阀控制系统及阀控制方法

文档序号:152709 发布日期:2021-10-26 浏览:44次 >En<

阅读说明:本技术 阀控制系统及阀控制方法 (Valve control system and valve control method ) 是由 梁学玉 于 2020-04-26 设计创作,主要内容包括:该发明涉及一种阀控制系统及阀控制方法,能够提高工作效率,并提高人员操作的安全性。其中,所述一种阀控制系统包括:调节阀,用于安装至所述管路,以控制所述管路的导通情况;驱动器,连接至所述调节阀,用于控制所述调节阀进行调节,以改变所述管路的导通情况;检测器,安装至所述管路,用于检测所述管路内流体的压力;第一控制器,连接所述驱动器以及所述检测器,用于控制所述驱动器;第二控制器,所述第二控制器能够与所述第一控制器进行数据交互,所述第一控制器能够根据所述第二控制器的指令进行相应调控。(The invention relates to a valve control system and a valve control method, which can improve the working efficiency and the safety of personnel operation. Wherein the valve control system comprises: the regulating valve is used for being mounted to the pipeline so as to control the conduction condition of the pipeline; the driver is connected to the regulating valve and is used for controlling the regulating valve to regulate so as to change the conduction condition of the pipeline; a detector mounted to the pipeline for detecting a pressure of fluid within the pipeline; a first controller connected to the driver and the detector for controlling the driver; and the second controller can perform data interaction with the first controller, and the first controller can perform corresponding regulation and control according to the instruction of the second controller.)

阀控制系统及阀控制方法

技术领域

本发明涉及半导体厂务端流体供应系统与半导体设备领域,涉及一种阀控制系统及阀控制方法。

背景技术

现有技术中,在半导体生产机台装机结束后,需要向厂务申请流体供应,比如冷却水(PCW,即Process cooling water),来保证所述半导体生产机台正常运转。厂务在收到通知后,会根据提供的需求,带着梯子和工具,找到对应得阀门并根据设备需求,开到对应的位置。这个过程需要登高作业,具有一定的危险性,并且在初次调节不能满足要求的话,后期还要上去反复调节,效率较低。并且操作间内管路布局复杂,视野不好,找到对应阀门的难度较大。

发明内容

本发明的目的在于提供一种阀控制系统及阀控制方法,能够提高工作效率,并提高人员操作的安全性。

为了解决上述技术问题,以下提供了一种阀控制系统,包括:调节阀,用于安装至一管路,以控制所述管路的导通情况;驱动器,连接至所述调节阀,用于控制所述调节阀进行调节,以改变所述管路的导通情况;检测器,安装至所述管路,用于检测所述管路内流体的压力;第一控制器,连接所述驱动器以及所述检测器,用于控制所述驱动器;第二控制器,所述第二控制器能够与所述第一控制器进行数据交互,所述第一控制器能够根据所述第二控制器的指令进行相应调控。

可选的,所述第一控制器和所述第二控制器之间的连接方式包括无线连接。

可选的,所述第一控制器和第二控制器内均设置有射频信号收发芯片,由所述射频信号收发芯片发射射频信号以及接收射频信号,来实现所述第一控制器与第二控制器之间的数据交互。

可选的,所述检测器包括流体压力传感器,设置于所述管路内,与所述第一控制器连接,用于实时检测所述管路内流体的压力。

可选的,还包括报警器,连接至所述第一控制器,并贴近所述调节阀设置,用于发出警报。

可选的,还包括:第一显示器,连接至所述第一控制器,用于显示所述检测器检测到的流体压力,以及期望的流体压力数值;第二显示器,连接至所述第二控制器,用于显示所述检测器检测到的流体压力。

可选的,还包括:增大控制键,连接至所述第二控制器,用于控制所述调节阀正向转动,以增大所述管路内的流体压力;减小控制键,连接至所述第二控制器,用于控制所述调节阀逆向转动,以减小所述管路内的流体压力;寻位控制键,连接至所述第二控制器,用于控制所述报警器发出警报。

为解决上述问题,以下还提供了一种阀控制方法,用于调节所述阀控制系统中的调节阀,包括以下步骤:通过所述第二控制器发送指令给所述第一控制器,控制所述调节阀调节一预设调节量,使所述管路处于预设导通状况。

