一种用于电缆的高强度复合填充材料及其生产方法

文档序号:1261914 发布日期:2020-08-25 浏览:17次 >En<

阅读说明:本技术 一种用于电缆的高强度复合填充材料及其生产方法 (High-strength composite filling material for cable and production method thereof ) 是由 戴超 戴文秉 戴玉 戴章 戴文忠 于 2020-04-14 设计创作,主要内容包括:本发明公开了一种用于电缆的高强度复合填充材料及其生产方法,通过耐冲击层和轻质层的交替层叠粘结形成若干三明治夹心结构单元,外层的耐冲击层采用高强度橡胶填充材料使得复合材料整体具备较好的力学性能,且具有较强的耐冲击性能,作为芯层的轻质层也有效降低了材料整体的重量,在高耐冲击性能下满足强量化要求。粘结层中采用高分子粘结材料聚芳醚腈搭配单层纤维织物可有效提高多层复合填充材料的整体抗蠕变性能。在单层纤维织物的选材上选用高强度耐冲击纤维材质可进一步强化复合材料的耐冲击性。微米级中空玻璃微珠和微米级短切纤维的合理配比可以显著提高轻质层强度,满足轻量化的同时进一步提高复合填充材料的整体强度。(The invention discloses a high-strength composite filling material for cables and a production method thereof. The bonding layer adopts a high polymer bonding material poly (arylene ether nitrile) matched with the single-layer fiber fabric, so that the overall creep resistance of the multilayer composite filling material can be effectively improved. The impact resistance of the composite material can be further enhanced by selecting a high-strength impact-resistant fiber material on the material of the single-layer fiber fabric. The reasonable proportion of the micron-sized hollow glass beads and the micron-sized chopped fibers can obviously improve the strength of the light layer, and further improve the overall strength of the composite filling material while meeting the requirement of light weight.)

一种用于电缆的高强度复合填充材料及其生产方法

技术领域

本发明涉及复合填充材料领域,特别涉及一种用于电缆的高强度复合填充材料及其生产方法。

背景技术

随着我国航空航天、海洋探测与工程等技术领域的快速发展,在保障特种用途电缆安全性和可靠性的前提下,对材料的轻量化提出了迫切的需求,期望材料在保证高强度和绝缘性的同时,具有低密度的特点。一些轻质材料,如塑料泡沫、玻璃纤维增强复合材料以及碳纤维增强复合材料,虽然在一定程度上满足了材料轻量化的工程要求,但也存在着诸多有待改进和提高的缺点。塑料泡沫具备密度低的特点,但是其作为电缆外皮强度明显不足;玻璃纤维增强复合材料和碳纤维增强复合材料具有高强度的特点,但其密度偏大,不能满足轻量化和绝缘性的要求,因此,这些材料均不能满足相关领域对高强度、安全性和低密度的综合性能要求。

填充材料一般指加在合成树脂或橡胶中作为基本组分以改变其性能或降低其成本的固体物料。有无机的,也有有机的。橡胶工业中常称补强剂,如用炭黑、白炭黑、陶土、沉淀碳酸钙等,主要用以提高拉伸强度、硬度、耐磨耗和耐挠曲等性能。塑料工业中常用木粉、棉纤维、纸、布、石棉、陶土等,以提高其机械性能等,用云母、石墨等,以提高其电气性能等。

目前,为了保证树脂类材料具有一定强度的同时,拥有更低的密度,可以采用提高空心玻璃微珠填充率的方法来降低材料整体密度,由于空心玻璃微珠是分散于树脂基体中,对树脂交联体系的力学强度提升并无帮助,甚至在高填充率下会降低材料的整体强度,因此,这种复合填充材料在满足轻量化要求的同时无法兼顾材料的耐冲击性能,易在高强度周期性的冲击力作用下出现断裂和力学性能下降,而另一些橡胶填充材料虽然可以保证材料强度,但又存在随时间的迁移,抗蠕变性能逐渐变差的问题,且相同强度下,重量和厚度明显高于树脂玻璃珠填充材料,无法兼顾轻量化。

发明内容

本发明所要解决的技术问题:如何通过不同填充材料的层叠结构使得复合填充材料兼具高强度和轻量化特性,且在具备高耐冲击性能下有效抗蠕变。

为解决上述技术问题,本发明提供以下的技术方案:

