一种多孔氮化铝陶瓷材料的制备方法

文档序号:1484881 发布日期:2020-02-28 浏览:34次 >En<

阅读说明:本技术 一种多孔氮化铝陶瓷材料的制备方法 (Preparation method of porous aluminum nitride ceramic material ) 是由 孙卫康 田静 李庆春 汤志强 茹红强 赵东萍 王春华 于 2019-10-12 设计创作,主要内容包括:本发明公开了一种多孔氮化铝陶瓷材料的制备方法,属多孔氮化铝陶瓷材料的制备领域,现有技术普遍使用造孔剂、发泡剂、冷冻干燥等方法制备多孔氮化铝陶瓷材料存在显著的缺陷:孔的形态不稳定有大量随机性的闭孔或大孔,孔径尺寸不统一,且分布不均。本发明为解决以上问题,首先采用空心氧化铝微珠作为反应原料,经离子渗碳氮处理后获得产物空心AlN微珠,且壳壁表面生成纳米级的穿孔;以此产物为原料,不添加任何造孔剂、发泡剂或使用冷冻干燥工艺,就可以烧结制备出具有极高的孔隙率、孔径结构均匀且有纳米尺寸的二级穿孔的多孔AlN材料,极大地改善了材料的过滤吸附、分离净化、载体催化、导热、介电性能,具有非常大的工业实用价值。(The invention discloses a preparation method of a porous aluminum nitride ceramic material, belonging to the field of preparation of porous aluminum nitride ceramic materials, wherein the porous aluminum nitride ceramic material prepared by commonly using methods such as pore-forming agent, foaming agent, freeze drying and the like in the prior art has the remarkable defects that: the pores are unstable in shape, have a large number of random closed pores or large pores, are not uniform in pore size, and are not uniformly distributed. In order to solve the problems, firstly, hollow alumina microspheres are adopted as reaction raw materials, the hollow AlN microspheres are obtained after ion carbonitriding treatment, and nano-scale perforations are generated on the surface of the shell wall; the product is used as a raw material, and a secondary perforated porous AlN material with extremely high porosity, uniform pore-size structure and nanometer size can be prepared by sintering without adding any pore-forming agent and foaming agent or using a freeze-drying process, so that the filtering, adsorption, separation and purification, carrier catalysis, heat conduction and dielectric properties of the material are greatly improved, and the product has great industrial practical value.)

一种多孔氮化铝陶瓷材料的制备方法

技术领域

本发明属于多孔氮化铝陶瓷材料的技术领域,特别涉及一种多孔氮化铝陶瓷材料的制备方法。

背景技术

氮化铝陶瓷因具有优异的高温力学性能、抗高温氧化、耐金属熔液腐蚀、高导热、低热膨胀系数、压电效应等特点,在工业领域有着良好的应用前景。多孔氮化铝陶瓷不仅拥有上述氮化铝陶瓷的特点,由于其孔隙率高、比表面积大的属性,可以对金属熔液中的杂质进行过滤吸附,展现出的压电效应可以用作声波探测器、优异的导热性能可以制作电子封装部件;具有着非常大的实用价值。

目前,普遍使用造孔剂、发泡剂等添加剂制备多孔氮化铝陶瓷,如专利公开号为CN109133986A,名称为一种基于发泡法的AlN-SiC多孔复合陶瓷及其制备方法,这种方式不仅极易导致陶瓷基体内部孔分布不均匀,产生大量的大孔和小闭孔极易降低材料的力学强度,且造孔剂和发泡剂的价格高昂,这些问题导致多孔氮化铝陶瓷良品率低且难以发挥较高的实用价值。

专利公开号CN101734923A,名称为一种氮化铝多孔陶瓷及其制备方法,也是先采用和碳反应置换出氧化铝中的氧生成一氧化碳,然后和氮反应生成氮化铝的基本原理,但是,作为反应原料的氮化铝为实心颗粒,碳源采用炭黑,整个反应过程不均匀、反应效率低下、反应速率慢、且不彻底,而且所使用的炭黑,既是反应原料又是造孔剂,制备的多孔氮化铝必然伴生着造孔剂的缺陷,不能避免造孔剂带来的产品缺陷。

授权号为CN105884372B的中国专利提供了一种有机网络法合成AlN陶瓷粉体方法,该方法以铝为原料,通氮气反应,高温直接生成氮化铝,碳粉在这个过程中仅起到缓冲、分散作用,即防止生成的氮化铝为块体,所以生成的为氮化铝实心颗粒,且无法保证粉体颗粒均匀性。因此此过程得到的氮化铝粉的纯度并不高,含有大量的碳杂质,需进一步提纯。

