源极驱动器的通道电路及其操作方法

文档序号:1491540 发布日期:2020-02-04 浏览:5次 >En<

阅读说明:本技术 源极驱动器的通道电路及其操作方法 (Channel circuit of source driver and operation method thereof ) 是由 郑彦诚 宋光峰 于 2019-05-15 设计创作,主要内容包括:本发明提供一种源极驱动器的通道电路及其操作方法。所述通道电路包括数字模拟转换器、第一开关、输出缓冲电路以及预充电电路。第一开关的两端分别耦接至数字模拟转换器的第一输出端与输出缓冲电路的第一输入端。预充电电路耦接至输出缓冲电路的第一输入端。在一些实施例中,当第一开关在预充电期间为截止(turn off)时,预充电电路用以对输出缓冲电路的第一输入端进行预充电。当第一开关在正常操作期间为导通(turn on)时,预充电电路对输出缓冲电路的第一输入端不进行预充电。(The invention provides a channel circuit of a source driver and an operation method thereof. The channel circuit comprises a digital-analog converter, a first switch, an output buffer circuit and a pre-charging circuit. Two ends of the first switch are respectively coupled to the first output end of the digital-to-analog converter and the first input end of the output buffer circuit. The pre-charge circuit is coupled to the first input terminal of the output buffer circuit. In some embodiments, the precharge circuit is configured to precharge the first input of the output buffer circuit when the first switch is off during the precharge period. The precharge circuit does not precharge the first input terminal of the output buffer circuit when the first switch is on (turn on) during normal operation.)

源极驱动器的通道电路及其操作方法

技术领域

本发明涉及一种电子电路,且特别涉及一种源极驱动器的通道电路及其操作方法。

背景技术

图1是已知的一种源极驱动器的通道电路10的电路方块(circuit block)示意图。所述通道电路10包括数字模拟转换器(digital-to-analog converter,DAC)11与输出缓冲电路12。输出缓冲电路12的输出端耦接至显示面板20的数据线21。数字模拟转换器11的输出端经由金属线13直接耦接至输出缓冲电路12的输入端。数字模拟转换器11可以将数字的像素数据D11转换为模拟信号,并将所述模拟信号经由金属线13输出给输出缓冲电路12。输出缓冲电路12可以将对应于所述模拟信号的驱动信号输出至显示面板20的数据线21。

在数字模拟转换器11所输出的所述模拟信号发生转态后,金属线13的信号电平需要一段时间来恢复稳定(转态至新的电平)。一般而言,金属线13具有寄生电容(走线电容)C13,而输出缓冲电路12的输入端具有寄生电容(输入电容)C12。寄生电容C12与C13是决定输出缓冲电路12的输入端信号的回转率(Slew Rate)的因素之一。无论如何,显示面板20的操作频率越来越高,亦即数据线21的一个线驱动周期越来越短。输出缓冲电路12的输入端信号的回转率往往限制了显示面板20的操作频率的提升。

无论如何,数字模拟转换器11的推力(驱动能力)是有限的。在显示面板20的操作频率越来越高的趋势下,数字模拟转换器11的推力往往无法满足恢复时间(recoverytime)的设计需求。

须注意的是,“现有技术”段落的内容是用来帮助了解本发明。在“现有技术”段落所公开的部分内容(或全部内容)可能不是本领域技术人员所知道的已知技术。在“现有技术”段落所公开的内容,不代表该内容在本发明申请前已被本领域技术人员所知悉。

发明内容

本发明提供一种源极驱动器的通道电路及其操作方法,以利于显示面板的操作频率的提升。

本发明的一实施例提供一种源极驱动器的通道电路。所述通道电路包括数字模拟转换器、第一开关、输出缓冲电路以及预充电电路。第一开关的第一端耦接至数字模拟转换器的第一输出端。输出缓冲电路的第一输入端耦接至第一开关的第二端。输出缓冲电路的输出端用以驱动显示面板的数据线。预充电电路耦接至输出缓冲电路的第一输入端。当第一开关在预充电期间为截止(turn off)时,预充电电路用以对输出缓冲电路的第一输入端进行预充电。当第一开关在正常操作期间为导通(turn on)时,预充电电路对输出缓冲电路的第一输入端不进行预充电。

