一种生物活性核桃壳多酚纳米传递体系的制备方法

文档序号:1258726 发布日期:2020-08-25 浏览:34次 >En<

阅读说明:本技术 一种生物活性核桃壳多酚纳米传递体系的制备方法 (Preparation method of bioactive walnut shell polyphenol nano-delivery system ) 是由 李小雨 周鹏 王璐 冯茹 罗珍 于 2020-05-14 设计创作,主要内容包括:本发明涉及一种生物活性核桃壳多酚纳米传递体系的制备方法,包括以下步骤:一、将核桃壳粉末加入乙醇水溶液中,超声辅助提取浓缩离心后,将核桃壳多酚提取物进行纯化,冷冻干燥得到纯化后的核桃壳多酚;二、将步骤一纯化的核桃壳多酚充分溶解于乙醇水溶液中,离心除去不溶物;三、将元蘑多糖加入去离子水中,通过磁力搅拌使其充分溶解;四、将元蘑多糖水溶液缓慢滴加到核桃壳多酚溶液中,通过搅拌,得到核桃壳多酚-元蘑多糖纳米混合体系;五、将核桃壳多酚-元蘑多糖纳米混合体系离心,干燥,得到核桃壳多酚-元蘑多糖纳米粉末。本发明制备的纳米传递体系具有较高稳定性以及良好的缓释性能,可广泛应用于功能性食品和医药领域。(The invention relates to a preparation method of a bioactive walnut shell polyphenol nano-delivery system, which comprises the following steps: firstly, adding walnut shell powder into an ethanol water solution, extracting, concentrating and centrifuging under the assistance of ultrasonic waves, purifying a walnut shell polyphenol extract, and freeze-drying to obtain purified walnut shell polyphenol; secondly, fully dissolving the walnut shell polyphenol purified in the step one into an ethanol water solution, and centrifuging to remove insoluble substances; thirdly, adding the Yuanmo polysaccharide into deionized water, and fully dissolving the Yuanmo polysaccharide through magnetic stirring; slowly dripping the Yuanmo polysaccharide water solution into the walnut shell polyphenol solution, and stirring to obtain a walnut shell polyphenol-Yuanmo polysaccharide nano mixed system; and fifthly, centrifuging and drying the walnut shell polyphenol-yuan mushroom polysaccharide nano mixed system to obtain walnut shell polyphenol-yuan mushroom polysaccharide nano powder. The nano delivery system prepared by the invention has higher stability and good slow release performance, and can be widely applied to the fields of functional foods and medicines.)

一种生物活性核桃壳多酚纳米传递体系的制备方法

技术领域

本发明涉及一种生物活性核桃壳多酚纳米传递体系的制备方法,属于功能性食品和医药的技术领域。

背景技术

多酚是一类多羟基化合物,广泛分布于多种植物中。多酚通常分为水溶性和水不溶性酚类化合物。研究发现核桃壳多酚具有多种保健功能,如抗癌、抗炎、抗菌和降低心血管疾病风险等。研究发现这些生物活性与核桃壳多酚的强抗氧化活性密切相关,其能够通过激活和加强内源性防御体系发挥其抗氧化功效。然而,由于核桃壳多酚在水介质中溶解度差、性质不稳定、渗透性低,导致其生物利用度低,在功能性食品和医药领域的应用仍然受到限制。因此,寻找新型的给药载体来克服目前的障碍,从而提高核桃壳多酚在人体内的生物利用度是非常必要的。

近年来,纳米胶囊由于具有比表面积大、稳定性好、生物相容性好、易于设计和制备、缓释性好等优点而得到了广泛的研究,并在食品和医药领域得到了迅速的发展。因此,胶囊物质的生物利用度一直在提高。根据文献报道,最佳的多酚释放体系可以显著提高生物利用度。因此,多酚类物质的纳米封装有望通过靶向释放和胃肠道的生物保护来解决多酚类物质的限制因素,从而提高其生物利用度。然而,目前纳米颗粒的制备大多采用聚乙烯醇、聚乙二醇、无机硅等化学材料,而作为天然的日常保护者,纳米材料作为多酚类药物的包封体系对人体具有高效、无毒的作用。因此,寻找合适的封装材料是多酚类物质纳米封装的核心问题。

