一种旋转眼镜(选配)

文档序号:1525316 发布日期:2020-02-11 浏览:25次 >En<

阅读说明:本技术 一种旋转眼镜(选配) (Rotary glasses (optional) ) 是由 阿列克谢伊·列奥尼多维奇·乌沙科夫 于 2018-04-06 设计创作,主要内容包括:具有两个前镜架的旋转眼镜:在使用者的头部上安装有鼻梁和眼镜固定装置的固定镜架,以及包含光学元件的可移动镜架,该光学元件被设计为放置在使用者眼前的工作位置,同时可移动框架通过多连杆机构安装于可移动框架上,可相对于固定框架提升,并通过在所有位置上均存在铰链同时绕其纵向轴线旋转到上述的框架。本发明可以用在具有屈光度的眼镜中,特别是在老花镜中,以及在包括太阳镜在内的各种类型的护眼眼镜中,并允许将眼镜提起到额头上,而无需卸下眼镜观察一下两个透镜以及没有透镜的情况,提升装有透镜的可移动框架时,可以避免透镜与前额内侧的接触,从而避免了镜片污染。(Rotating eyeglasses with two front frames: a fixed frame with nose bridge and eyeglass fixing means mounted on the user&#39;s head, and a movable frame containing optical elements designed to be placed in an operative position in front of the user&#39;s eyes, while the movable frame is mounted on the movable frame by means of a multi-link mechanism, can be lifted with respect to the fixed frame, and is rotated to said frame simultaneously about its longitudinal axis by the presence of hinges in all positions. The invention can be used in spectacles with diopter, in particular in presbyopic glasses, and in eye-protection spectacles of various types, including sunglasses, and allows the spectacles to be lifted up onto the forehead without having to remove the spectacles to see both lenses and without them, avoiding the contact of the lenses with the inside of the forehead and thus the contamination of the lenses when lifting the movable frame with the lenses.)

一种旋转眼镜(选配)

技术领域

本发明涉及光学,尤其涉及眼镜。

背景技术

患有老花眼的人使用加近视镜片将眼睛聚焦在近距离时,除非他们有其他视力障碍,否则在其余时间不需要矫正镜片,因此他们不得不经常摘下或戴上眼镜,这非常不方便。在必须戴任何护目镜(例如太阳镜)的情况下,也会发生同样的事情。在眼镜架中使用双焦点或渐进镜片可以部分解决有远见的眼镜所指出的问题,但会减少近视和远视的范围。在变色眼镜中,透光率从透明到变暗,反之亦然的变化不是立即发生的,而是要等一些时间(从1到15分钟)。另外,即使在最大透光率的情况下,与相同厚度(0.99-0.95)的光学镜片相比,光致变色透镜在可见光范围内(约0.80)的光辐射透明度也要低得多。

有公知的眼镜,其中在第一扁平框架的上水平面上,用套筒和轴固定以可折叠的遮阳板形式制成的第二扁平框架(US 20120924068)。安装在轴或套筒上的两个受支撑的弹簧加载凸轮与其面相互作用,以将第二框架相对于第一框架保持在下部或上部位置。在这些眼镜中,不可能调节眼镜镜片的光轴与眼睛的视轴之间的角度。以遮阳板形式制成的带有折叠玻璃或镜片的眼镜会损害使用者的外观,因为在上方位置,镜片会明显偏离额头轮廓。在这样的眼镜中,仅提供了眼镜(镜片)的一个(下部)位置,其中眼睛的视轴穿过镜片的表面,使得使用者可以无应变地透过这些眼镜片(透镜)来观看。指的是,仅在眼镜(镜片)的下部,完全降低的位置中,转动眼镜片(透镜)的内平面相对于眼睛的视轴具有必要的角度。在眼镜片(透镜)的任何甚至很小的旋转角度下,该角度变化很大,以致无法透过眼镜片(透镜)观看。

也是公知的是具有运动眼镜的镜架(发明专利号为2146062的RF专利),但是在一个实施例中,本发明与申请US 20120924068中描述的眼镜绝对相似,并且在另一实施例中,其上装有透镜的可运动镜架可通过滑动沿着安装在固定眼镜架上的垂直导轨上下移动,会导致移动的眼镜架翘曲和卡住。没有提供镜架沿其纵轴旋转的镜架。

有公知的眼镜包含用作遮阳帘的附加提升框架,由于其端部可用铰接连接到眼镜的支撑框架的端部,因此可以将其升高和降低(US 6767095 B1)。同时未提供,所述升降框架可以沿其纵轴另外旋转,因此,在升降时,该框架的上边缘位于使用者的额头上,因此,指定的升降框架只能用作遮阳帘,其中不提供光学元件,因为在提升框架时可能会污染头皮。