可选的,还包括以下步骤:实时检测所述管路内流体的压力,并在所述管路内的流体压力与所述预设导通状况对应的流体压力情况不符时,由所述第一控制器控制所述调节阀转动直至所述管路内流体的压符合所述预设导通状况对应的流体压力情况。

可选的,所述阀控制系统还包括报警器,连接至所述第一控制器,并贴合所述调节阀设置,用于发出警报,通过所述第二控制器发送指令给所述第一控制器,控制所述调节阀调节一预设调节量,使所述管路处于预设导通状态前,还包括以下步骤:通过所述第二控制器向所述第一控制器发送控制信息,控制所述第一控制器连接到的报警器发出警报,提示所述调节阀的位置。

本发明的阀控制系统和阀控制方法可以通过与所述第一控制器分立的第二控制器来实现对所述调节阀进行控制,用户可以无需触碰到所述第一控制器,就能实现对调节阀的调节,适用于所述第一控制器难以触摸的场景,十分简单方便。

附图说明

图1为本发明的一种

具体实施方式

中的阀控制系统的各模块的连接关系示意图。

图2为本发明的一种具体实施方式中的管路上设置调节阀和检测器的结构示意图。

图3为本发明的一种具体实施方式中的第一控制器和第二控制器的连接关系示意图。

图4为本发明的一种具体实施方式中的第二显示器以及各个按键的示意图。

图5为本发明的一种具体实施方式中的第一显示器的示意图。

图6为本发明的一种具体实施方式中的报警器的原理电路图。

具体实施方式

以下结合附图和具体实施方式对本发明提出的一种阀控制系统和阀控制方法作进一步详细说明。

请参阅图1至图2,其中图1为本发明的一种具体实施方式中的阀控制系统的各模块的连接关系示意图,图2为本发明的一种具体实施方式中的管路上设置调节阀和检测器的结构示意图。

在图1至图2所示的具体实施方式中,提供了一种阀控制系统,包括:调节阀101,用于安装至管路201,以控制所述管路201的导通情况;驱动器102,连接至所述调节阀101,用于控制所述调节阀101进行调节,以改变所述管路201的导通情况;检测器103,安装至所述管路201,用于检测所述管路201内流体的压力;第一控制器104,连接所述驱动器102以及所述检测器103,用于控制所述驱动器102;第二控制器105,所述第二控制器105能够与所述第一控制器104进行数据交互,所述第一控制器104能够根据所述第二控制器105的指令进行相应调控。

在该具体实施方式中,所述阀控制系统通过第二控制器105来实现对第一控制器104的控制,从而实现对所述调节阀101进行控制,用户可以无需触碰到所述第一控制器104,适用于所述第一控制器104难以触摸的场景,十分简单方便。

请参阅图3,为本发明的一种具体实施方式中的第一控制器104和第二控制器105的连接关系示意图。在该具体实施方式中,所述第一控制器104和所述第二控制器105之间的连接方式包括无线连接,且所述第一控制器104与第二控制器105进行数据交互时,所述第一控制器104与第二控制器105之间的距离小于一通讯距离。

在其他的具体实施方式中,所述第一控制器104和所述第二控制器105之间也可以采用有线的连接方式,通过线缆来实现所述第一控制器104和所述第二控制器105之间的数据交互。在这种情况下,需要使用线缆,耗费生产成本,并且使用时很受线缆的限制,并没有使用无线连接的方式方便,但是使用有线时安装更加简单。

在一种具体实施方式中,所述第一控制器104可以设置在所述调节阀101近旁,这样用户可以直接在所述调节阀101旁对所述调节阀101进行调控。所述第二控制器105可以设置在一手持终端中,由用户手持。这样,在所述调节阀101设置的位置难以到达,用户难以触碰到时,就可以通过所述第二控制器105实现对所述调节阀101的控制。

在一种具体实施方式中,所述第一控制器104和第二控制器105内均设置有射频信号收发芯片,由所述射频信号收发芯片发射射频信号以及接收射频信号,来实现所述第一控制器104与第二控制器105之间的数据交互,且所述通讯距离由所述射频信号收发芯片确定。