多糖广泛分布于动植物、真菌和微生物中,具有良好的生物相容性、生物可降解性,特别是具有抗氧化、抗肿瘤、免疫调节、辐射防护等多种生物活性。元蘑作为药食两用原料具有悠久的食用历史。在中国古代,由于其良好的生物活性,它曾被广泛用于预防和治疗一些疾病。将元蘑多糖作为一种天然的包封材料,制备具有生物活性的核桃壳多酚的纳米传递体系,具有良好的包封和传递活性物质的潜力,不仅提高了在胃肠道中理化稳定性,而且对核桃壳多酚的生物活性和体内生物利用度提高具有重要作用。因此,本发明利用元蘑多糖作为载体,利用简单的自组装交联制备具有生物活性的核桃壳多酚的纳米传递体系,采用冷冻干燥制备纳米传递体系,为解决核桃壳多酚应用局限提供了新的方法。

发明内容

本发明的目的是提供一种生物活性核桃壳多酚纳米传递体系的制备方法,该方法工艺简单,条件温和,制备的纳米传递体系具有较高稳定性以及良好的缓释性能,可广泛应用于功能性食品和医药领域。

为了实现上述目的,本发明采用的技术方案是:

一种生物活性核桃壳多酚纳米传递体系的制备方法,包括以下步骤:

一、将核桃壳粉末按照一定料液比加入乙醇水溶液中,进行超声辅助提取,浓缩离心后,将核桃壳多酚提取物进行大孔树脂柱层析纯化,浓缩洗脱液后冷冻干燥得到纯化后的核桃壳多酚;

二、将步骤一纯化的核桃壳多酚充分溶解于乙醇水溶液中,离心除去不溶物,制备核桃壳多酚溶液;

三、将元蘑多糖加入去离子水中,通过磁力搅拌使其充分溶解,制得元蘑多糖水溶液;

四、将步骤三制得的元蘑多糖水溶液缓慢滴加到步骤二制备的核桃壳多酚溶液中,通过恒温磁力搅拌,得到核桃壳多酚-元蘑多糖纳米混合体系;

五、将步骤四核桃壳多酚-元蘑多糖纳米混合体系离心,收集沉淀,在真空条件下冷冻干燥,得到核桃壳多酚-元蘑多糖纳米粉末。

本发明技术方案的进一步改进在于:步骤一中料液比为1:20,乙醇水溶液中乙醇的体积分数为80%,超声辅助条件为50℃、440W、30min,提取次数为2次,离心条件为8000rpm下离心15min。

本发明技术方案的进一步改进在于:步骤一中大孔树脂型号为AB-8,纯化参数为:洗脱液为体积分数80%乙醇水溶液、洗脱流速为3.0mL/min、洗脱体积为2BV。

本发明技术方案的进一步改进在于:步骤二中乙醇水溶液中乙醇的体积分数为80%,离心条件为3000 rpm下离心10min,制得的核桃壳多酚浓度为50μg/mL。

本发明技术方案的进一步改进在于:步骤三中磁力搅拌条件为1400rpm下搅拌5min,制得的元蘑多糖水溶液浓度为2.0mg/mL。

本发明技术方案的进一步改进在于:步骤四中磁力搅拌条件为1400rpm下搅拌2.0h,核桃壳多酚溶液的滴加速度为0.5-5滴/s,核桃壳多酚溶液体积为100mL。

本发明技术方案的进一步改进在于:步骤四中元蘑多糖水溶液的滴加量为10-80mL。

本发明技术方案的进一步改进在于:步骤五中离心条件为12000rpm下离心15min,真空冷冻条件为:真空压力<1Pa、冷冻温度-40℃、冷冻时间12h。

由于采用了上述技术方案,本发明取得的技术效果有:

本发明提供的具有生物活性的核桃壳多酚的纳米传递体系,不仅增强了核桃壳多酚的体内靶向性,增加药物在胃肠道消化过程中稳定性,同时还增加了核桃壳多酚的溶解性和渗透性,从而提高了多酚在体内的生物利用度,而且对多酚生物活性的提高具有重要作用。

本发明制备的纳米传递体系具有粒径较小、缓释性能好以及对人体无毒副作用等优点,而且制作过程简单方便,条件温和,产品安全性能高,是一种高效绿色无污染的制备方式,可广泛应用于功能性食品和医药领域。

本发明在提取多酚过程中,温度为50℃,可以更好的保护多酚活性、提高多酚有效成分含量;440W功率,可以缩短提取时间、增加提取效率、降低提取温度;提取2次,可以提高多酚提取率、避免原材料浪费。

本发明利用大孔树脂进行纯化,工艺简单能耗少、提取过程无污染、树脂再生容易,可反复利用;采用80%乙醇进行洗脱,可以提高多酚吸附率、缩短纯化周期、提高纯化效率。

本发明采用磁力搅拌1400rpm,有利于多糖和多酚混合均匀、充分结合促进纳米粒形成、避免多糖聚集;滴加速度0.5-5滴/s,有利于多糖在多酚表面形成壳核结构,将多酚有效的包裹在多糖内部、减小纳米粒粒径、促进纳米粒结构稳定。

