一种通过氧化镁水化制备氢氧化镁悬浮液的方法

文档序号:1349546 发布日期:2020-07-24 浏览:30次 >En<

阅读说明:本技术 一种通过氧化镁水化制备氢氧化镁悬浮液的方法 (Method for preparing magnesium hydroxide suspension by hydrating magnesium oxide ) 是由 徐松林 王芝洪 刘其锋 张明磊 郑艳 于 2020-04-15 设计创作,主要内容包括:本发明提供一种通过氧化镁水化制备氢氧化镁悬浮液的方法,包括:配料、一次水化、湿法研磨、二次水化、浓缩或干燥、制浆调配。其原料氧化镁满足以下指标:MgO含量≥80%,CaO含量≤5%,灼烧失重≤5.5%,200目通过率≥95%。本发明的有益效果:本发明通过氧化镁水化制备的氢氧化镁悬浮液,杂质含量少,在后续应用中效果好,副反应少;固含量20-60%,悬浮效果好,稳定性好;通过两次水化,氧化镁能够充分转化为氢氧化镁,水化率高,其水化后浆料中Mg(OH)&lt;Sub&gt;2&lt;/Sub&gt;超过96%;能够充分发挥设备效率,制备时间短,能耗低,生产效率高。(The invention provides a method for preparing magnesium hydroxide suspension by hydrating magnesium oxide, which comprises the following steps: preparing materials, carrying out primary hydration, carrying out wet grinding, carrying out secondary hydration, concentrating or drying, and pulping and blending. The raw material magnesium oxide meets the following indexes: the MgO content is more than or equal to 80 percent, the CaO content is less than or equal to 5 percent, the ignition weight loss is less than or equal to 5.5 percent, and the 200-mesh passing rate is more than or equal to 95 percent. The invention has the beneficial effects that: the magnesium hydroxide suspension prepared by hydration of magnesium oxide has low impurity content, good effect in subsequent application and less side reaction; the solid content is 20-60%, the suspension effect is good, and the stability is good; through twice hydration, the magnesium oxide can be fully converted into magnesium hydroxide, the hydration rate is high, and the hydrated slurry contains Mg (OH) 2 More than 96%; the method has the advantages of full play of equipment efficiency, short preparation time, low energy consumption and high production efficiency.)

一种通过氧化镁水化制备氢氧化镁悬浮液的方法

技术领域

本发明涉及氢氧化镁领域,尤其是涉及一种通过氧化镁水化制备氢氧化镁悬浮液的方法。

背景技术

我国沿海海水资源丰富,是世界上生产海盐较多的国家之一,全国原盐生产能力近3000万吨,副产物卤水约2000万立方米。卤水是一种可再生资源,具有很高的利用价值,长期以来我国并没有重视卤水的开发和利用,我国卤水利用率尚不足10%,造成了大量镁资源的浪费。因此,卤水镁资源的充分利用成为刻不容缓的任务。而且我国菱镁矿储量居世界第一,沿海和内陆盐湖生产氯化镁,为我国氢氧化镁的生产提供了取之不尽的原料。氢氧化镁是镁化学制品中仅次于镁砂和轻烧氧化镁居第三位的镁化学品,是发达国家在推行可持续发展战略、保护环境、有益生态发展进程中备受青睐和推崇的产品之一。被称为绿色安全中和剂、环境友好阻燃剂和第三种碱。

氢氧化镁按照形态和用途可分成滤饼状、粉状和浆料状三大类,并且三者可以相互转变。其中,氢氧化镁悬浮液具有生产工艺简单、高活性、高吸附能力、较强的缓冲性能、无腐蚀性、无毒、无害以及处理使用安全等诸多独特性能,并且其生产原料丰富,在近几十年来被广泛研究。其主要应用领域有:酸性废水中和、重金属离子脱除、烟气脱硫、印染废水处理等。

氢氧化镁的合成方法很多,主要有镁盐沉淀法和水化法。其中,镁盐沉淀法因需要消耗大量的酸、碱,后续处理繁琐,费用高昂,并不适用于环保级氢氧化镁浆料合成。水化法主要以氧化镁为原料,与水在一定温度发生水化反应生成氢氧化镁,工艺简单,成本低廉,因此被广泛采用。

CN109574049A公开了一种溶速可控的氢氧化镁浆料水化合成方法,其将菱镁矿经粉碎、研磨、煅烧、水化、搅拌,以实现氢氧化镁溶解速率的可控。该专利的不足之处:以上述方法生产的氢氧化镁悬浮液杂质较多,严重影响其在后续应用中的效果;并且其水化反应不彻底,轻烧氧化镁转化不彻底,能耗较高。

CN101318672公开了一种有机酸类铵盐催化水化生产氢氧化镁的方法,其将氧化镁粉碎、制浆后,加入有机酸类铵盐催化剂对水化反应进行催化,提高氢氧化镁产物结晶度,增大氢氧化镁粒径。该专利的不足之处:上述方法生产的氢氧化镁杂质较多,影响其在后续应用中的效果;其该方法制备氢氧化镁耗时长,生产效率较低。

CN105565782A公开了一种用于氧化镁烧结体靶材的氢氧化镁悬浮浆料的制备方法,其将分散剂、粘合剂、表面活性剂制备溶液后,与氧化镁、消泡剂发生水化反应,制成氢氧化镁悬浮浆料。该专利的不足之处:上述生产方法,其氧化镁水化反应不彻底,氧化镁未完全转化为氢氧化镁,并且其生产方法耗时长、能耗较高,生产效率不高。

CN104395261A公开了一种混合的钙和镁化合物及其生产方法,其通过氢氧化镁悬浮液熟化生石灰,形成彼此紧密结合且具有均一体积分布的钙相和镁相。该专利的不足之处:其公开的氢氧化镁悬浮液中杂质(CaO、Al2O3、SiO2、Fe2O3、MgO)较多,且杂质量较大。

综上所述,现有通过氧化镁水化制备氢氧化镁悬浮液的方法,存在以下技术问题:

(1)现有氧化镁水化工艺制备的氢氧化镁悬浮液杂质较多,影响其在后续应用中的效果;

(2)现有氧化镁水化制备氢氧化镁悬浮液工艺,水化反应不彻底,部分氧化镁未转化成氢氧化镁,转化率不高;

(3)现有氧化镁水化制备氢氧化镁悬浮液工艺,耗时长,生产效率不高。

发明内容

为解决现有技术中存在的技术问题,本发明提供一种通过氧化镁水化制备氢氧化镁悬浮液的方法,以实现以下发明目的:

(1)提供一种氧化镁水化制备氢氧化镁悬浮液的方法,其氢氧化镁悬浮液杂质少,在后续应用中效果好,减少不必要的副反应;

(2)提供一种氧化镁水化制备氢氧化镁悬浮液的方法,其水化反应彻底,氧化镁充分转化为氢氧化镁,转化率高;

(3)提供一种氧化镁水化制备氢氧化镁悬浮液的方法,其制备耗时短,生产效率高。

为解决以上技术问题,本发明采取的技术方案如下:

一种通过氧化镁水化制备氢氧化镁悬浮液的方法,其特征在于,包括:配料、一次水化、湿法研磨、二次水化、浓缩或干燥、制浆调配。

所述氧化镁满足以下指标:MgO含量≥80%,CaO含量≤5%,灼烧失重≤5.5%,200目通过率≥95%。

所述氧化镁的来源为以下之一:由菱镁矿为原料煅烧制得、由水菱镁石为原料煅烧制得、由水镁石为原料煅烧制得、由其他含镁副产物煅烧制得、其他行业含氧化镁的副产物。

所述配料,将所述氧化镁按重量分为四等份,搅拌状态下,依次添加至溶解有分散剂的水中;添加时,在前一等份的氧化镁加入水中且搅拌至无团聚粉料后,加入后一等份的氧化镁;所述四等份的氧化镁全部添加至水中后,继续搅拌45min,制得固含量为15~40%的浆料;所述氧化镁:分散剂:水的重量百分比为15~40%:2~3%:57~83%。

所述一次水化,将所述配料步骤配置好的所述浆料进行沉降处理,静置8h,备用。

所述湿法研磨,包括二级或三级串联研磨;其中,所述一级研磨,对所述一次水化后的浆料进行一级研磨,研磨至浆料粒径D50=4~6μm后,经150目超声波振动筛分后,进入二级研磨;所述二级研磨,对一级研磨后的浆料进行二级研磨,研磨至浆料粒径D50=2.5~3μm后,经200目超声波振动筛分后,进入三级研磨;所述三级研磨,对二级研磨后的浆料进行三级研磨,研磨至浆料粒径D50=1~1.5μm后,经325目超声波振动筛分后,备用。

所述二次水化,搅拌经所述湿法研磨后的浆料,加入自来水,将所述浆料固含量稀释至4~8%后,加入脱钙剂,加热至80~90℃,反应时间2~4h;所述搅拌,搅拌转速为90~120RPM;所述脱钙剂为含量5~95%的氯化镁,其余成分为水;所述脱钙剂:所述浆料中CaO的重量份比值为2~4:1。

所述干燥,先判断所述二次水化后浆料的固含量,若固含量为40~60%,含40%,对所述浆料压滤至含水率45~50%后,进行闪蒸干燥处理,至氢氧化镁干粉水分≤3%;若固含量为20~40%,对所述浆料进行喷雾干燥处理,至氢氧化镁干粉水分≤3%;所述闪蒸干燥,干燥温度为260~280℃,压力为-1KPa;所述喷雾干燥,干燥温度为250~280℃;制得的所述氢氧化镁干粉中Mg(OH)2的干基含量需满足≥90%。

所述浓缩,先判断所述二次水化后浆料的固含量,若固含量为30~60%,含30%,则进入制浆调配步骤;若固含量为20~30%,对所述浆料进行浓缩处理,浓缩至浆料固含量为30~60%,含30%,进入制浆调配步骤,所述浓缩量为20~30 m3/h,溢流浆固含量为2~5%。

所述制浆调配,搅拌状态下,将干燥步骤制得的氢氧化镁干粉或浓缩步骤制得的氢氧化镁浆料,与分散剂、自来水混合,继续搅拌30~60min,制得氢氧化镁悬浮液;所述分散剂添加量占所述氢氧化镁悬浮液总重量的2~3%。

与现有技术相比,本发明的有益效果为:

(1)本发明通过氧化镁水化制备的氢氧化镁悬浮液,杂质含量少,在后续应用中效果好,副反应少;

(2)本发明通过氧化镁水化制备的氢氧化镁悬浮液,固含量20-60%,悬浮效果好,稳定性好;

(3)本发明的通过氧化镁水化制备氢氧化镁悬浮液的方法,第一次水化能够使旋流除杂效率大大提高;

(4)本发明的通过氧化镁水化制备氢氧化镁悬浮液的方法,通过两次水化,氧化镁能够充分转化为氢氧化镁,水化率高,其水化后浆料中Mg(OH)2超过96%;

(5)本发明的通过氧化镁水化制备氢氧化镁悬浮液的方法,能够充分发挥设备效率,制备时间短,能耗低,生产效率高。

具体实施方式

为了对本发明的技术特征、目的和效果有更加清楚的理解,现说明本发明的具体实施方式。

实施例1

一种通过氧化镁水化制备氢氧化镁悬浮液的方法,包括配料、一次水化、湿法研磨、二次水化、干燥、制浆调配。

取以菱镁矿为原料煅烧所得的氧化镁,所述氧化镁满足以下指标:

所述配料,将所述氧化镁按重量平均分为四等份,搅拌状态下,依次添加至溶解有分散剂的水中;添加时,在前一等份的氧化镁加入水中且搅拌至无团聚粉料后,加入后一等份的氧化镁;所述四等份的氧化镁全部添加至水中后,继续搅拌45min,制得浆料。

其中,所述搅拌状态,搅拌转速为90RPM;

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);

所述氧化镁:分散剂:水的重量百分比为15%:2%:83%。

所述一次水化,将所述配料步骤配置好的所述浆料置入沉降器,静置8h,所述浆料在所述沉降器内沉降后,从出料口出料至储料罐,备用。

所述一次水化期间,所述氧化镁表面和水发生水化反应,生成氢氧化镁,所述氧化镁中的杂质二氧化硅由于本身颗粒尺寸较大以及自密度大的原因,在所述氧化镁浆料沉降过程中会沉积在沉降器的最底部,待沉降器出料完毕,从沉降器排渣口排出。

所述湿法研磨,包括二级串联研磨。

所述一级研磨,使用柱塞泵将一次水化后的浆料从储料罐输送至一级磨剥机,进行一级研磨,研磨至浆料粒径D50=4~6μm;所述浆料经超声波振动筛筛分后,进入浆料一级研磨储罐。