一种高强度复合填充材料,由若干轻质层和若干耐冲击层交替层叠粘结而成,其中,复合填充材料的上下表层均为耐冲击层;所述轻质层由微米级中空玻璃微珠和微米级短切纤维复合填充环氧树脂基质模压而成,所述耐冲击层由纳米填料填充硅橡胶制备而成。

优选地,所述轻质层与耐冲击层通过浸涂有聚芳醚腈的单层纤维织物完成挤压粘结。

优选地,所述纤维织物为凯夫拉纤维织物或玻璃纤维织物或尼龙纤维织物。

优选地,所述纳米填料为氮化硅、白炭黑或六方氮化硼纳米级粉末中的一种,所述短切纤维为短切腈纶纤维,短切玻璃纤维或短切尼龙纤维中的一种。

优选地,所述环氧树脂基质为环氧乙烯基树脂聚合固化而成。

一种上述高强度复合填充材料的生产方法,具体步骤如下:

(A)耐冲击层的制备:先将纳米填料置于80℃真空烘箱中干燥处理4h,随后按100重量份甲基乙烯基硅橡胶、50重量份纳米填料和6重量份硅油的比例配料,通过密炼机在105℃下混炼15min,再将冷却至室温的混炼胶,在室温下用双辊开炼机混炼2重量份的硫化剂DCP,开炼15min,静置48h待用得板状耐冲击层;

(B)轻质层具体制备步骤如下:按100phr环氧乙烯基树脂、2phr过氧化甲乙酮及的配比在常温下进行树脂和引发剂的预搅拌;再将0.4phr环烷酸钴加入到混合装置中,搅拌2min后,静置备用;添加40phr由微米级中空玻璃微珠和微米级短切纤维组成的复合粉体,采用边加边搅的混料方式,搅拌时间为30min,搅拌完成后对预混料进行真空脱泡处理得预混料;将预混料装入表面涂有脱模剂的模具中,加压成型,按照固化工艺进行固化,冷却脱模得板状轻质层;

(C)耐冲击层和轻质层的复合粘结:将耐冲击层与轻质层交叉层叠排列,上下表层为耐冲击层,层与层之间铺设浸涂有聚芳醚腈的单层纤维织物,80℃环境下施恒压粘合1h,冷却室温后撤去压力;用平板硫化机在165℃,10MPa的条件下全硫化10min即得高强度复合填充材料。

优选地,所述复合粉体中微米级中空玻璃微珠和微米级短切纤维的重量比为7:1。

本发明获得的有益效果:

1、本发明通过耐冲击层和轻质层的交替层叠粘结形成若干三明治夹心结构单元,外层的耐冲击层采用高强度橡胶填充材料使得复合材料整体具备较好的力学性能,且具有较强的耐冲击性能,作为芯层的轻质层也有效降低了材料整体的重量,在高耐冲击性能下满足强量化要求。

2、粘结层中采用高分子粘结材料聚芳醚腈搭配单层纤维织物可有效提高多层复合填充材料的整体抗蠕变性能。在单层纤维织物的选材上选用高强度耐冲击纤维材质可进一步强化复合材料的耐冲击性。

3、微米级中空玻璃微珠和微米级短切纤维的合理配比可以显著提高轻质层强度,满足轻量化的同时进一步提高复合填充材料的整体强度。

附图说明

图1交替层叠结构示意图。

其中,A为耐冲击层,B为轻质层。

具体实施方式

下面通过对实施例的描述,对本发明的具体实施方式作进一步详细的说明,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。

实施例1:

本实施例中凯夫拉纤维织物采用平纹织造,面密度1.55g/cm2,弹性模量125GPa,延伸率2.7%。中空玻璃微珠的粒径在2.6~8.5μm,短切纤维选用短切腈纶纤维,长度在5~10μm。

按如下方法制备3层高强度复合填充材料:

(A)耐冲击层的制备:先将35重量份氮化硅置于80℃真空烘箱中干燥处理4h,随后按100重量份甲基乙烯基硅橡胶、50重量份纳米填料和6重量份硅油的比例配料,通过密炼机在105℃下混炼15min,再将冷却至室温的混炼胶,在室温下用双辊开炼机混炼2重量份的硫化剂DCP,开炼15min,静置48h待用得4mm均厚的板状耐冲击层;