在一种具体实施方式中,所述射频信号收发芯片是ZigBee通信芯片,通过ZigBee通信协议建立两者之间的通信连接。在该具体实施方式中,分别设置在所述第一控制器104和所述第二控制器105的所述射频收发芯片分别构成了所述ZigBee网络中的两个节点。在该具体实施方式中,由于所述ZigBee通信芯片的有效通信距离通常在100m以内,因此所述第二控制器105不能距离所述第一控制器104太远,距离过远,超过100m时,通常会导致所述第二控制器105与第一控制器104之间的连接不稳定,难以在两个控制器之间进行数据的传输。

在一种具体实施方式中,两片所述射频信号收发芯片之间的射频信号的收发是由射频天线301来实现的。在该具体实施方式中,所述射频收发芯片发送时,将电信号通信转换成一定的无线电信号波形,并通过所述射频天线301谐振发送出去。接收时,射频天线301把来自另外一个射频收发芯片的电磁波转为微弱交流电流信号。经滤波、频放大后,进行调制解调,送到该第一控制器104或第二控制器105做进一步的处理。在该具体实施方式中,所述第一控制器104的射频收发芯片主要是将检测器103检测到的流体压力,以及驱动器102的驱动信号传递给所述第二控制器105。

在该具体实施方式中,所述第一控制器104和所述第二控制器105是一对一连接的,每一个调节阀101,对应一个第一控制器104,并对应一个第二控制器105。实际上,也可以根据需要设置多对一的连接方式。这时,多个调节阀101分别连接到多个所述第一控制器104,且所述多个第一控制器104连接到同一个第二控制器105上。在这种情况下,就需要对各个不同的第一控制器104发出的数据进行格式规定,也需要对发送至各个不同的第一控制器104的数据进行格式规定,以便所述第一控制器104以及所述第二控制器105对各种数据的来源进行分辨。

在一种具体实施方式中,所述射频收发芯片采用TI公司的CC2530芯片,里面包含了51单片机的内核与Zigbee技术,而且TI公司提供了很好的Zigbee协议栈以及解决方案,非常适合应用在自动化读表领域。

在一种具体实施方式中,所述检测器103包括流体压力传感器,设置于所述管路201内,与所述第一控制器104连接,用于实时检测所述管路201内流体的压力。

在一种具体实施方式中,所述流体压力传感器选用MIK-P300型传感器,所述MIK-P300型传感器的敏感芯片采用先进的微机械刻蚀加工工艺,在硅片上设置四个具有温度补偿作用的高精度电阻,从而形成惠斯登电桥。由于压阻效应,四个桥臂电阻的阻值发生变化,电桥失衡,敏感元件输出一个对应压力变化的电信号。输出的电信号通过24位AD数字芯片的放大和非线性矫正的补偿,产生与输入压力成线性对应关系的电压、电流信号。

所述MIK-P300型传感器结构小巧、安装方便,可直接安装,也可采用支架安装。且所述MIK-P300型传感器采用充油隔离技术,具有高稳定性、高可靠性,所述MIK-P300型传感器的阻尼结构耐震,抗射频干扰,并且MIK-P300型传感器采用数字电路,精度高。

在一种具体实施方式中,所述MIK-P300型传感器安装在调节阀101旁边提供的测试接口。实际上,其他种类的流体压力传感器也是安装在所述调节阀101旁边的测试接口的。

在一种具体实施方式中,所述流体压力传感器安装在所述调节阀101后50cm至100cm,实际上可以根据需要设置所述流体压力传感器的具体位置。流体在整个管路201中的压力是相同的,因此对所述流体压力传感器设置到的位置要求不高。

在一种具体实施方式中,所述流体压力传感器还连接至一信号调理电路,所述流体压力传感器输出的信号经由所述信号调理电路放大、稳压、滤波,并完成模数转换,变成所述控制器可以识别的数字信号。

在一种具体实施方式中,所述驱动器102包括伺服电机。所述伺服电机可以将电压信号转化为转矩和转速以驱动所述调节阀101进行调节,从而改变所述管路201的导通状况。所述伺服电机转子转速受输入信号控制,并能跟随所述输入信号的变化而快速反应。所述伺服电机能够把所收到的电信号转换成电动机轴上的角位移或角速度输出,当所述伺服电机接收到的电信号为零时,无自转现象,因此在完成对调节阀101的调节后,所述调节阀101处于锁死状态,不会出现松动的情况。