所述柱塞泵进料压力为0.5MPa,进料量为20m3/h;

所述一级研磨的研磨温度为40℃,研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ4.0mm:φ3.0mm:φ2.0mm:φ1.5mm = 2:2:3:1。

所述超声波振动筛目数为150目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述二级研磨,使用柱塞泵将一级研磨后的浆料从一级研磨储罐输送至二级磨剥机,进行二级研磨,研磨至浆料粒径D50=2.5~3μm;所述浆料经超声波振动筛筛分后,进入浆料二级研磨储罐。

所述柱塞泵进料压力为0.5MPa,进料量为20m3/h;

所述二级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ1.5mm:φ1.2mm:φ1.0mm = 3:5:2。

所述超声波振动筛目数为200目,同时可进一步除去浆料中所含的二氧化硅杂质。

对二级研磨后的浆料烘干后检测,其具体参数如下:

所述二次水化,将经二级研磨后的浆料转入脱钙罐中,搅拌速度120RPM,加入自来水将所述浆料的固含量稀释至8%,加入脱钙剂,加热至90℃,反应时间4h。所述脱钙剂为含量95%的氯化镁,其余为水;所述脱钙剂:CaO的重量份比值为4:1。

对二次水化后的浆料烘干后检测,其具体指标如下:

所述干燥,先检测二次水化后浆料中氢氧化镁的固含量,其固含量为40%。将二次水化后的浆料,用柱塞泵送入压滤机压滤,制得氢氧化镁滤饼;将所述氢氧化镁滤饼通过皮带输送机送至闪蒸干燥机干燥,制得氢氧化镁干粉。

其中,所述压滤,进料压力为0.6MPa,进料流量为10m3/h,过滤面积为120m2,压榨压力为0.9MPa。

所述氢氧化镁滤饼,含水率为45%。

所述闪蒸干燥机干燥,进风温度为300℃;干燥温度为260℃;出风温度为70℃;系统压力为-1KPa。

所述氢氧化镁干粉,具体指标如下:

其氢氧化镁干粉指标需满足:Mg(OH)2≥90%(干基),CaO≤1.5%(干基),Fe≤0.1%(干基),盐酸不溶物≤2.0%(干基),粒径D50=2-10µm,PH=9-11。

所述制浆调配,搅拌状态下,将分散剂投入自来水中,继续搅拌5min;保持搅拌状态,将干燥后的所述氢氧化镁干粉按重量分为四等份,依次投入所述自来水中;添加时,在前一等份的氢氧化镁干粉加入自来水中,搅拌至无团聚粉料后,加入后一等份的氢氧化镁干粉;全部氢氧化镁干粉添加完成后,继续搅拌30min,即制得本发明的40%固含量氢氧化镁悬浮液成品。

其中,所述搅拌转速为120RPM。

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);所述氢氧化镁干粉:分散剂:自来水的重量百分比为41.2%:2%:56.8%。

实施例2

一种通过氧化镁水化制备氢氧化镁悬浮液的方法,包括配料、一次水化、湿法研磨、二次水化、干燥、制浆调配。

取由水菱镁石为原料煅烧制得的氧化镁,所述氧化镁满足以下指标:

所述配料,将所述氧化镁按重量平均分为四等份,搅拌状态下,依次添加至溶解有分散剂的水中;添加时,在前一等份的氧化镁加入水中且搅拌至无团聚粉料后,加入后一等份的氧化镁;所述四等份的氧化镁全部添加至水中后,继续搅拌45min,制得浆料。

其中,所述搅拌状态,搅拌转速为90RPM;

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);

所述氧化镁:分散剂:水的重量百分比为15%:2%:83%。

所述一次水化,将所述配料步骤配置好的所述浆料置入沉降器,静置8h,所述浆料在所述沉降器内沉降后,从出料口出料至储料罐,备用。

所述一次水化期间,所述氧化镁表面和水发生水化反应,生成氢氧化镁,所述氧化镁中的杂质二氧化硅由于本身颗粒尺寸较大以及自密度大的原因,在所述氧化镁浆料沉降过程中会沉积在沉降器的最底部,待沉降器出料完毕,从沉降器排渣口排出。

所述湿法研磨,包括二级串联研磨。

所述一级研磨,使用柱塞泵将一次水化后的浆料从储料罐输送至一级磨剥机,进行一级研磨,研磨至浆料粒径D50=4~6μm;所述浆料经超声波振动筛筛分后,进入浆料一级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述一级研磨的研磨温度为50℃,研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ4.0mm:φ3.0mm:φ2.5mm:φ2.0mm = 2:2:3:1。

所述超声波振动筛目数为150目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述二级研磨,使用柱塞泵将一级研磨后的浆料从一级研磨储罐输送至二级磨剥机,进行二级研磨,研磨至浆料粒径D50=2.5~3μm;所述浆料经超声波振动筛筛分后,进入浆料二级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述二级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ2.0mm:φ1.4mm:φ1.2mm = 3:5:2。

所述超声波振动筛目数为200目,同时可进一步除去浆料中所含的二氧化硅杂质。

对二级研磨后的浆料烘干后检测,其具体参数如下:

所述二次水化,将经二级研磨后的浆料转入脱钙罐中,搅拌速度120RPM,加入自来水将所述浆料的固含量稀释至8%,加入脱钙剂,加热至90℃,反应时间4h。所述脱钙剂为含量5%的氯化镁,其余为水;所述脱钙剂:CaO的重量份比值为4:1。

对二次水化后的浆料烘干后检测,其具体指标如下:

所述干燥,先检测二次水化后浆料中氢氧化镁的固含量,其固含量为50%。将二次水化后的浆料,用柱塞泵送入压滤机压滤,制得氢氧化镁滤饼;将所述氢氧化镁滤饼通过皮带输送机送至闪蒸干燥机干燥,制得氢氧化镁干粉。

其中,所述压滤,进料压力为0.8MPa,进料流量为10m3/h,过滤面积为120m2,压榨压力为1.1MPa。

所述氢氧化镁滤饼,含水率为50%。

所述闪蒸干燥机干燥,进风温度为320℃;干燥温度为280℃;出风温度为90℃;系统压力为-1KPa。

所述氢氧化镁干粉,具体指标如下:

其氢氧化镁干粉指标需满足:Mg(OH)2≥90%(干基),CaO≤1.5%(干基),Fe≤0.1%(干基),盐酸不溶物≤2.0%(干基),粒径D50=2-10µm,PH=9-11。