现有多孔氮化铝陶瓷,存在以下缺陷:(1)多为实心颗粒结构;(2)孔径尺寸不均一;(3)高温力学强度低。

发明内容

本发明的目的是针对现有多孔氮化铝陶瓷孔隙率较低、孔径尺寸分布不均、力学强度低、生产成本高、良品率低下而带来的实用价值效果欠佳的问题,提供了一种多孔氮化铝陶瓷的制备方法,以实现以下发明目的:

(1)本发明的多孔氮化铝陶瓷材料的制备方法,得到形貌结构为空心结构的多孔氮化铝陶瓷材料;

(2)本发明的多孔氮化铝陶瓷材料的制备方法,制备的多孔AlN陶瓷材料孔径尺寸均一且均匀分布;

(3)本发明的多孔氮化铝陶瓷材料的制备方法,得到的的多孔氮化铝陶瓷材料具有优异的高温力学强度。

为实现上述目的,本发明采取的技术方案如下:

一种多孔氮化铝陶瓷材料的制备方法,其特征在于,所述方法包括:预处理、离子碳氮共渗处理、沉降、混合和烧结。

以下是对本发明技术方案的优选:

一种多孔氮化铝陶瓷材料的制备方法,所述方法包括:预处理、离子碳氮共渗处理、沉降、混合、烘干、过筛造粒、模压、干燥和烧结。

一种多孔氮化铝陶瓷材料的制备方法,步骤如下:

(1) 预处理:将空心Al2O3微珠用无水乙醇洗涤,然后放入干燥箱中烘干;

(2) 离子碳氮共渗处理:将洗涤干燥的空心Al2O3微珠放入真空离子碳氮共渗炉中,通入碳源、氮源气体进行热处理;

(3) 沉降:将热处理后的微珠用无水乙醇超声清洗,并离心沉降后干燥;

(4) 混合:将干燥后的微珠与MgO粉、SiO2粉、Al2O3粉、PVA溶液搅拌混合均匀;

(5) 烘干:将混合浆料放入干燥箱中烘干;

(6) 过筛造粒:将烘干的混合料研磨成粉末,并过筛造粒;

(7) 模压:将混合颗粒模压成型,获得生坯;

(8) 干燥:将生坯放入干燥箱中干燥排出坯体内部水分;

(9) 烧结:将坯体放入真空烧结炉中,1550~1850℃下烧结获得多孔AlN陶瓷材料。

上述的预处理中,空心氧化铝微珠粒径为100~500μm,壳壁厚为15~75μm,纯度大于99.5%。

上述的预处理中,洗涤的次数为1~3次,干燥温度为50~120℃,时间为6~12h。

上述的离子碳氮共渗处理中,真空离子碳氮共渗热处理的温度为1200~1450℃,升温速率为5~20℃/min,保温时间30~60min。

上述的离子碳氮共渗处理中,碳源气体为甲烷、丙烷、乙炔,氮源为氮气,碳源与氮源的质量配比为1:(6-12),混合气源的气压为460~1280Pa。

上述的沉降中,超声清洗的次数为1~5次,干燥温度为50~120℃,时间为6~12h。

上述的混合中,MgO粉平均粒度为20nm、纯度大于99.9%;SiO2粉平均粒度为45nm,纯度大于99.5%;Al2O3粉平均粒度为30nm,纯度大于99.9%;PVA溶液的浓度0.5~1.5%。

上述的混合中,AlN微珠、MgO粉、SiO2粉、Al2O3粉的质量配比为(90-98):(4-8):(3-6):(2-8)。

上述的混合中,搅拌时间12~24h,温度为室温。

上述的烘干中,干燥温度为75~150℃,干燥时间为18~36h。

上述的过筛造粒中,过筛造粒中筛网规格为20~100目。

上述的模压中,模压成型的压力为25~50MPa,保压时间为5~10s。

上述的干燥中,干燥的温度为120~160℃,时间6~12h。

上述的烧结中,升温速率的3~8℃/min,最高温度保温时间为30~90min。

本发明还提供了一种多孔氮化铝陶瓷材料,所述制备方法得到的多孔氮化铝陶瓷材料,孔隙率为63.3-87.5%,比表面积为0.95-4.18m2/g,一级孔平均直径为58-294μm,二级孔平均尺寸为45-95nm,弯曲强度为155.7-249.6MPa,压缩强度为24.2-43.6MPa。