本发明的一实施例提供一种源极驱动器的通道电路的操作方法。所述操作方法包括:由数字模拟转换器的第一输出端在正常操作期间通过第一开关提供模拟信号至输出缓冲电路的第一输入端,其中输出缓冲电路的输出端用以驱动显示面板的数据线;当第一开关在预充电期间为截止时,由预充电电路对输出缓冲电路的第一输入端进行预充电;以及当第一开关在正常操作期间为导通时,由预充电电路对输出缓冲电路的第一输入端不进行预充电。

本发明的一实施例提供一种源极驱动器的通道电路。所述通道电路包括一数字模拟转换器、开关、输出缓冲电路、预充电电路以及检测电路。开关的第一端耦接至数字模拟转换器的第一输出端。输出缓冲电路的第一输入端耦接至第一开关的第二端。输出缓冲电路的输出端用以驱动显示面板的数据线。预充电电路耦接至输出缓冲电路的第一输入端。检测电路耦接至预充电电路。检测电路用以提供检测结果给预充电电路。预充电电路用以在预充电期间依照检测结果对输出缓冲电路的第一输入端进行预充电。

基于上述,本发明诸实施例所述源极驱动器的通道电路及其操作方法可以在正常操作期间前的预充电期间利用具有足够推力的预充电电路对输出缓冲电路的输入端进行预充电。在预充电期间结束后的正常操作期间中,数字模拟转换器的输出端得以通过开关而提供模拟信号至输出缓冲电路的输入端。因此,数字模拟转换器的输出的恢复时间(recovery time)可以被有效缩短。数字模拟转换器的输出的恢复时间的缩短,有利于显示面板的操作频率的提升。

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。

附图说明

图1是已知的一种源极驱动器的通道电路的电路方块(circuit block)示意图。

图2是依照本发明的一实施例所绘示的一种源极驱动器的通道电路的电路方块示意图。

图3是依照本发明的一实施例说明通道电路的信号波形示意图。

图4是依照本发明的一实施例说明一种源极驱动器的通道电路的操作方法的流程示意图。

图5是依照本发明的另一实施例所绘示的一种源极驱动器的通道电路的电路方块示意图。

图6是依照本发明的又一实施例所绘示的一种源极驱动器的通道电路的电路方块示意图。

图7是依照本发明的一实施例说明通道电路的信号波形示意图。

图8是依照本发明的又一实施例所绘示的一种源极驱动器的通道电路的电路方块示意图。

图9是依照本发明的一实施例说明通道电路的信号波形示意图。

图10是依照本发明的更一实施例所绘示的一种源极驱动器的通道电路的电路方块示意图。

图11是依照本发明的另一实施例所绘示的一种源极驱动器的通道电路的电路方块示意图。

图12是依照本发明的又一实施例所绘示的一种源极驱动器的通道电路的电路方块示意图。

【符号说明】

10:通道电路

11:数字模拟转换器

12:输出缓冲电路

13:金属线

20、40:显示面板

21、41:数据线

30:源极驱动器

200、500、600、800、1000、1100、1200:通道电路

210、610、810、1110、1210:数字模拟转换器

220、820、1120、1220A、1220B、1220C、SWA、SWB、SWC:开关

230、630、830、1130、1230:输出缓冲电路

240、640、840、1140、1240:预充电电路

550、650、850、1150:检测电路

C12、C13:寄生电容

D11:像素数据

DAC_OUT、DAC_OUTA、DAC_OUTB、DAC_OUTC、DACO:模拟信号

EN_SW:控制信号

EN_SW_B、EN_SW_C、EN_SW_D、EN_SW_E、EN_SW_F:致能信号

In、Ip:电流源

MN、MN1、MN2、MN3、MN4、MN5、MN6、MNA、MNB、MNC、MP、MP1、MP2、MP3、MP4、MP5、MP6、MPA、MPB、MPC:晶体管

OP_IN、OP_INA、OP_INB、OP_INC、OPI:输入电压

OP_OUT:电压

P1:预充电期间

P2:正常操作期间

PSL:扫描线期间

S310、S320:步骤

SWB1、SWB2、SWB3、SWB4、SWB5、SWB6、SWC1、SWC2、SWC5、SWC6:致能开关

VDDA、VSSA:电压

VBa、VBb、VBc、VBd、VBe、VBf:偏压

具体实施方式

在本申请说明书全文(包括权利要求书)中所使用的“耦接(或连接)”一词可指任何直接或间接的连接手段。举例而言,若文中描述第一装置耦接(或连接)于第二装置,则应该被解释成该第一装置可以直接连接于该第二装置,或者该第一装置可以通过其他装置或某种连接手段而间接地连接至该第二装置。本申请说明书全文(包括权利要求书)中提及的“第一”、“第二”等用语是用以命名元件(element)的名称,或区别不同实施例或范围,而并非用来限制元件数量的上限或下限,亦非用来限制元件的次序。另外,凡可能之处,在图式及实施方式中使用相同标号的元件/构件/步骤代表相同或类似部分。不同实施例中使用相同标号或使用相同用语的元件/构件/步骤可以相互参照相关说明。