所述制浆调配,搅拌状态下,将分散剂投入自来水中,继续搅拌5min;保持搅拌状态,将干燥后的所述氢氧化镁干粉按重量分为四等份,依次投入所述自来水中;添加时,在前一等份的氢氧化镁干粉加入自来水中,搅拌至无团聚粉料后,加入后一等份的氢氧化镁干粉;全部氢氧化镁干粉添加完成后,继续搅拌30min,即制得本发明的50%固含量氢氧化镁悬浮液成品。

其中,所述搅拌转速为90RPM。

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);所述氢氧化镁干粉:分散剂:自来水的重量百分比为51.5%:2.5%:46%。

实施例3

一种通过氧化镁水化制备氢氧化镁悬浮液的方法,包括配料、一次水化、湿法研磨、二次水化、干燥、制浆调配。

取以菱镁矿为原料煅烧所得的氧化镁,所述氧化镁满足以下指标:

所述配料,将所述氧化镁按重量平均分为四等份,搅拌状态下,依次添加至溶解有分散剂的水中;添加时,在前一等份的氧化镁加入水中且搅拌至无团聚粉料后,加入后一等份的氧化镁;所述四等份的氧化镁全部添加至水中后,继续搅拌45min,制得浆料。

其中,所述搅拌状态,搅拌转速为90RPM;

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);

所述氧化镁:分散剂:水的重量百分比为15%:2%:83%。

所述一次水化,将所述配料步骤配置好的所述浆料置入沉降器,静置8h,所述浆料在所述沉降器内沉降后,从出料口出料至储料罐,备用。

所述一次水化期间,所述氧化镁表面和水发生水化反应,生成氢氧化镁,所述氧化镁中的杂质二氧化硅由于本身颗粒尺寸较大以及自密度大的原因,在所述氧化镁浆料沉降过程中会沉积在沉降器的最底部,待沉降器出料完毕,从沉降器排渣口排出。

所述湿法研磨,包括二级串联研磨。

所述一级研磨,使用柱塞泵将一次水化后的浆料从储料罐输送至一级磨剥机,进行一级研磨,研磨至浆料粒径D50=4~6μm;所述浆料经超声波振动筛筛分后,进入浆料一级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述一级研磨的研磨温度为50℃,研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ4.0mm:φ3.0mm:φ2.5mm:φ2.0mm = 2:2:3:1。

所述超声波振动筛目数为150目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述二级研磨,使用柱塞泵将一级研磨后的浆料从一级研磨储罐输送至二级磨剥机,进行二级研磨,研磨至浆料粒径D50=2.5~3μm;所述浆料经超声波振动筛筛分后,进入浆料二级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述二级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ2.0mm:φ1.4mm:φ1.2mm = 3:5:2。

所述超声波振动筛目数为200目,同时可进一步除去浆料中所含的二氧化硅杂质。

对二级研磨后的浆料烘干后检测,其具体参数如下:

所述二次水化,将经二级研磨后的浆料转入脱钙罐中,搅拌速度120RPM,加入自来水将所述浆料的固含量稀释至8%,加入脱钙剂,加热至90℃,反应时间4h。所述脱钙剂为含量95%的氯化镁,其余为水;所述脱钙剂:CaO的重量份比值为4:1。

对二次水化后的浆料烘干后检测,其具体指标如下:

所述干燥,先检测二次水化后浆料中氢氧化镁的固含量,其固含量为60%。将二次水化后的浆料,用柱塞泵送入压滤机压滤,制得氢氧化镁滤饼;将所述氢氧化镁滤饼通过皮带输送机送至闪蒸干燥机干燥,制得氢氧化镁干粉。

其中,所述压滤,进料压力为0.8MPa,进料流量为10m3/h,过滤面积为120m2,压榨压力为1.1MPa。

所述氢氧化镁滤饼,含水率为50%。

所述闪蒸干燥机干燥,进风温度为320℃;干燥温度为280℃;出风温度为90℃;系统压力为-1KPa。

所述氢氧化镁干粉,具体指标如下:

其氢氧化镁干粉指标需满足:Mg(OH)2≥90%(干基),CaO≤1.5%(干基),Fe≤0.1%(干基),盐酸不溶物≤2.0%(干基),粒径D50=2-10µm,PH=9-11。

所述制浆调配,搅拌状态下,将分散剂投入自来水中,继续搅拌5min;保持搅拌状态,将干燥后的所述氢氧化镁干粉按重量分为四等份,依次投入所述自来水中;添加时,在前一等份的氢氧化镁干粉加入自来水中,搅拌至无团聚粉料后,加入后一等份的氢氧化镁干粉;全部氢氧化镁干粉添加完成后,继续搅拌30min,即制得本发明的60%固含量氢氧化镁悬浮液成品。

其中,所述搅拌转速为60RPM。

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);所述氢氧化镁干粉:分散剂:自来水的重量百分比为61.8%:3%:35.2%。

实施例4

一种通过氧化镁水化制备氢氧化镁悬浮液的方法,包括配料、一次水化、湿法研磨、二次水化、干燥、制浆调配。

取由水镁石为原料煅烧制得的氧化镁,所述氧化镁满足以下指标:

所述配料,将所述氧化镁按重量平均分为四等份,搅拌状态下,依次添加至溶解有分散剂的水中;添加时,在前一等份的氧化镁加入水中且搅拌至无团聚粉料后,加入后一等份的氧化镁;所述四等份的氧化镁全部添加至水中后,继续搅拌45min,制得浆料。

其中,所述搅拌状态,搅拌转速为90RPM;

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);

所述氧化镁:分散剂:水的重量百分比为15%:2%:83%。

所述一次水化,将所述配料步骤配置好的所述浆料置入沉降器,静置8h,所述浆料在所述沉降器内沉降后,从出料口出料至储料罐,备用。

所述一次水化期间,所述氧化镁表面和水发生水化反应,生成氢氧化镁,所述氧化镁中的杂质二氧化硅由于本身颗粒尺寸较大以及自密度大的原因,在所述氧化镁浆料沉降过程中会沉积在沉降器的最底部,待沉降器出料完毕,从沉降器排渣口排出。

所述湿法研磨,包括三级串联研磨。

所述一级研磨,使用柱塞泵将一次水化后的浆料从储料罐输送至一级磨剥机,进行一级研磨,研磨至浆料粒径D50=4~6μm;所述浆料经超声波振动筛筛分后,进入浆料一级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述一级研磨的研磨温度为50℃,研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ4.0mm:φ3.0mm:φ2.5mm:φ2.0mm = 2:2:3:1。