因此,到目前为止,当镜片或其他光学元件相对(第一工作位置)或在使用者的眼睛下方(第二工作位置)并且处于闲置位置时,尚未制造出可以在几种工作位置舒适使用的永久佩戴眼镜,当不摘下眼镜,镜片或其他光学元件而不会落入用户的视野内,但同时不触摸头部的皮肤或头发,同时保持用户可接受的外观,并且在操作和非操作位置从通常的眼镜有稍微有不同。

发明内容

除非上下文另有指示,否则表示方向或方向(例如上,下,向前,向后,向右,向左)的表达是相对于处于直立位置的人的头部来理解的,该人的眼睛位于主要位置,即视线直接指向物体与眼睛齐平,头部笔直,没有转动和倾斜。

为了描述眼睛相对于用户头部的位置,使用了眼科领域的专家已知的以下表达式,它们可能具有除通常认可的含义之外的其他含义:

-眼睛的解剖(矢状)轴是指连接其两极的线;

-眼睛的旋转中心是指位于矢状轴中心附近的一点;

-垂直轴是指穿过眼睛在解剖轴上的旋转中心并垂直于该轴的线;

-水平(横向)轴是指垂直于垂直轴和矢状轴的线。

本发明是创建一种包含两个可移动和固定框架的旋转眼镜的方法,您可以在其中举起一个包含光学元件的可移动框架,同时绕其纵轴旋转它,从而调整眼镜片(透镜)平面与眼睛视轴之间的角度,从而实现提起可移动框架时,提供光学元件相对于眼睛的几个位置(下部和中部),可以在其中通过降低或升高眼睛使用透镜。如果固定框架和可移动框架都包含光学元件,则在降低可移动框架时,将透镜彼此组合在一起时可以获得额外的效果。例如,对于老花眼,当两个正透镜同时在一个用户的眼睛前面时,可以通过降低可移动框架来执行近视矫正,从而提高了效果。在中间视区进行校正时,提升可移动框架时,用户眼睛的视轴只能穿过放置在固定框架上的一个透镜。当注视距离时,使用者将可移动镜框尽可能高地提升,看向位于固定镜框上透镜的上面。如果可移动框架包含作为光学元件的显示器,并且可移动框架包含用于额外容纳这些显示器的透镜,则当可移动框架提升时,用户可以向上看,从不需要高分辨率的显示器中读取一些信息(方向箭头,速度数字速度计等)。当尽可能降低可移动框架以便在显示器和用户的眼睛之间有一个安装在固定框架上的正透镜时,可以显示需要高分辨率的图像。如果将这些显示器制成透明或半透明的,建议为其配备光致变色眼镜片。

在可移动框架的上部位置,光学元件应与使用者的前额平行,不要后退至远离头部表面的位置,而不能接触前额皮肤,从而避免污染光学元件,眼镜片(透镜)。

通过创建包含以下内容的旋转眼镜可以解决该问题:

一个具有左右侧端的固定框架,

鼻梁,其与所述框架的侧端的基本相等的距离而连接,

右臂和左臂分别连接到固定框架的所述左右侧端,

可移动框架,其具有左右两端并包含至少两个光学元件,

左右杠杆,每个杠杆都有远端和近端,其中

所述左右杠杆的近端分别用铰接连接到所述固定框架的所述左右侧端,并且所述左右杠杆的远端分别用铰接连接到可移动框架的所述左右侧端。所述铰接使得所述杆基本上在矢状面内旋转。

适当地是所述杠杆与固定框架的所述侧向端的铰接位于距眼睛的水平轴垂直最多20mm的距离处。

优选地是所述杠杆与固定框架的所述侧向端的接头位于眼睛的水平轴线上方。

有益地是眼镜还包括至少一个将上述可移动框架固定在一个位置中的装置。

适当地是将光学元件制成光学透镜,防护眼镜片或显示器的形式,以将视觉信息传递给用户。

适当地是使可移动框架具有调节光学元件的瞳孔间距的可能性。

有益地是固定框架还包含与用户的眼睛相对放置的光学元件。

在一个优选的实施例中,眼镜还可以包括至少两个左右的管状脚套,每个管状脚套的设计方式使得在眼镜的工作位置,左右脚套分别佩戴在左右杠杆上,同时,当处于眼镜非工作位置的所述脚套被拉到上述光学元件上时,以保护它们免受损坏和污染。

此外,通过创建包含以下内容的旋转眼镜可以解决该任务:

具有左右两侧端的固定框架,

连接到所述固定框架的鼻子,基本上与其侧端相等的距离,

可移动框架,其左右两端包含至少两个光学元件,

左上和左下杠杆,

右上和右下杠杆,其中

每个杠杆都有一个远端和近端,

所述左右杠杆的近端沿竖直轴线彼此隔开一定距离,所述左右杠杆分别铰接连接到所述固定框架的所述左右侧端,并且所述左右杠杆的远端沿垂直彼此隔开一定距离,分别铰接连接到所述可移动框架的所述左右侧端,其中,所述右杠杆和所述左杠杆以及左右杆与之相连的可移动框架和固定框架的侧端的相互铰接的部分一起形成平坦的四连杆机构,其平面基本上是矢状的。