(B)轻质层具体制备步骤如下:按100phr环氧乙烯基树脂、2phr过氧化甲乙酮及的配比在常温下进行树脂和引发剂的预搅拌;再将0.4phr环烷酸钴加入到混合装置中,搅拌2min后,静置备用;添加40phr由微米级中空玻璃微珠和微米级短切纤维组成的复合粉体,复合粉体中微米级中空玻璃微珠和微米级短切纤维的重量比为7:1,采用边加边搅的混料方式,搅拌时间为30min,搅拌完成后对预混料进行真空脱泡处理得预混料,确保混合料中尽可能少的气泡,以保证固化后制品的力学性能;将预混料装入表面涂有脱模剂的模具中,加压成型,按照固化工艺进行固化,冷却脱模得10mm均厚的板状轻质层;

(C)耐冲击层和轻质层的复合粘结:将耐冲击层与轻质层交叉层叠排列,上下表层分别为耐冲击层(如图1),相邻的耐冲击层与轻质层之间铺设浸涂有聚芳醚腈的单层凯夫拉纤维织物,聚芳醚腈浸涂量为150g/m2,80℃环境下施恒压粘合1h,冷却室温后撤去压力;用平板硫化机在165℃,10MPa的条件下全硫化10min即得高强度复合填充材料。

实施例2:按如下方法制备5层高强度复合填充材料:

玻璃纤维织物采用斜纹织造。面密度2.34g/cm2,弹性模量152GPa,延伸率2%。

硅烷化中空玻璃微珠的粒径在5.5~15.2μm,短切纤维选用短切玻璃纤维,长度在10~20μm。

(A)耐冲击层的制备:先将60重量份白炭黑纳米级粉末置于80℃真空烘箱中干燥处理4h,随后按100重量份甲基乙烯基硅橡胶、50重量份纳米填料和6重量份硅油的比例配料,通过密炼机在105℃下混炼15min,再将冷却至室温的混炼胶,在室温下用双辊开炼机混炼2重量份的硫化剂DCP,开炼15min,静置48h待用得1.5mm均厚的板状耐冲击层;

(B)轻质层具体制备步骤如下:按100phr环氧乙烯基树脂、2phr过氧化甲乙酮及的配比在常温下进行树脂和引发剂的预搅拌;再将0.4phr环烷酸钴加入到混合装置中,搅拌2min后,静置备用;添加40phr由微米级中空玻璃微珠和微米级短切纤维组成的复合粉体,复合粉体中微米级中空玻璃微珠和微米级短切纤维的重量比为7:1,采用边加边搅的混料方式,搅拌时间为30min,搅拌完成后对预混料进行真空脱泡处理得预混料,确保混合料中尽可能少的气泡,以保证固化后制品的力学性能;将预混料装入表面涂有脱模剂的模具中,加压成型,按照固化工艺进行固化,冷却脱模得5mm均厚的板状轻质层;

(C)耐冲击层和轻质层的复合粘结:将耐冲击层与轻质层交叉层叠排列,上下表层为分别为耐冲击层,层与层之间铺设浸涂有聚芳醚腈的单层玻璃纤维织物,聚芳醚腈浸涂量为100g/m2,80℃环境下施恒压粘合1h,冷却室温后撤去压力;用平板硫化机在165℃,10MPa的条件下全硫化10min即得高强度复合填充材料。

实施例3:其余均与实施例2相同,不同之处在于高强度复合填充材料共9层,所述纤维织物为尼龙纤维织物,采用平纹织造,面密度2.12g/cm2,弹性模量85GPa,延伸率2.9%。

硅烷化中空玻璃微珠的粒径在5.5~8.9μm,短切纤维选用短切尼龙纤维,长度在3~7μm。

步骤(A)中的纳米填料选用六方氮化硼纳米级粉末,添加量为100重量份。板状耐冲击层厚2mm,板状轻质层厚3mm。

对照实施例1:采用实施例1中的制备方法仅制备18mm均厚的板状轻质层用于后续的性能测试对照。

对照实施例2:采用实施例1中的制备方法仅制备18mm均厚的板状耐冲击层用于后续的性能测试对照。

对照实施例3:其余均与实施例1相同,不同之处在于层与层之间的粘结仅采用环氧树脂粘合剂粘结。

1、将实施例1~3及对照实施例1~3制备的复合填充材料分别测定复合填充材料的力学性能:

1.1复合材料的压缩性能

参照硬质泡沫塑料的压缩实验标准(GB/T 8813-2008),将复合填充材料加工成标准压缩试样,试样尺寸为30×30mm,每组材料制备五个测试试样,分别进行压缩性能实验,最终取五个试样的平均值来表征该组材料的压缩性能。

在测试每组材料的压缩性能时,沿着垂直于试样上下水平表面的方向对试样施加压力,加载速率为5mm/min,测试并记录试样的压缩强度和压缩模量,其单位分别为MPa和GPa。