图2是依照本发明的一实施例所绘示的一种源极驱动器30的通道电路200的电路方块(circuit block)示意图。源极驱动器30包括多个通道电路,例如图2所示通道电路200。在源极驱动器30的通道电路的数量可以依照设计需求来决定。这些通道电路的任何一个可以耦接至显示面板40的多个数据线中的至少一条对应数据线。例如,通道电路200的输出端耦接至显示面板40的数据线41。基于这些通道电路对数据线的驱动操作,显示面板40可以显示图像。图2所示显示面板40可以参照图1所示显示面板20,而图2所示数据线41可以参照图1所示数据线21,故不再赘述。

以下将说明图2所示通道电路200的实施细节。在源极驱动器30中的其他通道电路可以参照通道电路200的相关说明来类推,故不与赘述。在图2所示实施例中,通道电路200包括数字模拟转换器(digital-to-analog converter,DAC)210、开关220、输出缓冲电路230以及预充电电路240。本实施例并不限制数字模拟转换器210以及输出缓冲电路230的实施方式。举例来说,依照设计需求,数字模拟转换器210可以是在源极驱动器中的已知数字模拟转换器或是其他数字模拟转换电路,而输出缓冲电路230可以是在源极驱动器中的已知输出缓冲电路或是其他输出缓冲器。

如图2所示,预充电电路240可以耦接到输出缓冲电路230的输入端OP_IN。此外,预充电电路240可被配置为,当在预充电期间开关220被截止时,预充电电路240对输出缓冲电路230的输入端OP_IN进行预充电,以及当在比预充电期间晚的正常操作期间第一开关被导通时,预充电电路240不对输出缓冲电路230的输入端OP_IN进行预充电。在预充电期间之后的正常操作期间,数字模拟转换器210的输出端DAC_OUT可以通过开关提供模拟信号给输出缓冲电路的输入端。因此,输出缓冲电路230的输入端子OP_IN可以在正常操作期间之前的预充电期间通过预充电电路240以足够的推力进行预充电。有利地,数字模拟转换器210的输出DAC_OUT的恢复时间(recovery time)可以被有效地缩短。数字模拟转换器210的输出端DAC_OUT的经缩短恢复时间可以有助于增加显示面板40的操作频率。在下面的实施例中将更详细地说明。

图3是依照本发明的一实施例说明通道电路的信号波形示意图。以下,图3将与图2一起说明。无论如何,图3的波形图不限于应用在图2的通道电路,也可以应用于其他通道电路。而且,图2的通道电路不限于以图3所示的信号波形进行操作,也可以使用具有不同波形的信号进行操作。图3所示横轴表示时间,而纵轴表示信号电平(例如电压电平)。在图3所示实施例中,一个扫描线期间PSL被至少分为预充电期间P1与正常操作期间P2。

请参照图2与图3。开关220的第一端耦接至数字模拟转换器210的输出端。开关220的第二端耦接至输出缓冲电路230的输入端。输出缓冲电路230的输出端用以驱动显示面板40的数据线41。开关220的控制端受控于控制信号EN_SW。可设计开关220在预充电期间P1为截止(OFF,亦即turn off)。开关220在正常操作期间P2为导通(ON,亦即turn on)。

图4是依照本发明的一实施例说明一种源极驱动器的通道电路的操作方法的流程示意图。请参照图2至图4。在步骤S310中,亦即在预充电期间P1中,开关220为截止,以及预充电电路240可以对输出缓冲电路230的输入端进行预充电。因为开关220为截止,致使在预充电期间P1中数字模拟转换器210的输出端的模拟信号DAC_OUT的转态可以加速(因为寄生电容的减少)。当开关220为截止时,预充电电路240可以将输出缓冲电路230的输入端的输入电压OP_IN预充电至预设电平,进而使输出缓冲电路230的输出端的电压OP_OUT亦被预先拉高。