所述超声波振动筛目数为150目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述二级研磨,使用柱塞泵将一级研磨后的浆料从一级研磨储罐输送至二级磨剥机,进行二级研磨,研磨至浆料粒径D50=2.5~3μm;所述浆料经超声波振动筛筛分后,进入浆料二级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述二级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ2.0mm:φ1.4mm:φ1.2mm = 3:5:2。

所述超声波振动筛目数为200目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述三级研磨,使用柱塞泵将二级研磨后的浆料从二级研磨储罐输送至三级磨剥机,进行三级研磨,研磨至浆料粒径D50=1~1.5μm;所述浆料经超声波振动筛筛分后,进入浆料三级研磨储罐。

所述柱塞泵进料压力为0.8MPa,进料量为20m3/h;

所述三级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为50%;

所述氧化锆磨珠粒级配比为φ1.2mm:φ1.0mm:φ0.8mm = 2:2:6。

所述超声波振动筛目数为325目,同时可进一步除去浆料中所含的二氧化硅杂质。

对三级研磨后的浆料烘干后检测,其具体参数如下:

所述二次水化,将经三级研磨后的浆料转入脱钙罐中,搅拌速度120RPM,加入自来水将所述浆料的固含量稀释至8%,加入脱钙剂,加热至90℃,反应时间4h。所述脱钙剂为含量80%的氯化镁,其余为水;所述脱钙剂:CaO的重量份比值为4:1。

对二次水化后的浆料烘干后检测,其具体指标如下:

所述干燥,先检测二次水化后浆料中氢氧化镁的固含量,其固含量为40%。将二次水化后的浆料,用柱塞泵送入压滤机压滤,制得氢氧化镁滤饼;将所述氢氧化镁滤饼通过皮带输送机送至闪蒸干燥机干燥,制得氢氧化镁干粉。

其中,所述压滤,进料压力为0.8MPa,进料流量为10m3/h,过滤面积为120m2,压榨压力为1.1MPa。

所述氢氧化镁滤饼,含水率为50%。

所述闪蒸干燥机干燥,进风温度为320℃;干燥温度为280℃;出风温度为90℃;系统压力为-1KPa。

所述氢氧化镁干粉,具体指标如下:

其氢氧化镁干粉指标需满足:Mg(OH)2≥90%(干基),CaO≤1.5%(干基),Fe≤0.1%(干基),盐酸不溶物≤2.0%(干基),粒径D50=2-10µm,PH=9-11。

所述制浆调配,搅拌状态下,将分散剂投入自来水中,继续搅拌5min;保持搅拌状态,将干燥后的所述氢氧化镁干粉按重量分为四等份,依次投入所述自来水中;添加时,在前一等份的氢氧化镁干粉加入自来水中,搅拌至无团聚粉料后,加入后一等份的氢氧化镁干粉;全部氢氧化镁干粉添加完成后,继续搅拌30min,即制得本发明的40%固含量氢氧化镁悬浮液成品。

其中,所述搅拌转速为120RPM。

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);所述氢氧化镁干粉:分散剂:自来水的重量百分比为41.2%:2%:56.8%。

实施例5

一种通过氧化镁水化制备氢氧化镁悬浮液的方法,包括配料、一次水化、湿法研磨、二次水化、干燥、制浆调配。

取由水镁石为原料煅烧制得的氧化镁,所述氧化镁满足以下指标:

所述配料,将所述氧化镁按重量平均分为四等份,搅拌状态下,依次添加至溶解有分散剂的水中;添加时,在前一等份的氧化镁加入水中且搅拌至无团聚粉料后,加入后一等份的氧化镁;所述四等份的氧化镁全部添加至水中后,继续搅拌45min,制得浆料。

其中,所述搅拌状态,搅拌转速为90RPM;

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);

所述氧化镁:分散剂:水的重量百分比为15%:2%:83%。

所述一次水化,将所述配料步骤配置好的所述浆料置入沉降器,静置8h,所述浆料在所述沉降器内沉降后,从出料口出料至储料罐,备用。

所述一次水化期间,所述氧化镁表面和水发生水化反应,生成氢氧化镁,所述氧化镁中的杂质二氧化硅由于本身颗粒尺寸较大以及自密度大的原因,在所述氧化镁浆料沉降过程中会沉积在沉降器的最底部,待沉降器出料完毕,从沉降器排渣口排出。

所述湿法研磨,包括三级串联研磨。

所述一级研磨,使用柱塞泵将一次水化后的浆料从储料罐输送至一级磨剥机,进行一级研磨,研磨至浆料粒径D50=4~6μm;所述浆料经超声波振动筛筛分后,进入浆料一级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述一级研磨的研磨温度为50℃,研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ4.0mm:φ3.0mm:φ2.5mm:φ2.0mm = 2:2:3:1。

所述超声波振动筛目数为150目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述二级研磨,使用柱塞泵将一级研磨后的浆料从一级研磨储罐输送至二级磨剥机,进行二级研磨,研磨至浆料粒径D50=2.5~3μm;所述浆料经超声波振动筛筛分后,进入浆料二级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述二级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ2.0mm:φ1.4mm:φ1.2mm = 3:5:2。

所述超声波振动筛目数为200目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述三级研磨,使用柱塞泵将二级研磨后的浆料从二级研磨储罐输送至三级磨剥机,进行三级研磨,研磨至浆料粒径D50=1~1.5μm;所述浆料经超声波振动筛筛分后,进入浆料三级研磨储罐。

所述柱塞泵进料压力为0.8MPa,进料量为20m3/h;

所述三级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为50%;

所述氧化锆磨珠粒级配比为φ1.2mm:φ1.0mm:φ0.8mm = 2:2:6。

所述超声波振动筛目数为325目,同时可进一步除去浆料中所含的二氧化硅杂质。

对三级研磨后的浆料烘干后检测,其具体参数如下:

所述二次水化,将经三级研磨后的浆料转入脱钙罐中,搅拌速度120RPM,加入自来水将所述浆料的固含量稀释至8%,加入脱钙剂,加热至90℃,反应时间4h。所述脱钙剂为含量80%的氯化镁,其余为水;所述脱钙剂:CaO的重量份比值为4:1。

对二次水化后的浆料烘干后检测,其具体指标如下:

所述干燥,先检测二次水化后浆料中氢氧化镁的固含量,其固含量为60%。将二次水化后的浆料,用柱塞泵送入压滤机压滤,制得氢氧化镁滤饼;将所述氢氧化镁滤饼通过皮带输送机送至闪蒸干燥机干燥,制得氢氧化镁干粉。

其中,所述压滤,进料压力为0.8MPa,进料流量为10m3/h,过滤面积为120m2,压榨压力为1.1MPa。

所述氢氧化镁滤饼,含水率为50%。

所述闪蒸干燥机干燥,进风温度为320℃;干燥温度为280℃;出风温度为90℃;系统压力为-1KPa。

所述氢氧化镁干粉,具体指标如下:

其氢氧化镁干粉指标需满足:Mg(OH)2≥90%(干基),CaO≤1.5%(干基),Fe≤0.1%(干基),盐酸不溶物≤2.0%(干基),粒径D50=2-10µm,PH=9-11。

所述制浆调配,搅拌状态下,将分散剂投入自来水中,继续搅拌5min;保持搅拌状态,将干燥后的所述氢氧化镁干粉按重量分为四等份,依次投入所述自来水中;添加时,在前一等份的氢氧化镁干粉加入自来水中,搅拌至无团聚粉料后,加入后一等份的氢氧化镁干粉;全部氢氧化镁干粉添加完成后,继续搅拌30min,即制得本发明的60%固含量氢氧化镁悬浮液成品。

其中,所述搅拌转速为60RPM。

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);所述氢氧化镁干粉:分散剂:自来水的重量百分比为61.8%:3%:35.2%。

实施例6

一种通过氧化镁水化制备氢氧化镁悬浮液的方法,包括配料、一次水化、湿法研磨、二次水化、干燥、制浆调配。

取由水镁石为原料煅烧制得的氧化镁,所述氧化镁满足以下指标:

所述配料,将所述氧化镁按重量平均分为四等份,搅拌状态下,依次添加至溶解有分散剂的水中;添加时,在前一等份的氧化镁加入水中且搅拌至无团聚粉料后,加入后一等份的氧化镁;所述四等份的氧化镁全部添加至水中后,继续搅拌45min,制得浆料。

其中,所述搅拌状态,搅拌转速为90RPM;

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);

所述氧化镁:分散剂:水的重量百分比为15%:2%:83%。

所述一次水化,将所述配料步骤配置好的所述浆料置入沉降器,静置8h,所述浆料在所述沉降器内沉降后,从出料口出料至储料罐,备用。

所述一次水化期间,所述氧化镁表面和水发生水化反应,生成氢氧化镁,所述氧化镁中的杂质二氧化硅由于本身颗粒尺寸较大以及自密度大的原因,在所述氧化镁浆料沉降过程中会沉积在沉降器的最底部,待沉降器出料完毕,从沉降器排渣口排出。

所述湿法研磨,包括三级串联研磨。

所述一级研磨,使用柱塞泵将一次水化后的浆料从储料罐输送至一级磨剥机,进行一级研磨,研磨至浆料粒径D50=4~6μm;所述浆料经超声波振动筛筛分后,进入浆料一级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述一级研磨的研磨温度为50℃,研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ4.0mm:φ3.0mm:φ2.5mm:φ2.0mm = 2:2:3:1。

所述超声波振动筛目数为150目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述二级研磨,使用柱塞泵将一级研磨后的浆料从一级研磨储罐输送至二级磨剥机,进行二级研磨,研磨至浆料粒径D50=2.5~3μm;所述浆料经超声波振动筛筛分后,进入浆料二级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述二级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ2.0mm:φ1.4mm:φ1.2mm = 3:5:2。

所述超声波振动筛目数为200目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述三级研磨,使用柱塞泵将二级研磨后的浆料从二级研磨储罐输送至三级磨剥机,进行三级研磨,研磨至浆料粒径D50=1~1.5μm;所述浆料经超声波振动筛筛分后,进入浆料三级研磨储罐。

所述柱塞泵进料压力为0.8MPa,进料量为20m3/h;

所述三级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为50%;

所述氧化锆磨珠粒级配比为φ1.2mm:φ1.0mm:φ0.8mm = 2:2:6。

所述超声波振动筛目数为325目,同时可进一步除去浆料中所含的二氧化硅杂质。

对三级研磨后的浆料烘干后检测,其具体参数如下:

所述二次水化,将经三级研磨后的浆料转入脱钙罐中,搅拌速度120RPM,加入自来水将所述浆料的固含量稀释至8%,加入脱钙剂,加热至90℃,反应时间4h。所述脱钙剂为含量80%的氯化镁,其余为水;所述脱钙剂:CaO的重量份比值为4:1。

对二次水化后的浆料烘干后检测,其具体指标如下:

所述干燥,先检测二次水化后浆料中氢氧化镁的固含量,其固含量为20%。将二次水化后的浆料,用柱塞泵送入压滤机压滤,制得氢氧化镁滤饼;将所述氢氧化镁滤饼通过皮带输送机送至喷雾干燥机干燥,制得氢氧化镁干粉。

其中,所述压滤,进料压力为0.8MPa,进料流量为10m3/h,过滤面积为120m2,压榨压力为1.1MPa。

所述氢氧化镁滤饼,含水率为45%。

所述喷雾干燥机干燥,干燥温度为250℃;出风温度为80℃;系统压力为-1KPa。

所述氢氧化镁干粉,具体指标如下:

其氢氧化镁干粉指标需满足:Mg(OH)2≥90%(干基),CaO≤1.5%(干基),Fe≤0.1%(干基),盐酸不溶物≤2.0%(干基),粒径D50=2-10µm,PH=9-11。

所述制浆调配,搅拌状态下,将分散剂投入自来水中,继续搅拌5min;保持搅拌状态,将干燥后的所述氢氧化镁干粉按重量分为四等份,依次投入所述自来水中;添加时,在前一等份的氢氧化镁干粉加入自来水中,搅拌至无团聚粉料后,加入后一等份的氢氧化镁干粉;全部氢氧化镁干粉添加完成后,继续搅拌30min,即制得本发明的40%固含量氢氧化镁悬浮液成品。

其中,所述搅拌转速为120RPM。

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);所述氢氧化镁干粉:分散剂:自来水的重量百分比为41.2%:2%:56.8%。