1.2复合材料的弯曲性能

根据硬质塑料弯曲性能试验方法(GB/T 9341-2008),本文将不同含量空心玻璃微珠和不同含量中空聚合物微球的复合材料加工成标准弯曲试样,试样尺寸为80×10mm,每组材料制备五个测试试样,最终取五个试样的平均值来表征每组材料的弯曲性能。

实验采用三点弯曲的试验方法,两个支座为支点半径为5mm的半圆形,支座间跨度为64mm。试验时,将试样对称放置在支座_匕在垂直于试样表面的方向上以等速运动施加力,试验速度为2mm/min,测试并记录试样的弯曲强度和弯曲模量,其单位分别为MPa和GPa。

1.3硬度

本实验关于复合材料硬度的测试过程参照塑料邵氏硬度试验方法(GB2411-2008)。材料加工成尺寸为40×40mm的试样,每组实验测试五个点(每个点相隔至少6mm,每个点距离试样边缘不小于9mm),最终求平均值来表征该组材料的硬度。

1.4计算比压缩强度和比弯曲强度

统计各组材料的整体平均密度,并用测得的压缩强度和弯曲强度除以密度,计算获得各组试样的比压缩强度和比弯曲强度。

表1复合填充材料的力学性能测试结果

表2复合填充材料的比压缩强度和比弯曲强度

表1和表2结果可知,实施例1~3中制备的多层复合填充材料在绝对强度、比强度以及硬度上均好于单一材质的耐冲击层或轻质层,这说明本发明采用的复合多层粘结形成的结构强度较高,且在不影响绝对强度的情况下满足了轻量化要求。

2、耐冲击性能测试

测试试样的耐冲击性能,方法参考文献:杨霖,谢浩,刘东生.片状模塑料(SMC)表箱落锤冲击检测评估系统研究[J].中国电业(技术版),2012(09):73-75.,结果如下:

表3复合材料试样的总裂纹长度

组别 总裂纹长度(mm)
实施例1 188
实施例2 146
实施例3 134
对照实施例1 868
对照实施例2 221
对照实施例3 427

表3结果显示耐冲击性能的提升主要取决于耐冲击层与轻质层形成的夹心单元,表层的填充硅橡胶具有相对较强的耐冲击性能,保护脆性的夹心轻质层。本发明中的耐冲击层与轻质层之间通过聚芳醚腈浸涂织物粘合,这种粘合方式可以缓冲受力并充分传导冲击力,使得在大冲击力下局部损伤降低,大幅提高耐冲击性能。普通粘结剂虽然能够将耐冲击层与轻质层牢固粘合为一个整体,但并没有吸能传导作用,材料整体的耐冲击性较差。

3、蠕变回复行为测试

蠕变测试:蠕变时间设置为900s,蠕变回复时间设置为1800s,在60℃条件下分别施加10MPa(远小于材料的拉伸强度,<30%),以确保材料蠕变测试处于线粘弹性区域;蠕变样品的尺寸为:20.0cm(长)×4.0cm(宽)。

表4蠕变形变测试结果

组别 蠕变形变(%)
实施例1 0.18
实施例2 0.21
实施例3 0.14
对照实施例1 0.12
对照实施例2 1.28
对照实施例3 0.49

橡胶在较高温度下的抗蠕变性能较差,因此抗蠕变性能较好的轻质夹心层结合织物粘合层有效抑制了硅橡胶在高温下的蠕变形变,使得材料整体的抗蠕变形成显著优于单一材质或普通粘合。

综上所述,本发明通过耐冲击层和轻质层的交替层叠粘结形成若干三明治夹心结构单元,外层的耐冲击层采用高强度橡胶填充材料使得复合材料整体具备较好的力学性能,且具有较强的耐冲击性能,作为芯层的轻质层也有效降低了材料整体的重量,在高耐冲击性能下满足强量化要求。粘结层中采用高分子粘结材料聚芳醚腈搭配单层纤维织物可有效提高多层复合填充材料的整体抗蠕变性能。在单层纤维织物的选材上选用高强度耐冲击纤维材质可进一步强化复合材料的耐冲击性。微米级中空玻璃微珠和微米级短切纤维的合理配比可以显著提高轻质层强度,满足轻量化的同时进一步提高复合填充材料的整体强度。

以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内;本发明未涉及的技术均可通过现有技术加以实现。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种锂电池封装用铝塑膜及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!