在一种具体实施方式中,所述伺服电机主要靠脉冲来定位,所述伺服电机每接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移。因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,定位精度甚至可以达到0.001mm。

在一种具体实施方式中,所述驱动器102还包括电机驱动模块。所述电机驱动模块连接于所述第一控制器104以及所述伺服电机之间,以驱动所述伺服电机做顺时针或逆时针旋转。在一种具体实施方式中,所述电机驱动模块通过一电机驱动芯片来实现,这样既可以接受来自所述第一控制器104的控制信号,控制所述伺服电机正转或反转,又可以将伺服电机内部检测到的反馈信号传递给所述第一控制器104,形成闭环控制,共同完成对所述调节阀101的控制。

在一种具体实施方式中,所述伺服电机的输出轴焊接至所述调节阀101,所述伺服电机输出的动力可以直接传递给调节阀101,带动所述调节阀101进行调节。在其他的具体实施方式中,也可使用其他的方式将所述伺服电机的输出轴连接至所述调节阀101,如铆接、使用螺钉连接等。

在一种具体实施方式中,所述伺服电机采用编码器工作来计量所述伺服电机的角位移。所述编码器包括光源以及码盘,所述码盘跟随运动物体一起旋转,所述光源将光线投射在码盘上。所述码盘表面设置有亮区和暗区,透过亮区的光经过狭缝后由光敏元件接受,光敏元件的排列与码道一一对应,对于亮区和暗区的光敏元件输出的信号,前者为“1”,后者为“0”,当码盘旋转在不同位置时,光敏元件输出信号的组合反映出一定规律的数字量,代表了码盘轴的角位移。

在一种具体实施方式中,还包括报警器106,连接至所述第一控制器104,并贴近所述调节阀101设置,用于发出警报。

在一种具体实施方式中,所述报警器106包括蜂鸣器以及LED灯。请看图6,在该图所示的具体实施方式中,所述报警器106包括红色LED灯以及绿色LED灯,还有蜂鸣器。在该具体实施方式中,包括三个接口,均连接到所述第一控制器104,由所述第一控制器104控制提供给所述三个接口的电压,以分别所述红色LED灯、绿色LED灯以及蜂鸣器的通断。

在该图中,包括P1.1、P1.2以及P1.3三个接口,当所述报警器106没有被启动时,由所述第一控制器104给P1.0接口、P1.2接口提供低电平,使所述绿色LED灯点亮,所述三极管Q1截止,所述蜂鸣器不导通。当所述报警器106被启动时,所述第一控制器104给P1.1引脚提供低电平,并给P1.2接口提供高电平,使得所述红色LED灯点亮,所述三极管Q1导通,所述蜂鸣器发出声响。

这样,所述报警器106可以在被启动时控制红色LED灯亮,所述蜂鸣器鸣叫。由于所述报警器106贴近所述调节阀101设置,因此用户可以通过确定所述报警器106的位置,来确定所述调节阀101的位置。

在一种具体实施方式中,所述报警器106与所述调节阀101的距离不超过20cm。实际上,可以根据需要设置所述报警器106与所述调节阀101之间的距离。

在一种具体实施方式中,还包括:第一显示器107,连接至所述第一控制器104,用于显示所述检测器103检测到的流体压力,以及期望的流体压力数值;第二显示器108,连接至所述第二控制器105,用于显示所述检测器103检测到的流体压力。

此处可以参阅图4以及图5,可以看出,所述第一显示器107以及所述第二显示器108都具有能够显示所述检测器103检测到的流体压力的第一显示框401,以及用于显示流体压力的允许范围的第二显示框402。

在图4所示的具体实施方式中,还包括:增大控制键404,连接至所述第二控制器105,用于控制所述调节阀101正向转动,以增大所述管路201内的流体压力;减小控制键403,连接至所述第二控制器105,用于控制所述调节阀101逆向转动,以减小所述管路201内的流体压力;寻位控制键405,连接至所述第二控制器105,用于控制所述报警器106发出警报。

在一种具体实施方式中,所述报警器106可以通过所述寻位控制键405来控制,在所述寻位控制键405被按下时,所述报警器106启动。在一种其他的具体实施方式中,所述报警器106也可以在所述检测器103检测到所述管路201中流体压力超出预设值后启动。在这种情况下,控制指令来自第一控制器104。这便于工作人员及时发现所述流体压力的异常。在该具体实施方式中,所述第一控制器104输出对应的高低电平来驱动所述报警器106工作,工作电压在5V±1V。