有益地是在上述可移动框架的每个侧面上的上述的上杠杆和下杠杆的接合点之间的距离不大于20mm。

同样,有益地是在所述可移动框架的每个侧端的上的所述的上杠杆和下杠杆的接合点的端部处的段的倾斜角度与在所述可移动框架的最上和最下位置的前平面的倾斜角的差为10-25度。

适当地是将光学元件制成光学透镜,防护眼镜片或显示器的形式,以将视觉信息传递给用户。

适当地是使可移动框架具有调节光学元件的瞳孔间距的可能性。

有益地是固定框架还包含与用户的眼睛相对放置的光学元件。

有益的是,旋转眼镜还包括在其端部连接到镜腿的上述近端的细绳。

在一个优选的实施例中,眼镜还可以包括至少两个左右的管状脚套,每个管状脚套的设计方式使得在眼镜的工作位置,左右脚套分别佩戴在左右杠杆上,同时,当处于眼镜非工作位置的所述脚套被拉到上述光学元件上时,以保护它们免受损坏和污染。

在另一个优选的实施方式中,眼镜还可以包括至少两个左右的管状脚套,每个管状脚套的设计使得在眼镜的工作位置,左右脚套被戴在上述左右镜腿上,同时,当处于眼镜非工作位置的所述脚套被拉到上述光学元件上时,以保护它们免受损坏和污染。

附图说明

发明物使用优选的实施方式的描述和作为参考的附图,其中:

图1示出了根据本发明的旋转眼镜的总体视图;

图2示出了根据本发明的具有两个杠杆机构的眼镜的实施例;

图3示出了根据本发明的杠杆机构的实施例;

图4示出了根据本发明的使用者戴着的处于工作位置的眼镜,其中指定了用于眼镜设计的主要参数;

图5、6示出了根据本发明的使用者戴着的处于最高位置的眼镜;

图7、8示出了根据本发明的使用者戴着的处于中位置的眼镜;

图9示出了根据本发明的使用者戴着的处于最底位置的眼镜;

图10示出了根据本发明的使用者戴着的处于未调节的上部位置的眼镜;

图11示出了根据本发明的具有眼睛的矢状截面的用户头部的模型;

图12、13示出了根据本发明的透镜在使用者的头部模型上的两个极限位置;

图14示出了根据本发明的用于计算透镜的旋转角度的数学模型;

图15示出了根据本发明的用于计算四个杠杆机构的示意图。

图16示出了根据本发明的通过数学建模获得的四个杠杆机构的实施例;

图17示出了根据本发明的用于四个杠杆机构元件的细化计算的示意性模型;

图18示出了根据本发明的带有太阳镜的旋转眼镜的实施例;

图19、20、21、22示出了根据本发明的具有两个显示器的智能眼镜形式的眼镜的实施例;

图23、24、25示出了根据本发明的具有四个杠杆的眼镜的优选实施例;

图26、27示出了根据本发明的固定框架在使用者的下部位置的眼镜的实施方式;

图28、29、30、31示出了根据本发明的固定框架在使用者的下部位置的眼镜的实施方式;

图32、33示出了根据本发明的附加地包括两个脚套的眼镜;

图34示出了根据本发明的眼镜的设计方式。

这些图像是示意性的,因此显示了对有资格使用本发明的中级专家很重要的细节,省略了不太重要的细节。

具体实施方式

旋转眼镜(图1、2、3)包括一个固定框架1,在中间具有一个鼻梁2,并且镜腿3a,3b连接到该固定框架的侧端。而且,旋转眼镜包括具有光学元件5a,5b,右杠杆6a和左杠杆6b的可移动框架4,其中每个杠杆具有远端和近端。右杠杆6a在其近端通过铰链7a与固定框架1的右侧相连,左杠杆6b在其近端通过铰链7b与固定框架1的左侧相连,这些杠杆基本具有通过所示铰链的中心的固定框架的纵向轴线绕横向旋转的能力。在这种情况下,通过铰链8a,8b将右杠杆6a和左杠杆6b的远端分别连接到可移动框架1的左右侧,从而使可移动框架4相对于其纵轴旋转。

在图3详细示出了在一个实施例中通过杠杆的可移动框架和固定框架的连接结构,其中,铰链7a和7b借助于轴线9、10使可移动框架4相对于固定框架1运动。

在本申请中提出的发明使得当透镜位于眼睛前面或稍低于眼睛时,有远见的人在移动框架的中间或下部位置附近具有良好的视野。同时,可以观察必要的顶点距离和全景角度。在图4示出了根据本发明得出的使用者戴着的处于工作位置的眼镜,其中指定了用于眼镜设计的主要参数:眼睛的旋转中心11,视轴12,矢状轴13,顶点距离(从眼球顶部到后部的朝向眼睛的透镜表面距离)14,全景角度15。