在步骤S320中,亦即在正常操作期间P2中,开关220为导通,以及预充电电路240对输出缓冲电路230的输入端不进行预充电。举例来说,在正常操作期间P2中,预充电电路240的输出端为高阻抗(Hi Impedance,Hi-z)状态。当开关220为导通时,数字模拟转换器210的输出端得以通过开关220而提供模拟信号至输出缓冲电路230的输入端。

综上所述,在正常操作期间P2前的预充电期间P1中,利用具有足够推力的预充电电路240对输出缓冲电路230的输入端进行预充电。在预充电期间P1结束后的正常操作期间P2中,数字模拟转换器210的输出端得以通过开关220而提供模拟信号至输出缓冲电路230的输入端。因此,数字模拟转换器210的输出的恢复时间(recovery time)可以被有效缩短。数字模拟转换器210的输出的恢复时间的缩短,有利于显示面板40的操作频率的提升。

图5是依照本发明的另一实施例所绘示的一种源极驱动器的通道电路500的电路方块示意图。图5所示通道电路500可以参照图2所示通道电路200的相关说明来类推,故不再赘述。在图5所示实施例中,通道电路500包括数字模拟转换器210、开关220、输出缓冲电路230、预充电电路240以及检测电路550。图5所示数字模拟转换器210、开关220、输出缓冲电路230与预充电电路240可以参照图2至图4的相关说明来类推,故不再赘述。

请参照图3与图5。图5所示检测电路550耦接至预充电电路240的控制端。检测电路550可以提供检测结果给预充电电路240。预充电电路240可以在预充电期间P1依照检测结果对输出缓冲电路230的输入端进行预充电。举例来说,检测电路550可以耦接至数字模拟转换器210的输出端,以检测数字模拟转换器210的输出端的模拟信号DAC_OUT而获得所述检测结果。检测电路550可以被配置为,当模拟信号满足预定条件时,致能(enable)预充电电路240。在一些实施例中,当数字模拟转换器210的输出端的模拟信号DAC_OUT发生转态时,检测电路550可以通知预充电电路240,使预充电电路240可以在预充电期间P1依照检测结果对输出缓冲电路230的输入端进行预充电。

在一些实施例中,预充电电路240可以被配置为,依照检测电路550的检测结果来决定预充电电压电平。预充电电路240可以依照所述预充电电压电平而对输出缓冲电路230的输入端进行预充电。

在一些实施例中,检测电路550更耦接至输出缓冲电路230的输入端,以检测输出缓冲电路230的输入(输入电压OP_IN)。检测电路550用以依照数字模拟转换器210的输出端的电压(模拟信号DAC_OUT)与输出缓冲电路230的输入端的电压(输入电压OP_IN)二者的差异而获得所述检测结果。在一些实施例中,检测电路550可以被配置为,检测数字模拟转换器210的模拟信号DAC_OUT的电平与输出缓冲电路230的输入端OP_IN的电平之间的电平差是否超过预定差值。如果此电平差超过所述预定差值,则检测电路550可以致能预充电电路以对输出缓冲电路230的输入端OP_IN进行预充电。

图6是依照本发明的又一实施例所绘示的一种源极驱动器的通道电路600的电路方块示意图。在图6所示实施例中,通道电路600包括数字模拟转换器610、开关SWA、开关SWB、开关SWC、输出缓冲电路630、至少一预充电电路640以及至少一检测电路650。图6所示通道电路600、数字模拟转换器610、输出缓冲电路630、预充电电路640以及检测电路650可以参照图5所示通道电路500、数字模拟转换器210、输出缓冲电路230、预充电电路240以及检测电路550的相关说明来类推,而图6所示开关SWA、开关SWB与开关SWC可以参照图5所示开关220的相关说明来类推,故不再赘述。

在图6所示实施例中,开关SWA的第一端与第二端分别耦接至数字模拟转换器610的第一输出端以及输出缓冲电路630的第一输入端,开关SWB的第一端与第二端分别耦接至数字模拟转换器610的第二输出端以及输出缓冲电路630的第二输入端,而开关SWC的第一端与第二端分别耦接至数字模拟转换器610的第三输出端以及输出缓冲电路630的第三输入端。