在图4所示的具体实施方式中,所述增大控制键404、减小控制键403和寻位控制键405与所述第二显示器108都设置在同一壳体表面。在该具体实施方式中,所述第二控制器以及显示器和所述增大控制键404、减小控制键403和寻位控制键405集成为一体的手持终端操作器。在一种其他的具体实施方式中,所述第一控制器104表面也设置有所述增大控制键404、减小控制键403和寻位控制键405,以便用户直接通过所述第一控制器104实现对所述驱动器102的控制。

在该具体实施方式中,还提供了一种阀控制方法,用于调节所述阀控制系统中的调节阀101,包括以下步骤:通过所述第二控制器105发送指令给所述第一控制器104,控制所述调节阀101调节一预设调节量,使所述管路201处于预设导通状况。

在该具体实施方式中,所述阀控制方法通过与所述第一控制器104分立的第二控制器105来实现对所述调节阀101进行控制,用户可以无需触碰到所述第一控制器104,就能实现对调节阀101的调节,适用于所述第一控制器104难以触摸的场景,十分简单方便。

在一种具体实施方式中,还包括以下步骤:实时检测所述管路201内流体的压力,并在所述管路201内的流体压力与所述预设导通状况对应的流体压力情况不符时,由所述第一控制器104控制所述调节阀101转动直至所述管路201内流体的压力符合所述预设导通状况对应的流体压力情况。

在这种情况下,可根据实时检测到的所述管路201内流体的压力来调控所述调节阀101,以实时调节所述调节阀101,保证所述管路201内的流体压力始终处于某一范围内。

在一种具体实施方式中,只要实时检测到的所述管路201内流体的压力与预设的管路201内的流体压力相差20%以上,所述第一控制器104就开始对所述调节阀101控制,以调节所述管路201内的流体压力。

具体的,所述第一控制器104已知所述调节阀101正转和反转对应的流量变化,如所述调节阀101正转会导致流量增大,反转会导致流量减小,所述第一控制器104在接收到实时检测到的所述管路201内流体的压力时,就与预设的所述管路201内流体的压力进行比较,若实时检测到的所述管路201内流体的压力较大,大于预设的所述管路201内流体的压力20%,则所述第一控制器104控制所述调节阀101反转,以减小所述管路201内的流体压力,使趋向预设的所述管路201内流体的压力。当实时检测到的所述管路压力在预设压力正负5%的范围内时,所述第一控制器104停止调节所述调节阀101。且所述控制器重新进行实时检测阶段。若实时检测到的所述管路201内流体的压力较小,小于预设的所述管路201内流体的压力20%,则所述第一控制器104控制所述调节阀101正转,以增大所述管路201内的流体压力,使趋向预设的所述管路201内流体的压力。

在一种具体实施方式中,通过所述第二控制器105发送指令给所述第一控制器104,控制所述调节阀101调节一预设调节量,使所述管路201处于第一导通状况前,还包括以下步骤:将所述第二控制器105放置到所述第一控制器104与第二控制器105的通讯距离内。这是因为,所述第二控制器105和第一控制器104无论是通过有线连接,还是通过无线连接,都具有通讯距离。超过所述通讯距离,所述第一控制器104和所述第二控制器105甚至无法连通。这样,在使用所述第二控制器105向所述第一控制器发送控制指令时,需要先获知所述通讯距离,以保证所述第二控制器105与第一控制器104之间的良好数据交互。

在一种具体实施方式中,所述阀控制方法还包括报警器106,连接至所述第一控制器104,并贴合所述调节阀101设置,用于发出警报,通过所述第二控制器105发送指令给所述第一控制器104,控制所述调节阀101调节一预设调节量,使所述管路201处于第一导通状况前,还包括以下步骤:通过所述第二控制器105向所述第一控制器104发送控制信息,控制所述第一控制器104连接到的报警器106发出警报,提示所述调节阀101的位置。

在该具体实施方式中,能够帮助用户快速实现所述调节阀101的定位,以帮助用户更快的找到所述调节阀101,以便用户能够更好的对所述调节阀101进行调控。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种螺栓拧紧方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!