本发明采用-40℃,低温干燥可以保持纳米粒结构稳定、减少多酚活性成分损失;真空压力<1Pa,提高干燥效率、可以很好的干燥纳米粒中水分,增加纳米粒保存时间、减少多酚氧化。

附图说明

图1是本发明实施例1所制备纳米粒UV稳定性图;

图2是本发明实施例1所制备纳米粒释放性能图;

图3是本发明实施例2所制备纳米粒UV稳定性图;

图4是本发明实施例2所制备纳米粒释放性能图;

图5是本发明实施例3所制备纳米粒UV稳定性图;

图6是本发明实施例3所制备纳米粒释放性能图;

图7是本发明实施例4所制备纳米粒UV稳定性图;

图8是本发明实施例4所制备纳米粒释放性能图;

图9-12是本发明实施例1-4所制备纳米粒透射电镜图;

图13-16是本发明实施例1-4所制备纳米粒扫描电镜图。

具体实施方式

下面结合附图及具体实施例对本发明做进一步详细说明:

本发明公开了一种生物活性核桃壳多酚纳米传递体系的制备方法,包括以下步骤:

一、将核桃壳粉末按照1:20的料液比加入到乙醇体积分数为80%的乙醇水溶液中,进行超声辅助提取,超声辅助条件为50℃、440W、30min,提取次数为2次;浓缩离心后,离心条件为8000rpm下离心15min;将核桃壳多酚提取物进行大孔树脂柱层析纯化,大孔树脂型号为AB-8,纯化参数为:洗脱液为体积分数80%乙醇水溶液、洗脱流速为3.0mL/min、洗脱体积为2BV;浓缩洗脱液后冷冻干燥得到纯化后的核桃壳多酚;

二、将步骤一纯化的核桃壳多酚充分溶解于乙醇体积分数为80%的乙醇水溶液中,离心除去不溶物,离心条件为3000 rpm下离心10min,制备浓度为50μg/mL的核桃壳多酚溶液;

三、将元蘑多糖加入去离子水中,通过磁力搅拌使其充分溶解,磁力搅拌条件为1400rpm下搅拌5 min,制得浓度为2.0mg/mL的元蘑多糖水溶液;

四、将步骤三制得的不同体积(10-80mL)的元蘑多糖水溶液以0.5-5滴/s的滴加速度缓慢滴加到步骤二制备的体积为100mL的核桃壳多酚溶液中,通过恒温磁力搅拌,磁力搅拌条件为1400rpm下搅拌2.0h,得到核桃壳多酚-元蘑多糖纳米混合体系;

五、将步骤四核桃壳多酚-元蘑多糖纳米混合体系离心,离心条件为12000rpm下离心15min,收集沉淀,在真空条件下冷冻干燥,真空冷冻条件为:真空压力<1Pa、冷冻温度-40℃、冷冻时间12h,得到核桃壳多酚-元蘑多糖纳米粉末。

通过上述步骤制得的核桃壳多酚-元蘑多糖纳米粉末具有生物活性不仅增强了核桃壳多酚的体内靶向性,增加药物在胃肠道消化过程中稳定性,同时还增加了核桃壳多酚的溶解性和渗透性,从而提高了多酚在体内的生物利用度,并且具有粒径较小、缓释性能好以及对人体无毒副作用等优点,对多酚生物活性的提高具有重要作用。

以下为本发明的具体实施例:

实施例1

一种生物活性核桃壳多酚纳米传递体系的制备方法,包括以下步骤:

一、将核桃壳粉末按照1:20的料液比加入到乙醇体积分数为80%的乙醇水溶液中,进行超声辅助提取,超声辅助条件为50℃、440W、30min,提取次数为2次;浓缩离心后,离心条件为8000rpm下离心15min;将核桃壳多酚提取物进行大孔树脂柱层析纯化,大孔树脂型号为AB-8,纯化参数为:洗脱液为体积分数80%乙醇水溶液、洗脱流速为3.0mL/min、洗脱体积为2BV;浓缩洗脱液后冷冻干燥得到纯化后的核桃壳多酚;

二、将步骤一纯化的核桃壳多酚充分溶解于乙醇体积分数为80%的乙醇水溶液中,离心除去不溶物,离心条件为3000rpm下离心10min,制备浓度为50μg/mL的核桃壳多酚溶液;