实施例7

一种通过氧化镁水化制备氢氧化镁悬浮液的方法,包括配料、一次水化、湿法研磨、二次水化、干燥、制浆调配。

取由水镁石为原料煅烧制得的氧化镁,所述氧化镁满足以下指标:

所述配料,将所述氧化镁按重量平均分为四等份,搅拌状态下,依次添加至溶解有分散剂的水中;添加时,在前一等份的氧化镁加入水中且搅拌至无团聚粉料后,加入后一等份的氧化镁;所述四等份的氧化镁全部添加至水中后,继续搅拌45min,制得浆料。

其中,所述搅拌状态,搅拌转速为90RPM;

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);

所述氧化镁:分散剂:水的重量百分比为15%:2%:83%。

所述一次水化,将所述配料步骤配置好的所述浆料置入沉降器,静置8h,所述浆料在所述沉降器内沉降后,从出料口出料至储料罐,备用。

所述一次水化期间,所述氧化镁表面和水发生水化反应,生成氢氧化镁,所述氧化镁中的杂质二氧化硅由于本身颗粒尺寸较大以及自密度大的原因,在所述氧化镁浆料沉降过程中会沉积在沉降器的最底部,待沉降器出料完毕,从沉降器排渣口排出。

所述湿法研磨,包括三级串联研磨。

所述一级研磨,使用柱塞泵将一次水化后的浆料从储料罐输送至一级磨剥机,进行一级研磨,研磨至浆料粒径D50=4~6μm;所述浆料经超声波振动筛筛分后,进入浆料一级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述一级研磨的研磨温度为50℃,研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ4.0mm:φ3.0mm:φ2.5mm:φ2.0mm = 2:2:3:1。

所述超声波振动筛目数为150目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述二级研磨,使用柱塞泵将一级研磨后的浆料从一级研磨储罐输送至二级磨剥机,进行二级研磨,研磨至浆料粒径D50=2.5~3μm;所述浆料经超声波振动筛筛分后,进入浆料二级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述二级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ2.0mm:φ1.4mm:φ1.2mm = 3:5:2。

所述超声波振动筛目数为200目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述三级研磨,使用柱塞泵将二级研磨后的浆料从二级研磨储罐输送至三级磨剥机,进行三级研磨,研磨至浆料粒径D50=1~1.5μm;所述浆料经超声波振动筛筛分后,进入浆料三级研磨储罐。

所述柱塞泵进料压力为0.8MPa,进料量为20m3/h;

所述三级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为50%;

所述氧化锆磨珠粒级配比为φ1.2mm:φ1.0mm:φ0.8mm = 2:2:6。

所述超声波振动筛目数为325目,同时可进一步除去浆料中所含的二氧化硅杂质。

对三级研磨后的浆料烘干后检测,其具体参数如下:

所述二次水化,将经三级研磨后的浆料转入脱钙罐中,搅拌速度120RPM,加入自来水将所述浆料的固含量稀释至8%,加入脱钙剂,加热至90℃,反应时间4h。所述脱钙剂为含量95%的氯化镁,其余为水;所述脱钙剂:CaO的重量份比值为4:1。

对二次水化后的浆料烘干后检测,其具体指标如下:

所述干燥,先检测二次水化后浆料中氢氧化镁的固含量,其固含量为37%。将二次水化后的浆料,用柱塞泵送入压滤机压滤,制得氢氧化镁滤饼;将所述氢氧化镁滤饼通过皮带输送机送至喷雾干燥机干燥,制得氢氧化镁干粉。

其中,所述压滤,进料压力为0.8MPa,进料流量为10m3/h,过滤面积为120m2,压榨压力为1.1MPa。

所述氢氧化镁滤饼,含水率为45%。

所述喷雾干燥机干燥,干燥温度为250℃;出风温度为80℃;系统压力为-1KPa。

所述氢氧化镁干粉,具体指标如下:

其氢氧化镁干粉指标需满足:Mg(OH)2≥90%(干基),CaO≤1.5%(干基),Fe≤0.1%(干基),盐酸不溶物≤2.0%(干基),粒径D50=2-10µm,PH=9-11。

所述制浆调配,搅拌状态下,将分散剂投入自来水中,继续搅拌5min;保持搅拌状态,将干燥后的所述氢氧化镁干粉按重量分为四等份,依次投入所述自来水中;添加时,在前一等份的氢氧化镁干粉加入自来水中,搅拌至无团聚粉料后,加入后一等份的氢氧化镁干粉;全部氢氧化镁干粉添加完成后,继续搅拌30min,即制得本发明的60%固含量氢氧化镁悬浮液成品。

其中,所述搅拌转速为120RPM。

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);所述氢氧化镁干粉:分散剂:自来水的重量百分比为61.8%:3%:35.2%。

实施例8

一种通过氧化镁水化制备氢氧化镁悬浮液的方法,包括配料、一次水化、湿法研磨、二次水化、浓缩、制浆调配。

取由其他含镁副产物煅烧制得的氧化镁,所述氧化镁满足以下指标:

所述配料,将所述氧化镁按重量平均分为四等份,搅拌状态下,依次添加至溶解有分散剂的水中;添加时,在前一等份的氧化镁加入水中且搅拌至无团聚粉料后,加入后一等份的氧化镁;所述四等份的氧化镁全部添加至水中后,继续搅拌45min,制得浆料。

其中,所述搅拌状态,搅拌转速为90RPM;

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);

所述氧化镁:分散剂:水的重量百分比为15%:2%:83%。

所述一次水化,将所述配料步骤配置好的所述浆料置入沉降器,静置8h,所述浆料在所述沉降器内沉降后,从出料口出料至储料罐,备用。

所述一次水化期间,所述氧化镁表面和水发生水化反应,生成氢氧化镁,所述氧化镁中的杂质二氧化硅由于本身颗粒尺寸较大以及自密度大的原因,在所述氧化镁浆料沉降过程中会沉积在沉降器的最底部,待沉降器出料完毕,从沉降器排渣口排出。

所述湿法研磨,包括三级串联研磨。

所述一级研磨,使用柱塞泵将一次水化后的浆料从储料罐输送至一级磨剥机,进行一级研磨,研磨至浆料粒径D50=4~6μm;所述浆料经超声波振动筛筛分后,进入浆料一级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述一级研磨的研磨温度为50℃,研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ4.0mm:φ3.0mm:φ2.5mm:φ2.0mm = 2:2:3:1。