在一些实施例中,在预充电期间P1,预充电电路640可以对输出缓冲电路630的第一输入端OP_INA、第二输入端OP_INB与第三输入端OP_INC进行预充电。另外,预充电电路640可以将输出缓冲电路630的第一输入端的输入电压OP_INA、第二输入端的输入电压OP_INB和第三输入端子的输入电压OP_INC预充电至不同的预设电平(或相同的预设电平)。

在预充电期间中,开关SWA、开关SWB和开关SWC优选地断开。藉由在预充电期间中截止开关SWA、开关SWB与开关SWC,因为寄生电容的减少,数字模拟转换器610的第一输出端的模拟信号DAC_OUTA、第二输出端的模拟信号DAC_OUTB与第三输出端的模拟信号DAC_OUTC的转态可以被加速。

在晚在预充电期间的正常操作期间中,开关SWA、开关SWB与开关SWC为导通,以及预充电电路640对输出缓冲电路630的第一输入端、第二输入端与第三输入端不进行预充电。举例来说,在正常操作期间P2中,预充电电路640的输出端为高阻抗状态。当开关SWA、开关SWB与开关SWC为导通时,数字模拟转换器610的输出端得以通过开关SWA、开关SWB与开关SWC而提供模拟信号至输出缓冲电路630的输入端。

在图6所示实施例中,检测电路650所输出的检测结果包括偏压VBa以及偏压VBb。

在图6所示实施例中,图6所示检测电路650包括晶体管MN以及晶体管MP。晶体管MN和晶体管MP被配置为,根据模拟信号DAC_OUTA和输入电压OP_INA之间的差来控制偏压VBa的电平以及偏压VBb的电平。晶体管MN的控制端(例如栅极)耦接至数字模拟转换器610的第一输出端,以接收模拟信号DAC_OUTA。晶体管MN的第一端(例如漏极)耦接至电流源Ip的电流供应端。晶体管MN的第一端的电压作为所述偏压VBa。晶体管MN的第二端(例如源极)耦接至输出缓冲电路630的第一输入端,以接收输入电压OP_INA。晶体管MP的控制端(例如栅极)耦接至数字模拟转换器610的第一输出端,以接收模拟信号DAC_OUTA。晶体管MP的第一端(例如漏极)耦接至电流源In的电流汲取端。晶体管MP的第一端的电压作为所述偏压VBb。晶体管MP的第二端(例如源极)耦接至输出缓冲电路630的第一输入端,以接收输入电压OP_INA。在一实施例中,依照模拟信号DAC_OUTA与输入电压OP_INA二者的差异,晶体管MN与晶体管MP可以对应地决定偏压VBa的电平以及偏压VBb的电平。

在图6所示实施例中,预充电电路640包括晶体管MPA、晶体管MPB、晶体管MPC、晶体管MNA、晶体管MNB与晶体管MNC。晶体管MPA、晶体管MPB与晶体管MPC的控制端(例如栅极)耦接至检测电路650,以接收偏压VBa。晶体管MPA、晶体管MPB与晶体管MPC的第一端(例如源极)耦接至电压VDDA。晶体管MNA、晶体管MNB与晶体管MNC的控制端(例如栅极)耦接至检测电路650,以接收偏压VBb。晶体管MNA、晶体管MNB与晶体管MNC的第一端(例如源极)耦接至电压VSSA。晶体管MPA与晶体管MNA的第二端(例如漏极)耦接至输出缓冲电路630的第一输入端。晶体管MPB与晶体管MNB的第二端(例如漏极)耦接至输出缓冲电路630的第二输入端。晶体管MPC与晶体管MNC的第二端(例如漏极)耦接至输出缓冲电路630的第三输入端。在一实施例中,预充电电路640可以依照检测电路650的检测结果来决定预充电电压电平。预充电电路640可以依照所述预充电电压电平而对输出缓冲电路630的多个输入端进行预充电。

图7是依照本发明的一实施例说明通道电路的信号波形示意图。以下,图7将与图6一起说明。无论如何,图7的波形图不限于应用于图6的通道电路,可以应用于其他通道电路。图6的通道电路。而且,图6的通道电路不限于图7所示的信号波形,可以使用具有不同波形的信号进行操作。