本发明的制备方法通过将洗涤干燥的空心氧化铝微珠放入真空离子碳氮共渗炉中,通过加热、高压放电将碳源、氮源电离,碳原子先与Al2O3中的氧离子发生反应生CO气体,随后氮原子与铝离子结合生成AlN,从而将空心Al2O3微珠转化成空心AlN微珠,将AlN微珠超声清洗、干燥后,与MgO粉、SiO2粉、Al2O3粉、PVA溶液搅拌混合均匀,并干燥粉碎、过筛造粒,经模压成型后,真空烧结获得具有极高的孔隙率、基体孔径尺寸均一且分布均匀、力学强度优异的多孔氮化铝陶瓷。

与现有技术相比,本发明的优点在于:

(1)本发明的多孔氮化铝陶瓷材料的制备方法,采用具有空心结构的Al2O3微珠作为AlN源,通过加热、高压放电将碳源、氮源电离,碳原子先与Al2O3中的氧离子发生反应生成CO气体,随后氮原子与铝离子结合生成AlN,从而将空心Al2O3微珠转化成空心SiC微珠,而不破坏其宏观空心结构;有以下反应方程式:

Figure DEST_PATH_IMAGE002

可以获知:由Al2O3转变成AlN,是质量减少的过程,且有反应气体CO排出,这必将导致原空心微珠的壳壁产生连续的二级穿孔,且成纳米尺寸;该形貌结构与传统的AlN实心颗粒结构有显著区别。

(2)本发明的多孔氮化铝陶瓷材料的制备方法,通过具有一级孔空心结构、壳壁上有二级纳米尺寸穿孔的AlN微珠制备的多孔AlN陶瓷材料,展现基体孔径尺寸均一且均匀分布,几乎不含有尺寸较大的大孔和尺寸较小的闭孔,避免了使用造孔剂、发泡剂产生的负面影响;本发明的多孔氮化铝陶瓷材料,孔隙率为63.3-87.5%,比表面积为0.95-4.18m2/g,一级孔平均直径为58-294μm,二级孔平均尺寸为45-95nm。

(3)本发明的多孔氮化铝陶瓷材料的制备方法,得到的的多孔氮化铝陶瓷材料,孔的形态不仅保留原空心微珠的结构,表现出优异的高温力学强度,弯曲强度为155.7-249.6MPa,压缩强度为24.2-43.6MPa;

(4)本发明的多孔氮化铝陶瓷材料的制备方法得到的的多孔氮化铝陶瓷材料,在壳壁上具有纳米尺寸的连续的二级穿孔,这极大地提高了过滤吸附、分离净化、载体催化、导热散热效果,在高温散热电子元件、大功率微波集成电路、电力电子器件、激光二极管、金属—陶瓷基复合材料方面具有广泛应用。

本发明采用粒径均一的氧化铝空心微珠为原料,通入的碳源气态,在高温高电压状态下,电离出的碳原子与氧化铝反应,夺取Al2O3中的氧离子,生成CO分子排出,随后氮气电离出的氮原子与铝离子反应,生成氮化铝。此过程不仅是生成氮化铝的过程,也是原料进一步提纯的过程,通过碳原子、氮原子的反应与结合,可确保氮化铝有非常高的纯度。由于此过程反应的温度远低于氧化铝的软化点温度,所以氮化铝保留了氧化铝空心球的结构,且在球壳壁表面生成纳米级的穿孔。

本发明的多孔氮化铝陶瓷具有极高的孔隙率,基体孔径尺寸均一且均匀分布,几乎不含有尺寸较大的大孔和尺寸较小的闭孔;孔的形态不仅保留原空心微珠的结构,表现出优异的高温力学强度,且在壳壁上具有纳米尺寸的连续的二级穿孔,这极大地提高了过滤吸附、分离净化、载体催化、导热散热效果,在高温散热电子元件、大功率微波集成电路、电力电子器件、激光二极管、金属—陶瓷基复合材料方面具有广泛应用。本工艺操作流程简单、设备要求度低,不添加造孔剂、发泡剂,可大幅度降低生产成本,便于批量化生产,具有非常大的工业实用价值。

附图说明

图1为本发明实施例中多孔AlN陶瓷材料的制备步骤流程图;

图2为本发明实施例中离子碳氮共渗过程中,碳原子、氮原子与Al2O3反应生成AlN的示意图。

具体实施方式

以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。

实施例1

一种多孔氮化铝陶瓷材料的制备方法,包括以下步骤:

(1) 将粒径为200μm、壳壁厚为45μm的空心Al2O3微珠用无水乙醇洗涤2次,然后放入120℃干燥箱中烘干6h;

(2) 将洗涤干燥的空心Al2O3微珠放入真空离子碳氮共渗炉中,以15℃/min、真空升温至1300℃,然后,按质量比为1:8,通入甲烷、氮气混合气体进行热处理,保持气压为950Pa,并保温60min;