当使用双杠杆机构转动框架时,每个杠杆都通过铰链连接到每个框架,并且将左右杠杆的远端与移动框架的侧面(分别左右)连接的铰链接头使得根据解剖特征调整全景角度,并且用户的喜好,并且在提起可移动镜架时,指定的铰链可让您将眼镜的透镜与额头表面平行放置,并与之保持足够的距离避免皮肤接触或弄脏透镜的内表面。这是可能的,因为由于存在铰接的多连杆,可移动框架不仅可以在竖直平面内升降,而且还可以沿其纵轴旋转,通过该多连杆,可移动框架与眼镜的固定框架连接。

已知在用于视力矫正的眼镜中,在选择镜架并评估其在面部上的适合度时,必须考虑到透镜在眼前的位置,必须观察,考虑和测量许多参数。标准参数如下:顶点距离为12-15毫米,全景角度为8-12度,框架的弯曲角度为4-5度。不幸的是,尽管为近视和远视眼的人使用眼镜的功能通常有所不同,但有时这些常用参数有时会用于带有正负透镜的眼镜。大多数情况下,当使用正透镜近距离聚焦时,用户会低头,例如坐在桌子旁。同时,他同时低头(相对于水平线约15度),并在垂直平面上将眼睛降低了约15度。而且,如果在设计眼镜时不值得考虑头部倾斜,那么向下的眼睛倾斜角度会增加镜头的光轴与眼睛的视轴之间的角度。但是,在选择镜架时,考虑到全景角度,几乎总是以该角度作为初始位置中眼镜透镜的光轴与眼睛视轴之间的角度(目光指向水平,笔直)。如在上述情况下那样,在竖直方向上降低眼睛时,为了保持眼镜透镜的光轴与眼睛的视轴之间的角度不变,眼镜透镜的光轴与水平线之间的角度应更大(自然地,在视线和视觉眼轴是水平的)。计算表明,当眼睛的视轴靠近地平线时,该角度应约为15-25度(即,对于任何种类的眼镜测量的该标准角度为8-12度略大)。

另外,对于老花眼眼镜的选择,瞳孔间距小于近视眼镜的瞳距。而且,为了矫正老花眼,不需要使用可提供宽视野的透镜,因此可以用较小的透镜尺寸制作眼镜。足够的透镜水平测量3-4厘米,垂直测量2厘米。考虑到这些情况,提出了一种带有可移动框架的旋转眼镜,该眼镜不会极大地扭曲使用者的外观,而是允许不断佩戴此类眼镜,并根据需要更改可移动框架的位置。如果使用高度较小的透镜,则可以最大程度地降低移动框架的高度,从而可以使眼镜处于所谓的“讲师”位置,当用户近距离阅读时,必须将其眼睛尽可能低下并抬高眼睛,他可以从透镜上方观察距离。也就是说,可移动框架的三个位置是可能的:

-当光学元件没有落入用户视野时的最高端(图5、6);

-当透镜与使用者的眼睛相对时,在眼睛的视轴靠近水平线的位置时,取平均值(图7、8);

-极低的位置(图9),“讲师”位置。

为了模拟提升机制,我们接受以下初始数据。

在透镜的工作位置,必须观察到顶点距离,还必须考虑全景角度和头部的解剖特征。戴眼镜时,将可移动框架降至最低位置(当其位于固定框架下方时)的全景角度应相对于眼睛主要位置的眼睛矢状轴不超过27度,当眼睛从主要位置降低15度时约为15度。

对于不伴有视力障碍(散光,近视等)的与年龄相关的老花眼,建议最大透镜宽度不超过20mm。

在非工作位置,透镜应远离用户视野,并与前额平行,且距皮肤一定距离,以避免透镜污染,如果放置光学元件,可能会发生镜片污染,如图10所示。处于最高位置的光学元件应与前额相距足够的距离,以防止在用户面部表情动作过程中污染镜片。

图11示出了具有眼睛的矢状截面的用户头部的模型。

我们考虑一种二维解决方案,其中眼镜机构的所有元件都投影到与通过眼睛旋转中心的矢状截面相对应的平面上。

当眼睛仅上下移动时,位于透镜内表面上的点就是在该平面中移动,眼睛的视轴通过该点。

设计的起点(零坐标点),选择眼睛O的旋转中心。为确定性,选择X和Y轴时,我们假设X轴沿眼睛的解剖(矢状)轴指向右侧,而Y轴沿眼睛的垂直轴指向上方。

穿过点A和A1的虚线表示通过旋转中心的矢状截面中的透镜的内表面。

设计带折叠臂的镜腿时,应避免将杠杆的近端铰链的连接点定位在折叠镜腿上。使用用户头部的各种解剖尺寸和传统的眼镜变型,我们发现杠杆近端铰链的可能连接点在图11所示的CDEF区域中。在一定条件下(顶点距离,全景角度,透镜宽度),近端关节轴应位于X坐标在-6mm至45mm范围内,Y坐标在-20mm至26mm范围内的区域内。