参照图6和图7,在预充电期间P1,开关SWA、开关SWB和开关SWC为截止(OFF),并且预充电电路640可以对第一输入端、第二输入端和第三输入端进行预充电。由于开关SWA、开关SWB和开关SWC是截止的,导致在预充电时段P1期间数字模拟转换器610的第一输出端的模拟信号DAC_OUTA、第二输出端的模拟信号DAC_OUTB和第三输出端的模拟信号DAC_OUTC的转换被加速(由于寄生电容的减小)。当开关SWA、开关SWB和开关SWC为截止(OFF)时,预充电电路640可以对输出缓冲电路630的第一输入端的输入电压OP_INA、第二输入端的输入电压OP_INB和第三输入端的输入电压OP_INC进行预充电到不同的预设电平(或相同的预设电平)。

在正常操作期间P2,开关SWA、开关SWB和开关SWC为导通(ON),并且预充电电路640不对输出缓冲电路630的第一输入端、第二输入端和第三输入端进行预充电。例如,在正常操作期间P2,预充电电路640的输出端处于Hi-z状态。当开关SWA、开关SWB和开关SWC为导通(ON)时,数字模拟转换器610的输出端可以通过开关SWA、开关SWB和开关SWC提供模拟信号给输出缓冲电路630的输入端。

图8是依照本发明的又一实施例所绘示的一种源极驱动器的通道电路800的电路方块示意图。在图8所示实施例中,通道电路800包括数字模拟转换器810、开关820、输出缓冲电路830、预充电电路840、检测电路850、致能开关电路860以及致能开关电路870。图8所示通道电路800、数字模拟转换器810、输出缓冲电路830、预充电电路840与检测电路850可以参照图5所示通道电路500、数字模拟转换器210、输出缓冲电路230、预充电电路240以及检测电路550的相关说明来类推,或是参照图6所示通道电路600、数字模拟转换器610、输出缓冲电路630、预充电电路640以及检测电路650的相关说明来类推,故不再赘述。图8所示开关820可以参照图5所示开关220或是图6所示开关SWA、开关SWB与开关SWC的相关说明来类推,故不再赘述。

在预充电期间,开关优选为截止(OFF),预充电电路840可以对输出缓冲电路830的输入端进行预充电。在比预充电期间晚的正常操作期间,开关820为导通(ON),并且预充电电路840不对输出缓冲电路830的输入端进行预充电。

在图8所示的实施例中,致能开关电路860耦接到检测电路850。致能开关电路860受控于致能信号EN_SW_B,以决定是否将电压VDDA和电压VSSA传输到检测电路850,即,决定是否致能(enable)检测电路850。致能开关电路870耦接到预充电电路840。致能开关电路870受控于致能信号EN_SW_C,以决定是否将电压VDDA和电压VSSA传输到预充电电路840,即,决定是否致能预充电电路840。当开关820为导通(ON)时,致能信号EN_SW_B和致能信号EN_SW_C分别禁能(disable)检测电路850和预充电电路840。当开关820为截止(OFF)时,致能信号EN_SW_B和致能信号EN_SW_C分别致能检测电路850和预充电电路840。

图9是依照本发明的一实施例说明通道电路的信号波形示意图。以下,图9将与图8一起说明。无论如何,图9的波形图不限于应用于图8的通道电路,可以应用于其他通道电路。而且,图8的通道电路不限于图9所示的信号波形,可以使用具有不同波形的信号进行操作。

请参照图8与图9。在预充电期间P1中,开关820为截止,以及预充电电路840可以对输出缓冲电路830的输入端进行预充电。在正常操作期间P2中,开关820为导通,以及预充电电路840对输出缓冲电路830的输入端不进行预充电。

在图8所示实施例中,致能开关电路860耦接至检测电路850。致能开关电路860受控于致能信号EN_SW_B,以决定是否将电压VDDA与电压VSSA传输给检测电路850,亦即决定是否致能(enable)检测电路850。致能开关电路870耦接至预充电电路840。致能开关电路870受控于致能信号EN_SW_C,以决定是否将电压VDDA与电压VSSA传输给预充电电路840,亦即决定是否致能预充电电路840。当开关820为导通时,致能信号EN_SW_B与致能信号EN_SW_C分别禁能(disable)检测电路850与预充电电路840。当开关820为截止时,致能信号EN_SW_B与致能信号EN_SW_C分别致能检测电路850与预充电电路840。

