Active load balancing method of platform line migration system

文档序号:1386984 发布日期:2020-08-18 浏览:45次 中文

阅读说明:本技术 一种平台线运移系统的主动均载方法 (Active load balancing method of platform line migration system ) 是由 李福森 潘润道 董胜龙 衡超 于 2020-05-21 设计创作,主要内容包括:本发明公开了一种平台线运移系统的主动均载方法,其特点是将设置在产品底部的若干台液压台车相对位置采用坐标的形式输入顶升系统,同步顶升后将其称重并计算重心位置,根据重心位置将若干台车分成数组,计算每组台车的载荷目标值,在运移作业过程中,实时监控每台液压台车负载,并根据载荷目标值对液压台车负载进行调节,实现产品平稳运移,安全过驳。本发明与现有技术相比具有响应快、调载精确、可扩展性好等优点,极大地提高了移船的工作效率和安全性。(The invention discloses an active load balancing method of a platform line transportation system, which is characterized in that relative positions of a plurality of hydraulic trolleys arranged at the bottom of a product are input into a jacking system in a coordinate mode, the hydraulic trolleys are weighed and the gravity center position is calculated after synchronous jacking, the trolleys are divided into a plurality of groups according to the gravity center position, the load target value of each group of trolleys is calculated, the load of each hydraulic trolley is monitored in real time in the transportation operation process, the load of the hydraulic trolley is adjusted according to the load target value, and stable transportation and safe refuting of the product are realized. Compared with the prior art, the method has the advantages of quick response, accurate load adjustment, good expandability and the like, and greatly improves the working efficiency and safety of ship moving.)

1. An active load balancing method of a platform line transport system is characterized in that coordinates of a plurality of hydraulic trolleys arranged at the bottom of a product are input into a control system, the hydraulic trolleys are weighed and the gravity center position is calculated after synchronous jacking, the hydraulic trolleys are divided into a plurality of groups according to the gravity center position, the load target value of each group of hydraulic trolleys is calculated, the load of each hydraulic trolley is monitored in real time in the transport operation process, the load of the hydraulic trolleys is adjusted according to the load target value, and the load balancing device for platform line transport comprises the following steps:

a, step a: inputting a plurality of hydraulic trolley coordinate input systems arranged at the bottom of the product to complete the arrangement of the trolley systems;

b, step (b): lifting the oil cylinder and contacting with the steel bracket to finish pre-jacking;

c, step (c): jacking the oil cylinder with load and fixed stroke to jack up the product, and finishing synchronous jacking with load;

d, step: acquiring load data of each hydraulic trolley through weighing, and calculating the weight and the gravity center position of a product according to the coordinates of the hydraulic trolleys;

e, step (e): dividing the hydraulic trolley system into a plurality of groups according to the gravity center, calculating the load target value of each group, wherein the load target values of the hydraulic trolleys in each group are the same;

f, step: in the process of the hydraulic trolley walking with load, the trolley system monitors the load of each hydraulic trolley in real time, and automatically carries out load balancing control on the load of each hydraulic trolley according to the load target value, so that safe and stable lightering of ships or marine products is realized.

2. The active load balancing method of the platform line transportation system according to claim 1, wherein the hydraulic trolley adopts a servo valve and a pressure transmitter to form closed loop control of a load of a jacking cylinder, when the hydraulic trolley travels with a load, and an absolute value difference between a real-time load monitored by the trolley system and a target value exceeds ± 20%, the servo valve starts load regulation, and the servo valve stops load regulation after the target value is reached.

Technical Field

The invention relates to the technical field of small vehicle transporting ships of ships or marine products, in particular to an active load balancing method of a platform line transporting system for transporting ships or marine products among different carriers.

Background

In recent years, a flat ground construction process is increasingly applied to the field of ship and marine engineering product manufacturing, the process invests less capital to construct related supporting facilities relative to a dock, the construction, outfitting and other work of a ship or a marine engineering structure is completed on the flat ground, the limitation of the dock on the whole ship construction process is eliminated, the batch and partition construction of products is realized, and the construction efficiency and the resource utilization rate are improved. After the platform is built, a product transfer system generally consisting of a plurality of hydraulic slipway trolleys is transferred to launching equipment such as a floating dock or a semi-submersible barge, and the launching equipment is connected with the slipway through a bridge rail. In the process of transferring products to pass lightens/docks, due to the influence of tide level and load change, the height difference between the launching equipment and the slipway continuously changes, and the requirement of uniform load is put forward to a transfer system.