我们接受透镜在垂直平面中沿水平轴的上升作为透镜绕O点的旋转,但是在这些条件下OA小于OA1。任务是计算O点移动以满足要求|OA|=|OA1|的点的坐标,其中O点的新坐标位于CDEF区域中。

在第一个阶段,建模任务是构造一个单杆提升机构,其中杠杆的一个铰链固定在可移动框架的边缘,而另一个铰链固定在固定框架,这对于满足列出的结构要求是最佳的。有条件地接受透镜和可移动镜架在前平面内是平坦的。

当杠杆的末端从A点移到A1点时保持其长度的条件(绕O点旋转,图12)

Figure BDA0002331656020000091

其中

x0,y0–O点的坐标

xA,yA-A点原始位置的坐标

xA1,yA1-A(A1)点新位置的坐标

(xo-xA1)2-(yo-yA1)2=(xo-xA)2-(yo-yA)2 (2)

-2x0 xA1+xA1 2+yA1 2+2x0 xA-xA 2-yA2=2y0(yA1-yA) (4)

结果,我们得到了直线方程,其中第一项是倾斜角度的正切值,第二项是相对于原点的偏移量。杆架位于CDEF区域内直线段上的任意点,符合提出的任务。更精确的点选择是基于特定的设计决策,这些决策取决于透镜的高度和在透镜边缘的提升杆的安装位置。

在该计算中,我们使透镜BB1的最佳高度不大于25mm,并且透镜的仰角不大于85度(图12)。杠杆与透镜的所有可能连接点(A点)都位于段BB1上。

代入给定值并求解方程式(5),我们将CDEF区域(杠杆轴与固定框架的连接的投影)缩小到区域C1D1QE1F1,可以将其优化为C1D1Q,其中Q点是在固定框架上的铰链矢状平面上的投影,与时间相反额骨突附近的区域。

我们将分别考虑优化单杠杆机制模型的计算的可能性。

透镜的两个极限位置是已知的(图12、13)。为了描述透镜从初始位置到最终位置的过渡,可以将其运动想象为运动的叠加(图13):

1)A点绕O点旋转,

但是在这种情况下,A点进入前额的内部组织,为防止这种情况,有必要将OA的长度增加到OA1或更改O点的坐标:

2)更改OA段的长度(移位)

透镜的最佳宽度为25mm,需要使可移动框架沿其纵轴旋转,该纵轴通过杠杆的铰链到达透镜,这对应于模型中角度β值通过β1的变化:

3)透镜围绕A点的新位置的旋转。

描述的最简单方法是以二维矢量的形式表示点的坐标,并且在每次操作(旋转或移动)期间,将矢量乘以相应的矩阵,以获得新的矢量(点的新位置的坐标)(图13)。顺时针旋转矩阵α如下:

Figure BDA0002331656020000101

要计算A1点的新坐标:

Figure BDA0002331656020000102

如果我们扩展矩阵(7),我们得到以下等式:

xA1=xA·cosα+yA·sinα (8)

yA1=-xA·sinα+yA·cosα (9)

围绕任意点的旋转类似于表达式6–9中描述的围绕原点的旋转,但是增加了旋转点的坐标。因此,例如,如果我们要将A1点绕B1点旋转角度β(图14):

xA3=xB2+(xA2-xB2)·cosβ+(yA2-yB2)·sinβ (10)

yA3=yB2-(xA2-xB2) ·sinβ+(yA2-yB2)·cosβ (11)

xA,yA-A点原始位置的坐标

xA1,yA1-转换1后的A(A1)点新位置的坐标

xA2,yA2-转换2后的A(A2)点新位置的坐标

xA2,yA2-转换3后的A(A3)点新位置的坐标

通过三角形OB2'A'的正弦定理:

Figure BDA0002331656020000111

从表达式(12),我们获得(考虑到(180–γ')=–sin(γ'),sin(–γ')=–sin(γ')

Figure BDA0002331656020000112

或者如果需要角度本身

Figure BDA0002331656020000113

可以采用两种不同的解决方案来确保透镜相对于杠杆旋转角度β和β'。在一个更简单的实施例中,角度β的值由β1的改变是通过在杠杆与镜头的接合处的附加铰链接头提供的,该铰链接头允许可移动框架沿其纵向方向沿着穿过关节中心的轴旋转。但是这种解决方案迫使用户进行不必要的运动来旋转透镜,此外,可移动框架和杠杆的歪斜也是可能的。