所述超声波振动筛目数为150目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述二级研磨,使用柱塞泵将一级研磨后的浆料从一级研磨储罐输送至二级磨剥机,进行二级研磨,研磨至浆料粒径D50=2.5~3μm;所述浆料经超声波振动筛筛分后,进入浆料二级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述二级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ2.0mm:φ1.4mm:φ1.2mm = 3:5:2。

所述超声波振动筛目数为200目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述三级研磨,使用柱塞泵将二级研磨后的浆料从二级研磨储罐输送至三级磨剥机,进行三级研磨,研磨至浆料粒径D50=1~1.5μm;所述浆料经超声波振动筛筛分后,进入浆料三级研磨储罐。

所述柱塞泵进料压力为0.8MPa,进料量为20m3/h;

所述三级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为50%;

所述氧化锆磨珠粒级配比为φ1.2mm:φ1.0mm:φ0.8mm = 2:2:6。

所述超声波振动筛目数为325目,同时可进一步除去浆料中所含的二氧化硅杂质。

对三级研磨后的浆料烘干后检测,其具体参数如下:

所述二次水化,将经三级研磨后的浆料转入脱钙罐中,搅拌速度120RPM,加入自来水将所述浆料的固含量稀释至8%,加入脱钙剂,加热至90℃,反应时间4h。所述脱钙剂为含量5%的氯化镁,其余为水;所述脱钙剂:CaO的重量份比值为4:1。

对二次水化后的浆料烘干后检测,其具体指标如下:

所述浓缩,先检测二次水化后浆料中氢氧化镁的固含量,其固含量为25%,在20~30%之间。将二次水化后的浆料,用柱塞泵送入浓缩旋流站,对所述浆料进行浓缩处理,浓缩至浆料固含量为45%,即在固含量30~60%(含30%)范围内,进入制浆调配步骤。

所述浓缩处理量为20~30m3/h,进料口压力为0.3~0.5MPa,溢流浆固含量为2-5%。

所述制浆调配,搅拌状态下,将分散剂和自来水投入经浓缩处理的所述浆料中,继续搅拌30min,即制得本发明的40%固含量氢氧化镁悬浮液成品。

其中,所述搅拌转速为120RPM。

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);所述氢氧化镁浆料:分散剂:自来水的重量百分比为89%:2%:9%。

实施例9

一种通过氧化镁水化制备氢氧化镁悬浮液的方法,包括配料、一次水化、湿法研磨、二次水化、浓缩、制浆调配。

取由其他含镁副产物煅烧制得的氧化镁,所述氧化镁满足以下指标:

所述配料,将所述氧化镁按重量平均分为四等份,搅拌状态下,依次添加至溶解有分散剂的水中;添加时,在前一等份的氧化镁加入水中且搅拌至无团聚粉料后,加入后一等份的氧化镁;所述四等份的氧化镁全部添加至水中后,继续搅拌45min,制得浆料。

其中,所述搅拌状态,搅拌转速为90RPM;

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);

所述氧化镁:分散剂:水的重量百分比为15%:2%:83%。

所述一次水化,将所述配料步骤配置好的所述浆料置入沉降器,静置8h,所述浆料在所述沉降器内沉降后,从出料口出料至储料罐,备用。

所述一次水化期间,所述氧化镁表面和水发生水化反应,生成氢氧化镁,所述氧化镁中的杂质二氧化硅由于本身颗粒尺寸较大以及自密度大的原因,在所述氧化镁浆料沉降过程中会沉积在沉降器的最底部,待沉降器出料完毕,从沉降器排渣口排出。

所述湿法研磨,包括三级串联研磨。

所述一级研磨,使用柱塞泵将一次水化后的浆料从储料罐输送至一级磨剥机,进行一级研磨,研磨至浆料粒径D50=4~6μm;所述浆料经超声波振动筛筛分后,进入浆料一级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述一级研磨的研磨温度为50℃,研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ4.0mm:φ3.0mm:φ2.5mm:φ2.0mm = 2:2:3:1。

所述超声波振动筛目数为150目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述二级研磨,使用柱塞泵将一级研磨后的浆料从一级研磨储罐输送至二级磨剥机,进行二级研磨,研磨至浆料粒径D50=2.5~3μm;所述浆料经超声波振动筛筛分后,进入浆料二级研磨储罐。

所述柱塞泵进料压力为0.6MPa,进料量为20m3/h;

所述二级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为40%;

所述氧化锆磨珠粒级配比为φ2.0mm:φ1.4mm:φ1.2mm = 3:5:2。

所述超声波振动筛目数为200目,同时可进一步除去浆料中所含的二氧化硅杂质。

所述三级研磨,使用柱塞泵将二级研磨后的浆料从二级研磨储罐输送至三级磨剥机,进行三级研磨,研磨至浆料粒径D50=1~1.5μm;所述浆料经超声波振动筛筛分后,进入浆料三级研磨储罐。

所述柱塞泵进料压力为0.8MPa,进料量为20m3/h;

所述三级研磨的研磨介质为氧化锆磨珠,所述研磨介质在所述磨剥机磨腔内所占体积比为50%;

所述氧化锆磨珠粒级配比为φ1.2mm:φ1.0mm:φ0.8mm = 2:2:6。

所述超声波振动筛目数为325目,同时可进一步除去浆料中所含的二氧化硅杂质。

对三级研磨后的浆料烘干后检测,其具体参数如下:

所述二次水化,将经三级研磨后的浆料转入脱钙罐中,搅拌速度120RPM,加入自来水将所述浆料的固含量稀释至8%,加入脱钙剂,加热至90℃,反应时间4h。所述脱钙剂为含量95%的氯化镁,其余为水;所述脱钙剂:CaO的重量份比值为4:1。

对二次水化后的浆料烘干后检测,其具体指标如下:

所述浓缩,先检测二次水化后浆料中氢氧化镁的固含量,其固含量为55%,在30~60%之间(含30%),进入制浆调配步骤。

所述制浆调配,搅拌状态下,将分散剂和自来水投入经浓缩处理的所述浆料中,继续搅拌30min,即制得本发明的50%固含量氢氧化镁悬浮液成品。

其中,所述搅拌转速为90RPM。

所述分散剂为共聚物钠盐(潍坊大东化工有限公司提供,型号:F-02);所述氢氧化镁浆料:分散剂:自来水的重量百分比为91%:2.5%:6.5%。

除非另有说明,本发明中所采用的百分数均为质量百分数。

最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

25页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高效的利用废弃物制备硫酸铝的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!