At present, the commonly used hydraulic berth bogie moving system has two types: a hydraulic slipway trolley without load regulation capacity in the operation process; and the other method is to group the berth trolleys, and the jacking oil cylinders of the trolleys in the group are connected in series through oil pipes, so that the trolleys in the group are passively and uniformly loaded. The trolleys without load regulation capacity can only prevent overload through the overflow valve, but can not carry out load compensation, and the load of each trolley is very uneven in the operation process. Especially, when the ship is refuted, the height difference between the launching equipment and the ship platform is changed continuously, and the system lacks the capacity of load compensation, so that great risks are brought to products and the launching equipment. The scheme of connecting the trolleys in the group in series and passively equalizing the load requires that the gravity center position of a product must be obtained firstly, and the trolleys are divided into three groups according to the gravity center position. According to the scheme, the number of the connecting oil pipes is large, interference with a steel bracket, a cement pier and the like can be caused in the operation process, and the application of the connecting oil pipes in the large-scale product transportation operation is limited. In addition, the leakage of any oil pipe can cause the whole vehicle set to lose pressure, and under the extreme condition, a part of frame structure bears the pressure, so that the trolley is damaged.

Disclosure of Invention

The invention aims to provide an active load balancing method of a platform line migration system, which aims at the defects of the prior art. The system monitors the load of each hydraulic trolley in real time, adjusts the load of the hydraulic trolley according to the load target value, realizes stable transportation and safe refuting of products, has accurate load adjustment, convenient control and greatly improved operation safety, and well avoids the phenomenon that the products possibly interfere with steel supports, cement piers and the like in the operation process.

The purpose of the invention is realized as follows: an active load balancing method of a platform line transportation system is characterized in that coordinates of a plurality of hydraulic trolleys arranged at the bottom of a product are input into a control system, the hydraulic trolleys are weighed and the gravity center position is calculated after synchronous jacking, the hydraulic trolleys are divided into a plurality of groups according to the gravity center position, the load target value of each group of hydraulic trolleys is calculated, the load of each hydraulic trolley is monitored in real time in the transportation operation process, the load of the hydraulic trolleys is adjusted according to the load target value, and the load balancing device for platform line transportation comprises the following steps:

a, step a: inputting a plurality of hydraulic trolley coordinate input systems arranged at the bottom of the product to complete the arrangement of the trolley systems;

b, step (b): lifting the oil cylinder and contacting with the steel bracket to finish pre-jacking;

c, step (c): jacking the oil cylinder with load and fixed stroke to jack up the product, and finishing synchronous jacking with load;

d, step: acquiring load data of each hydraulic trolley through weighing, and calculating the weight and the gravity center position of a product according to the coordinates of the hydraulic trolleys;

e, step (e): dividing the hydraulic trolley system into a plurality of groups according to the gravity center, calculating the load target value of each group, wherein the load target values of the hydraulic trolleys in each group are the same;

f, step: in the process of the hydraulic trolley walking with load, the trolley system monitors the load of each hydraulic trolley in real time, and automatically carries out load balancing control on the load of each hydraulic trolley according to the load target value, so that safe and stable lightering of ships or marine products is realized.

The hydraulic trolley adopts a servo valve and a pressure transmitter to form closed-loop control of the load of the jacking oil cylinder, when the trolley system monitors that the absolute value difference between the real-time load and the target value exceeds +/-20% in the process of the hydraulic trolley walking with load, the servo valve starts to adjust the load, and the servo valve stops adjusting the load after the target value is reached.

Compared with the prior art, the invention has the advantages of quick response, accurate load adjustment, good expandability and the like, the load adjustment is accurate, the control is convenient, the operation safety is greatly improved, the phenomenon that the steel bracket, the cement pier and the like can interfere in the operation process is better avoided, and the work efficiency and the safety of ship moving are greatly improved.