如果确保可移动框架的旋转不是沿着穿过铰链中心的轴线旋转,而是沿着由旋转机构中的铰链定义的路径旋转,则可以消除所有这些旋转,在旋转机构中使用了两杠杆铰链四连杆连杆(在某些情况下使用缩放仪),这确保了框架在两个平面中所需的运动。

对单杠杆机构进行的分析允许确定摇臂之一的末端的大小和坐标。

这种杠杆机构的综合问题是要确定第二个摇臂的长度,其第二个铰链的位置,并考虑到透镜高度(最大连杆长度)和支杆长度(固定在固定框架上的摇臂铰链之间的距离)所施加的限制,该限制不应超出CDEF区域且不超过20毫米。

为了合成两个摇杆机构(图15),我们编写了几何关系方程

将线段投影到Y轴上

Figure BDA0002331656020000121

Figure BDA0002331656020000122

Figure BDA0002331656020000123

将线段投影到X轴上

Figure BDA0002331656020000124

Figure BDA0002331656020000125

Figure BDA0002331656020000126

添加方程式(17)和(20)

Figure BDA0002331656020000127

我们将表达式(21)转换为以下形式

Figure BDA0002331656020000128

我们将表达式(22)表示为:

Figure BDA0002331656020000129

总结:

Figure BDA00023316560200001210

我们得到3个参数,这些参数围住了链接的长度;因此,我们必须知道该机制的3个位置才能组成系统并对其进行求解。为了不产生无限数量的解决方案,必须指定限制性条件。在这种情况下,这将是铰链所在的区域,对机构极端位置的限制以及对铰链相对定位的可能性的限制。

最后一个方程是Freidenstein方程,而k1,k2和k3是Freidenstein的参数。如果已知前导链和从动链的多个位置,则使用它可以解决四链合成问题。例如,对于前导链和从动链的三个预设位置,我们具有角度参数:

α123为前导链的三个位置;

φ123为从动链的三个位置。

我们为这些初始数据组成一个方程组:

Figure BDA0002331656020000131

方程组(25)可以矩阵形式表示Axk=b

其中

Figure BDA0002331656020000132

我们找到了这个方程组的解决方案

k=A-1·b (27)

根据找到的弗赖登施泰因参数,通过以下公式确定四个链接的链接尺寸:

Figure BDA0002331656020000133

其中HG以及相应的其他长度以毫米表示(根据合成机制的比例和近似几何尺寸,我们将其作为基本的测量单位)。

根据获得的方程,可以使用数学软件包(例如MathCAD或MatLab)构建最适合设计要求的提升机构。

关于我们的任务(图16),知道了两侧的长度(摇臂和连杆)和角度值,我们确定了另一侧的长度(从动摇臂的长度和铰链之间的距离)。

所获得的分析依赖性使我们能够执行必要的计算,并建立已开发设计的运动学图,该图可以最大程度地满足给定条件:

-眼睛视轴相对于镜头内表面的长度为15到25mm,而当头部处于笔直位置时,眼睛视轴相对于水平线降低15度;

-可移动框架的旋转范围是70至85度;

-当提升可移动框架时,可移动框架沿其纵轴的旋转角度为角度Δβ。

为了选择最佳设计,可以更改以下值(投影到矢状面上的数据):

-摇臂(杠杆)的长度,其中杠杆的铰链固定在区域C1D1E1F1内的固定框架上,

-远端铰链之间的距离(连杆的长度)小于20毫米,

-可移动框架相对于纵轴的旋转角度(Δβ),优选为10至25度。

对于上述框架中这些值的任何更改,应该记住,最好将近端杠杆铰链安装在区域C1D1E1F1的固定框架上。

给定基本的眼科参数并将上述公式应用于具有折叠镜腿的标准眼镜的尺寸,可以对四连杆提升机构的元件进行优化计算。

对于图17所示的四个链接AA1B'B'1,我们使用Freidenstein方法。我们首先接受定义框架的位置,即段QB=q,QB'=q',QB1=q1,QB1'=q1'的长度,以及角度δ,χ,η已知的。让我们沿垂直于A1A的角度bis的等分线引导X轴,垂直于X的Y轴。我们在坐标轴上投影四链АА1B'B1'然后重新使用Freidenstein方法:

AB’cos(δ/2)=B1’A1cos(κ–δ/2)+B’B1’cos(θ–δ/2) (29)

AB’sin(δ/2)=B1’A1sin(κ–δ/2)-B’B1’sin(θ–δ/2)+AA1 (30)

我们表示线段AA1=a,BB1=B'B1'=b其中线段b等于:

Figure BDA0002331656020000141

我们从方程式(29)和(30)的右侧转移不包含κ项到左边,将两个方程式平方并相加,得到与Freidenstein方程式相似的第一个方程式:

Figure BDA0002331656020000143

以类似的方式,对于位置AA1BB1中的四个链接,我们得到第二个方程:

在这里,有必要将角度θ和θ1与描述链接BB1的位置的值连接起来,即从三角形BB1Q和B'B'1Q中,我们得到以下表达式:

Figure BDA0002331656020000151

总结方程式(32)和(33),我们得到表达式:

Figure BDA0002331656020000153

我们将链接单元的总长度表示为S1(a)=A1B1+AB,这是链接长度AA1的函数。此外,优化问题可以简化为两个选项:

1.优化杠杆的长度。找到函数S1(a)的最小值,该最小值的方程式由

Figure BDA0002331656020000154

等式确定,由此我们获得以下表达式:

Figure BDA0002331656020000155

其中

e=2sin(δ/2),c=b(sin(θ1–δ/2)+sin(θ–δ/2)),d=b(cosθ+cosθ1)(38)

从中很容易获得等式(37)的根,它确保最小的S1min具有以下形式:

Figure BDA0002331656020000156

然后,S1min具有以下值:

Figure BDA0002331656020000157

2.在先前的考虑中,在不使AA1链接的长度最小化的情况下进行了优化;结果,其长度a0可能大大超过弧d0点的大小,这也是不希望的。在这种情况下,应该注意Q点的选择,这也决定了角度δ。在这种情况下,您可以首先从方程式获取角度值:

3.a0(δ)=ad, (41)

其中ad是放置在手柄上的AA1链接的最大可能尺寸。然后将该角度代入方程式(40),确定S1min

找到链接的最小总长度后,可以表示以下链接的长度:

A1B1=S1min–АВ (42)

然后将其代入公式(33),从中消除A1В1,我们得出长度АВ。

代入初始数据,我们发现转弯点的杠杆(摇臂)的最佳长度在20毫米至60毫米的范围内,杠杆的长度取决于两个框架的曲率,也就是说,对于这样的结构解决方案,可移动框架在固定框架杠杆的最大曲率长度,并且在移动框架具有最大曲率的情况下,所谓的“框架曲率角度”为8(25-35度),则杠杆的长度最小,尤其是在固定框架较小的情况下琐碎的。

同样,我们可以计算上下近端铰链之间的最佳距离:不超过20毫米。

带有光学元件的旋转框架的多连杆升降机构可以同时使升降框架相对于其纵轴旋转,这种多连杆升降机构不仅可以用在眼镜中,而且可以用在头盔(虚拟现实的防护或头盔)中。在这种情况下,您可以根据提出的问题通过更改初始数据来使用本应用程序中描述的计算方法。

在许多类型的透镜中,可移动框架和固定框架可以弯曲成头部的形状,在这种情况下,提升机构的杠杆(摇臂)的长度可以比在矢状平面上的投影所计算的长度短。但是,这不会更改所有其他基本参数。

应该注意的是,由于在本申请中提出的旋转眼镜的设计特征,它们中的顶点距离将略大于标准值,因此有必要将正透镜的屈光度调整到较小的一侧。也建议使用非球面或偏光镜。

当使用四杆机构抬高框架时,可以将杠杆的铰链安装在框架的相对平面上,因此,在某些情况下,即使杠杆与框架相交或彼此交叉(在一个突起中),它们也不会互相干扰,因为它们将位于不同的平面中。

在许多实施例中,旋转眼镜(图1),固定和/或可移动框架的性能可以是U形的。

为了符合指定的参数,例如顶点距离和全景角度,以及避免在提升时使框架倾斜,最好使穿过近端铰链中心的固定框架的纵轴与眼睛的水平轴平行,而不是与眼睛的水平轴平行。距离它超过20毫米(图5、6、7)。

可移动框架在垂直平面内的旋转(图5、6、7)围绕固定框架的纵向轴线进行,该框架穿过杠杆的近端铰链的中心,并基于18岁以上男女使用者的大量人体样本的平均人体测量学数据多年,并且还尝试适合折叠镜腿的普通眼镜的标准形状和尺寸:

-优选地,将可移动框架的摆臂的近端铰链定位成使得固定框架的指定纵向轴线位于距眼睛的水平轴线不超过20mm的位置;

-优选地,将可移动框架的旋转杆的近端铰链布置成使得固定框架的指定纵向轴线位于眼睛的水平轴线上方。

在各种设计方案中,旋转眼镜可以进一步包括凸轮机构,该凸轮机构设计成根据杠杆的仰角或用于将可移动框架固定在上和/或下位置的其他装置来改变可移动框架沿其纵轴的旋转角度。