三、将元蘑多糖加入去离子水中,通过磁力搅拌使其充分溶解,磁力搅拌条件为1400rpm下搅拌5 min,制得浓度为2.0mg/mL的元蘑多糖水溶液;

四、将10mL的元蘑多糖水溶液以0.5滴/s的滴加速度缓慢滴加到步骤二制备的体积为100mL的核桃壳多酚溶液中,通过恒温磁力搅拌,磁力搅拌条件为1400rpm下搅拌2.0h,得到核桃壳多酚-元蘑多糖纳米混合体系;

五、将步骤四核桃壳多酚-元蘑多糖纳米混合体系离心,离心条件为12000rpm下离心15min,收集沉淀,在真空条件下冷冻干燥,真空冷冻条件为:真空压力<1Pa、冷冻温度-40℃、冷冻时间12h,得到核桃壳多酚-元蘑多糖纳米粉末。

实施例1制备的核桃壳多酚-元蘑多糖纳米粉末颗粒均匀,平均粒径大小160.3nm,从图1可以看出,核桃壳多酚-元蘑多糖纳米粉末在紫外照射下具有较高的稳定性,多酚保留率为89.9%;核桃壳多酚从图2可以看出,纳米粉末在模拟胃肠道消化过程中具有良好的缓释效果,在胃消化阶段释放了23.50%,小肠消化后最终释放了54.52%,透射电镜结果如图9,扫描电镜结果如图13。

实施例2

实施例2与实施例1的工艺步骤相同,区别在于步骤四中实施例2元蘑多糖水溶液的加入量为20mL,滴加速度为1滴/s。

实施例2制备的核桃壳多酚-元蘑多糖纳米粉末颗粒均匀,平均粒径大小234.4nm,从图3可以看出,核桃壳多酚-元蘑多糖纳米粉末在紫外照射下具有较高的稳定性,多酚保留率为91.0%;核桃壳多酚从图4可以看出,纳米粒在模拟胃肠道消化过程中具有良好的缓释效果,在胃消化阶段释放了28.72%,小肠消化后最终释放了72.82%,透射电镜结果如图10,扫描电镜结果如图14。

实施例3

实施例3与实施例1的工艺步骤相同,区别在于步骤四中实施例3元蘑多糖水溶液的加入量为40mL,滴加速度为3滴/s。

实施例3制备的核桃壳多酚-元蘑多糖纳米粉末颗粒均匀,平均粒径大小341nm,从图5可以看出,核桃壳多酚-元蘑多糖纳米粉末在紫外照射下具有较高的稳定性,多酚保留率为92.4%;核桃壳多酚从图6可以看出,纳米粒在模拟胃肠道消化过程中具有良好的缓释效果,在胃消化阶段释放了28.29%,小肠消化后最终释放了75.08%,透射电镜结果如图11,扫描电镜结果如图15。

实施例4

实施例4与实施例1的工艺步骤相同,区别在于步骤四中实施例4元蘑多糖水溶液的加入量为80mL,滴加速度为5滴/s。

实施例4制备的核桃壳多酚-元蘑多糖纳米粉末颗粒均匀,平均粒径大小350.6nm,从图7可以看出,核桃壳多酚-元蘑多糖纳米粉末在紫外照射下具有较高的稳定性,多酚保留率为95.3%;核桃壳多酚从图8可以看出,纳米粒在模拟胃肠道消化过程中具有良好的缓释效果,在胃消化阶段释放了26.15%,小肠消化后最终释放了60.64%,透射电镜结果如图12,扫描电镜结果如图16。

本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理等所做的等效变化,均应涵盖于本发明的保护范围之内。

本发明的说明书中列举了各种组分的可选材料,但是本领域技术人员应该理解:上述组分材料的列举并非限制性的,也非穷举性的,各种组分都可以用其他本发明说明书中未提到的等效材料替代,而仍可以实现本发明的目的。说明书中所提到的具体实施例也是仅仅起到解释说明的目的,而不是为例限制本发明的范围。

另外,本发明每一个组分的用量范围包括说明书中所提到的任意下限和任意上限的任意组合,也包括各具体实施例中该组分的具体含量作为上限或下限组合而构成的任意范围:所有这些范围都涵盖在本发明的范围内,只是为了节省篇幅,这些组合而成的范围未在说明书中一一列举。说明书中所列举的本发明的每一个特征,可以与本发明的其他任意特征组合,这种组合也都在本发明的公开范围内,只是为了节省篇幅,这些组合而成的范围未在说明书中一一列举。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种中药去屑止痒剂的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!