Drawings

FIG. 1 is a schematic view of a shipbuilding platform and a semi-submersible barge arranged for ship movement;

FIG. 2 is a schematic view of the installation of a bridge rail;

FIG. 3 is a schematic diagram of hydraulic trolley pre-jacking;

FIG. 4 is a schematic diagram of the product center of gravity position and the transportation system.

Detailed Description

The invention will be described in further detail below with reference to a specific embodiment of the transfer of a vessel from a building platform to a launch apparatus.

Referring to fig. 1, a semi-submersible barge 5 is connected with a construction platform 1 through a bridge rail 3 and is in reinforced connection with a wharf 4 through a mooring rope 6. Defining a coordinate system: the direction from the platform to the harbor basin along the track is the positive X direction; the vertical direction is the Z positive direction; determining the positive Y direction according to the X, Z direction by an XYZ right-hand rule; the origin position is selected according to requirements and is generally arranged at the center of the tail car.

Referring to the attached figure 2, the gap bridge rail 3 is connected with the building platform 1 and the semi-submersible barge 5 launching equipment in a hinged mode, the height difference between the semi-submersible barge 5 and the connecting building platform 1 (slipway) is changed continuously in the operation process due to the influence of tide level and load change, the gap bridge rail 3 is connected with the building platform 1 and the semi-submersible barge 5 in a hinged mode, and the height difference between the launching equipment and the slipway is allowed to change within a certain range in the operation process.

Referring to fig. 3, the hull 8 is built on the cement piers 9 and the steel support 10, before the transportation operation, the hydraulic trolleys 11 enter the bottom of the steel support 10, the positions of all the hydraulic trolleys 11 are input into the system in the form of coordinates (Xij, Yij) to complete the system setting, and the system load adjustment work is carried out according to the following steps:

jacking in advance

Inputting the relative positions of a plurality of hydraulic trolleys 11 arranged at the bottom of the ship body 8 into the system in a coordinate mode, completing the arrangement of the trolley system, setting all the hydraulic trolleys 11 to be in an idle-load jacking state, and jacking until the hydraulic trolleys contact with the steel support 10 for lifting the ship.

(II) synchronous lifting with load

And setting all the hydraulic trolleys 11 to be in a loaded jacking state, jacking the ship body 8 by the loaded synchronous jacking of the oil cylinders by 100mm, and completing the synchronous loaded jacking.

(III) weighing calculation

Recording data Pij of a pressure sensor in the oil cylinder, acquiring load data of each hydraulic trolley 11 through weighing, and calculating the weight and the gravity center position of the ship body 8 according to coordinates of the hydraulic trolleys 11, wherein the weight G of the whole ship is calculated according to the following formula (a):

G=∑∑Pij(a)

wherein: pij is the real-time load value of the ith track and the jth trolley.

The X coordinate of the gravity center position is calculated according to the following formula (b);

XG=∑∑(Pij×Xij)/G (b)

wherein: and Xij is the X coordinate of the ith track and the jth trolley.

The Y coordinate of the gravity center position is calculated according to the following formula (c);

YG=∑∑(Pij×Yij)/G (c)

wherein: yij is the Y coordinate of the ith track and the jth trolley.

(IV) group calculation

Referring to fig. 4, the trolley system is divided into four groups I, II, III and IV according to the gravity center position 7 of the hull 8, and the load target value of each group (the load target value of the hydraulic trolley 11 in each group is the same) is calculated according to the following equation set (d):

wherein: nk is the number of trolleys (known quantity) in the kth group (k is 1,2,3 or 4) of the groups; pk is a target load value (calculated amount) of the trolley in the kth group of the train set; LXkm is the x-direction distance (known quantity) between the mth trolley in the kth group of the trolleys and the gravity center; LYkm is the y-direction distance (known quantity) of the mth car from the center of gravity in the kth consist.

(V) load control

The trolley system is carried to walk, the load of each hydraulic trolley 11 is monitored in real time, once the load exceeds +/-20% of a target value Pk, load balancing control is automatically carried out through closed-loop control of the load of a jacking oil cylinder consisting of a servo valve and a pressure transmitter and lasts for 3 seconds, and the ship moving system is safe and stable to pass barge.

The invention has been described in further detail in order to avoid limiting the scope of the invention, and it is intended that all such equivalent embodiments be included within the scope of the following claims.

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:利用液压千斤顶快速完成海洋平台浮托安装方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!