眼镜的设计不仅允许使用光学元件形式的光学透镜,而且还可以使用防护眼镜或太阳镜。在图1、18中示出了带有防护眼镜或太阳镜16的旋转眼镜的实施例。

本发明还可以用在智能眼镜中(图19、20、21、22),其使用两个显示器17a,17b代替光学元件,以将视觉信息传输给用户。在这种情况下,可以在眼睛之前显示三个位置-当可移动框架位于用户眼睛前面时,第一个位置(图20)类似于虚拟现实眼镜,从而每个显示器都尽可能地遮盖视场;当将可移动框架向上推时,第二个位置(增强现实)或相对于第一位置从10度到30度向上或向下倾斜,而显示器仅部分遮挡了用户的视线,这不会干扰中心视力,而用户转动眼睛向上或向下,可以查阅显示屏上的信息。当框架向上旋转超过30度时(图21),用户几乎完全松开了视野,因为可移动框架以及位于其上的显示器位于用户前额上方。

在图1a上示出了具有显示器的眼镜,其中可移动框架被制成为可调节光学元件的瞳距。可移动框架的鼻梁是可拆卸的,并包含由螺母18连接的左右螺纹部分,用户可以旋转螺母18来调整光学元件之间的距离至瞳孔间距。在另一个实施例中,由于光学元件沿着可移动框架的纵向滑动而调节瞳孔间距离。

在许多实施例中(图1、18),固定框架还包含位于与用户的眼睛相对的光学元件19,并且其他光学元件,太阳镜16或安全眼镜可以放置在移动框架中。该解决方案使得本发明不仅可以应用于老花眼的人,而且还可以应用于由于诸如近视之类的视觉障碍而被迫戴眼镜的用户。对于某些类型的视力障碍,例如散光,或人的远近视力差(需要正负透镜)时,建议为透镜不仅配备可移动镜架,还应配备固定镜架以保持恒定例如,在提升可移动框架的情况下看着距离时使用。

在一些实施例中,可以在单个单元中实现眼镜的实现,即安装在同一框架上的两个光学元件。

在优选实施例中(图23、24、25),旋转眼镜包括具有鼻梁和两个镜腿的固定框架,具有光学元件的可移动框架,四个杠杆,两个左,上和下以及两个右,上20a和下6a。右杠杆20a和6a的近端通过铰链连接(上杠杆20a通过铰链21)与固定框架的右侧连接,并且两个左杠杆的近端与固定框架的左侧铰链连接,其中上杠杆的水平旋转轴相对平行于水平轴。下杆的旋转轴。左右杠杆的远端分别通过铰链(上部右杠杆20a通过铰链23)与可移动框架的左右侧面连接,而左右杠杆和框架的相应侧面形成左右四连杆杠杆机构,从而可移动框架转动绕其纵轴。

在图1上示出了具有四连杆机构的旋转玻璃的实施例,其中,上杠杆20在铰接接头21和23中的运动由轴线22和24提供。

在某些实施例中,可以将其他杠杆配置为更改其远侧和近侧铰链之间的距离,从而允许您更改全景角度。固定框架和/或可移动框架还可为其他杠杆的铰链提供其他紧固件,这也使您可以调整全景角度。

在一些实施例中,旋转眼镜可以进一步包括在其端部连接至镜腿的近端的细绳或线。带显示器的旋转眼镜的某些选件可以用作可穿戴电子设备组合的组成部分,以有线方式与指定组合的相邻元素连接。

在图26、27上描绘了具有固定框架的下部位置的眼镜的实施例。

在优选实施例中,当用户戴上眼镜时,固定框架被放置在眼睛水平上方(图28、29、30、31)。

在图32、33上显示了旋转眼镜,其中还包含两个管状的弹性脚套,分别为右25a和左25b,它们分别在眼镜的工作位置分别固定在左右杠杆上,在眼镜的非工作位置,将脚套拉到光学元件上以保护眼镜不受损害和污染。

患有与年龄相关的老花眼的人,如果没有其他视力障碍(散光,近视等),则无需经常使用眼镜。在开车或其他类似情况下,他不需要眼镜。但是希望老花眼矫正眼镜总是在手边,例如在口袋里。使用坚硬的眼镜盒子并不总是很方便,并且会延长将眼镜置于工作位置的时间,反之亦然。在这种情况下,建议使用在工作和非工作位置经常戴在眼镜上的柔软或有弹性的管状脚套,在非工作位置将它们拉在透镜上,在工作位置将它们固定在透镜和镜腿之间的旋转杆上。可以使用由杠杆的端部固定的扁平或圆形弹簧,这使得每种情况在眼镜的工作位置中都可以在垂直平面上拉伸每种情况,从而使其尽可能平坦。相同的弹簧将脚套固定在透镜上,这有助于避免在眼镜无法使用时污染和损坏光学元件。

根据本发明的眼镜的设计选择之一在图34中示出。

48页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于半导体光波导的热光移相器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!