图10是依照本发明的更一实施例所绘示的一种源极驱动器的通道电路1000的电路方块示意图。在图10所示实施例中,通道电路1000包括数字模拟转换器810、开关820、输出缓冲电路830、预充电电路840、检测电路850、致能开关电路860以及致能开关电路870。图10所示数字模拟转换器810、开关820、输出缓冲电路830、预充电电路840、检测电路850、致能开关电路860以及致能开关电路870可以参照图8的相关说明来类推,故不再赘述。

在图10所示实施例中,检测电路850所输出的检测结果包括偏压VBc以及偏压VBd,致能开关电路860包括致能开关SWB1与致能开关SWB2,而检测电路850包括电流源Ip、晶体管MN1、电流源In与晶体管MP1。致能开关SWB1的控制端可以接收致能信号EN_SW_B。致能开关SWB1的第一端耦接至电压VDDA。电流源Ip的电流汲取端耦接至致能开关SWB1的第二端。晶体管MN1的第一端(例如漏极)耦接至电流源Ip的电流供应端。晶体管MN1的控制端(例如栅极)耦接至晶体管MN1的第一端。晶体管MN1的第二端(例如源极)耦接至数字模拟转换器810的输出端。晶体管MN1的控制端的电压作为所述偏压VBc。

致能开关SWB2的控制端可以接收致能信号EN_SW_B。致能开关SWB2的第一端耦接至电压VSSA。电流源In的电流供应端耦接至致能开关SWB2的第二端。晶体管MP1的第一端(例如漏极)耦接至电流源In的电流汲取端。晶体管MP1的控制端(例如栅极)耦接至晶体管MP1的第一端。晶体管MP1的第二端(例如源极)耦接至数字模拟转换器810的输出端。晶体管MP1的该控制端的电压作为所述偏压VBd。

在图10所示实施例中,致能开关电路870包括致能开关SWC1与致能开关SWC2,而预充电电路840包括晶体管MN2与晶体管MP2。致能开关SWC1的控制端用以接收致能信号EN_SW_C。致能开关SWC1的第一端耦接至电压VDDA。晶体管MN2的控制端(例如栅极)耦接至检测电路850,以接收偏压VBc。晶体管MN2的第一端(例如漏极)耦接至致能开关SWC1的第二端,晶体管MN2的第二端(例如源极)耦接至输出缓冲电路830的输入端。致能开关SWC2的控制端用以接收致能信号EN_SW_C。致能开关SWC2的第一端耦接至电压VSSA。晶体管MP2的控制端(例如栅极)耦接至检测电路850,以接收偏压VBd。晶体管MP2的第一端(例如漏极)耦接至致能开关SWC2的第二端。晶体管MP2的第二端(例如源极)耦接至输出缓冲电路830的输入端。

图11是依照本发明的另一实施例所绘示的一种源极驱动器的通道电路1100的电路方块示意图。在图11所示实施例中,通道电路1100包括数字模拟转换器1110、开关1120、输出缓冲电路1130、至少一预充电电路1140、至少一检测电路1150、致能开关SWB3、电流源Ip、电流源In以及致能开关SWB4。图11所示通道电路1100、数字模拟转换器1110、开关1120、输出缓冲电路1130、预充电电路1140与检测电路1150可以参照图5所示通道电路500、数字模拟转换器210、开关220、输出缓冲电路230、预充电电路240与检测电路250的相关说明来类推,故不再赘述。

在图11所示实施例中,致能开关SWB3的控制端用以接收致能信号EN_SW_D。致能开关SWB3的第一端耦接至电压VDDA。电流源Ip的电流汲取端耦接至致能开关SWB3的第二端。电流源Ip的电流供应端耦接至检测电路1150以及预充电电路1140。致能开关SWB4的控制端接收致能信号EN_SW_D。致能开关SWB4的第一端耦接至电压VSSA。电流源In的电流供应端耦接至致能开关SWB4的第二端。电流源In的电流汲取端耦接至检测电路1150以及预充电电路1140。

在图11所示实施例中,检测电路1150所输出的检测结果包括偏压VBe以及偏压VBf,检测电路1150包括晶体管MP3、晶体管MN3、致能开关SWB5、晶体管MP4、晶体管MN4与致能开关SWB6。晶体管MP3的第一端(例如源极)耦接至电流源Ip的电流供应端。晶体管MP3的控制端(例如栅极)耦接至数字模拟转换器1110的输出端,以接收模拟信号DACO。晶体管MN3的第一端(例如漏极)耦接至晶体管MP3的第二端(例如漏极)。晶体管MN3的控制端(例如栅极)耦接至晶体管MN3的第一端。晶体管MN3的控制端的电压作为偏压VBe。致能开关SWB5的控制端用以接收致能信号EN_SW_E。致能开关SWB5的第一端耦接至晶体管MN3的第二端(例如源极)。致能开关SWB5的第二端耦接至电压VSSA。