(3) 将热处理后得到的AlN微珠用无水乙醇超声清洗3次,并离心沉降,然后将微珠放入120℃干燥箱中烘干6h;

(4) 按质量比,将干燥后的AlN微珠与MgO粉、SiO2粉、Al2O3粉=93:4:3:2混合,与浓度为0.5%的PVA溶液按100:120的比例混合成浆料搅拌20h至混合均匀;

(5) 将混合浆料放入80℃干燥箱中干燥30h;

(6) 将烘干的混合料研磨成粉末,并过50目筛造粒;

(7) 将混合颗粒倒入模具中,经压力机模压成型,压力35MPa,保压5s,获得生坯;;

(8) 将生坯放入150℃干燥箱中干燥6h,排出坯体内部水分;

(9) 将坯体放入真空烧结炉中,以8℃/min的速率升温至1650℃,并在1650℃保温60min,从而获得多孔AlN陶瓷材料。

经测试,该多孔AlN陶瓷材料孔隙率为81.4%,比表面积为2.35m2/g,一级孔平均直径为108μm,二级孔平均尺寸为60nm,弯曲强度为206.5MPa,压缩强度为37.1MPa。

实施例2

一种多孔氮化铝陶瓷材料的制备方法,包括以下步骤:

(1) 将粒径为100μm、壳壁厚为20μm的空心Al2O3微珠用无水乙醇洗涤3次,然后放入60℃干燥箱中烘干12h;

(2) 将洗涤干燥的空心Al2O3微珠放入真空离子碳氮共渗炉中,以5℃/min、真空升温至1350℃,然后,按质量比为1:6,通入丙烷、氮气混合气体进行热处理,保持气压为1250Pa,并保温45min;

(3) 将热处理后得到的AlN微珠用无水乙醇超声清洗5次,并离心沉降,然后将微珠放入80℃干燥箱中烘干12h;

(4) 按质量比,将干燥后的AlN微珠与MgO粉、SiO2粉、Al2O3粉=98:7:4:8混合,与浓度为1.0%的PVA溶液按100:180的比例混合成浆料搅拌24h至混合均匀;

(5) 将混合浆料放入100℃干燥箱中干燥36h;

(6) 将烘干的混合料研磨成粉末,并过100目筛造粒;

(7) 将混合颗粒倒入模具中,经压力机模压成型,压力50MPa,保压10s,获得生坯;;

(8) 将生坯放入120℃干燥箱中干燥12h,排出坯体内部水分;

(9) 将坯体放入真空烧结炉,以5℃/min的速率升温至1750℃,并在1750℃保温45min,从而获得多孔AlN陶瓷材料。

经测试,该多孔AlN陶瓷材料孔隙率为87.5%,比表面积为4.18m2/g,一级孔平均直径为58μm,二级孔平均尺寸为45nm,弯曲强度为249.6MPa,压缩强度为43.6MPa。

实施例3

一种多孔氮化铝陶瓷材料的制备方法,包括以下步骤:

(1) 将粒径为500μm、壳壁厚为100μm的空心Al2O3微珠用无水乙醇洗涤1次,然后放入80℃干燥箱中烘干7h;

(2) 将洗涤干燥的空心Al2O3微珠放入真空离子碳氮共渗炉中,以20℃/min、真空升温至1150℃,然后,按质量比为1:12,通入乙炔、氮气混合气体进行热处理,保持气压为750Pa,并保温60min;

(3) 将热处理后得到的AlN微珠用无水乙醇超声清洗2次,并离心沉降,然后将微珠放入100℃干燥箱中烘干10h;

(4) 按质量比,将干燥后的AlN微珠与MgO粉、SiO2粉、Al2O3粉=90:8:6:5混合,与浓度为1.4%的PVA溶液按100:220的比例混合成浆料搅拌15h至混合均匀;

(5)将混合浆料放入140℃干燥箱中干燥18h;

(6)将烘干的混合料研磨成粉末,并过24目筛造粒;

(7)将混合颗粒倒入模具中,经压力机模压成型,压力25MPa,保压7s,获得生坯;

(8)将生坯放入135℃干燥箱中干燥9h,排出坯体内部水分;

(9)将坯体放入真空烧结炉中,以3℃/min的速率升温至1550℃,并在1550℃保温90min,从而获得多孔AlN陶瓷材料。

经测试,该多孔AlN陶瓷材料孔隙率为63.3%,比表面积为0.95m2/g,一级孔平均直径为294μm,二级孔平均尺寸为95nm,弯曲强度为155.7MPa,压缩强度为24.2MPa。

以上所述,仅为本发明的实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种多孔氮化硅陶瓷材料的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!