这样的实施例中,会聚减小镜片100可以被配置为使得x(CCnf),即近距视觉前曲率中心CCnf的x-坐标是相对于坐标系的z-轴3的鼻向的,即:

x(CCnf)<0,或者(16)

近距视觉后曲率中心的x坐标x(CCnr)是相对于坐标系的z-轴3是颞向的,即。

x(CCnr)>0. (17)

就此而言,会聚减小镜片100的实施例是轴外曲率中心镜片。如前所述,对应于近距视觉区域120及其表面140nf和140nr的y高度可以低于远距视觉区域110及其表面140df和140dr的y高度。

曲率中心的上述坐标和x-距离x(CCnf)、x(CCnr)、x(CCdf)和x(CCdr)可以使用专用工具和设备(诸如球形仪和镜片轮廓仪)来确定。

虽然曲率中心处于在轴外,但会聚减小镜片100的设计仍可以实现近距视觉区域120的光焦度以在0.5D内与远距视觉区域110的光焦度匹配。这是因为第一近似中的光焦度仅由镜片前表面和后表面的曲率半径给出,而不是由曲率中心的位置给出:光焦度(远距视觉)=f(Rdf,Rdr),并且光焦度(近距视觉)=f(Rnf,Rnr)。在薄镜片近似中,光焦度与f(R1,R2)=(n-1)(1/R1-1/R2)成正比。只要f(Rnf,Rnr)=f(Rdf,Rdr),那么两个区域中的光焦度就在前导阶近似中匹配。

会聚减小镜片100的设计可以被视为建立在以下认识上,即,可以通过不操纵对应的曲率的半径,而是通过使曲率中心移出会聚减小镜片100的z-轴3而相对于远距视觉折射角调整和操纵近距视觉折射角来使近距视觉区域120的光焦度基本上等于远距视觉区域110的光焦度。更简洁地说,在会聚减小镜片100的设计中,可以形成与远距视觉区域110的折射角αd x不同的近距视觉区域120的折射角αn x,同时保持近距视觉区域120的光焦度仍然与远距视觉区域110的光焦度匹配。这两个区域的折射角和光焦度可相对于彼此在偏心移位的前导阶中独立地调整。

这些会聚减小镜片100的一些实施例还可以如下表征。参考图9A,远距视觉前表面140df和远距视觉后表面140dr在距离坐标系的中心x-距离处可以限定远距视觉表面会聚角γdvr;并且在距离坐标系的中心相同的x-距离处的近距视觉前表面140nf和近距视觉后表面140nr在对应的y高度处可以限定近距视觉表面会聚角γnvr,其中在近距视觉表面会聚角大于远距视觉表面会聚角的实施例中:

γdvrnvr. (18)

图10A-B的轴外曲率中心,会聚减小镜片100还可以由关于图5-9所描述的实施例来表征并且与之组合。

注意的是,可以通过仅改变镜片后表面140nr以产生近距视觉后表面140nr或仅改变镜片前表面140nf以产生近距视觉前表面140nf或两者来形成图5-10的会聚减小镜片100的近距视觉区域120。

可以通过多种方法形成近距视觉区域120。一些技术可以使用自由形式的生成器或五轴生成器。其它技术可以使用3维(3D)打印机。最后,在一些情况下,近距视觉区域120的形状可以不与远距视觉区域110不同。而是,可以通过在这些区域中不同地调节镜片材料的折射率n来实现这些区域的不同光学性能。例如,近距视觉区域120中的折射率nn可以大于远距视觉区域中的折射率nd:nn>nd。会聚减小镜片100的这样的实施例可以提供关于图5-10描述的许多光学性能。在一些情况下,可以通过在镜片的模制过程中施加电场来实现折射率n的这种变化。

虽然本文档包含许多细节,但这些细节不应被解释为对本发明或可要求保护的范围的限制,而是作为对本发明的特定实施例特有的特征的描述。在本文档中在分开的实施例的上下文中描述的某些特征也可以在单个实施例中组合实现。相反,在单个实施例的上下文中描述的各种特征也可以单独地或在任何合适的子组合中在多个实施例中实现。此外,虽然上面可能将特征描述为以某些组合起作用并且甚至最初如此要求保护,但是在一些情况下来自所要求保护的组合中的一个或多个特征可以从组合中去除,并且所要求保护的组合可以针对子组合或子组合的变体。

43页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:光调制器及光发送装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!