晶体管MN4的第一端(例如源极)耦接至电流源In的电流汲取端。晶体管MN4的控制端(例如栅极)耦接至数字模拟转换器1110的输出端,以接收模拟信号DACO。晶体管MP4的第一端(例如漏极)耦接至晶体管MN4的第二端(例如漏极)。晶体管MP4的控制端耦接至晶体管MP4的第一端。晶体管MP4的控制端的电压作为偏压VBf。致能开关SWB6的控制端用以接收致能信号EN_SW_E。致能开关SWB6的第一端耦接至晶体管MP4的第二端(例如源极)。致能开关SWB6的第二端耦接至电压VDDA。

在图11所示实施例中,预充电电路1140包括晶体管MP5、晶体管MN5、致能开关SWC5、晶体管MN6、晶体管MP6与致能开关SWC6。晶体管MP5的第一端(例如源极)耦接至电流源Ip的电流供应端。晶体管MP5的第二端(例如漏极)耦接至输出缓冲电路1130的输入端。晶体管MP5的控制端(例如栅极)耦接至晶体管MP5的第二端,以及耦接至输出缓冲电路1130的输入端,以接收输入电压OPI。晶体管MN5的控制端(例如栅极)耦接至检测电路1150,以接收偏压VBe。晶体管MN5的第一端(例如漏极)耦接至晶体管MP5的第二端。致能开关SWC5的控制端用以接收致能信号EN_SW_F。致能开关SWC5的第一端耦接至晶体管MN5的第二端(例如源极)。致能开关SWC5的第二端耦接至电压VSSA。

晶体管MN6的第一端(例如源极)耦接至电流源In的电流汲取端。晶体管MN6的第二端(例如漏极)耦接至输出缓冲电路1130的输入端。晶体管MN6的控制端(例如栅极)耦接至晶体管MN6的第二端,以及耦接至输出缓冲电路1130的输入端,以接收输入电压OPI。晶体管MP6的控制端(例如栅极)耦接至检测电路1150,以接收偏压VBf。晶体管MP6的第一端(例如漏极)耦接至晶体管MN6的第二端。致能开关SWC6的控制端用以接收致能信号EN_SW_F。致能开关SWC6的第一端耦接至晶体管MP6的第二端(例如源极)。致能开关SWC6的第二端耦接至电压VDDA。

图12是依照本发明的又一实施例所绘示的一种源极驱动器的通道电路1200的电路方块示意图。在图12所示实施例中,通道电路1200包括数字模拟转换器1210、开关1220A、开关1220B、开关1220C、输出缓冲电路1230、至少一预充电电路1240、至少一检测电路1150、致能开关SWB3、电流源Ip、电流源In以及致能开关SWB4。图12所示数字模拟转换器1210、开关1220A、开关1220B、开关1220C与输出缓冲电路1230可以参照图6所示数字模拟转换器610、开关SWA、开关SWB、开关SWC与输出缓冲电路630的相关说明来类推,图12所示预充电电路1240、检测电路1150、致能开关SWB3、电流源Ip、电流源In以及致能开关SWB4可以参照图11所示预充电电路1140、检测电路1150、致能开关SWB3、电流源Ip、电流源In以及致能开关SWB4的相关说明来类推,故不再赘述。

综上所述,本发明一些实施例所述源极驱动器的通道电路及其操作方法可以在正常操作期间P2前的预充电期间P1利用具有足够推力的预充电电路对输出缓冲电路的输入端进行预充电。在预充电期间P1结束后的正常操作期间P2中,数字模拟转换器的输出端得以通过开关而提供模拟信号至输出缓冲电路的输入端。因此,数字模拟转换器的输出的恢复时间可以被有效缩短。数字模拟转换器的输出的恢复时间的缩短,有利于显示面板40的操作频率的提升。

虽然本发明已以实施例公开如上,然其并非用以限定本发明,本领域技术人员在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视所附权利要求书界定范围为准。

26页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:源极驱动器的信道电路

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类