大面积MoSi超导微米线单光子探测器的激光直写制备方法

文档序号:155267 发布日期:2021-10-26 浏览:50次 >En<

阅读说明:本技术 大面积MoSi超导微米线单光子探测器的激光直写制备方法 (Laser direct-writing preparation method of large-area MoSi superconducting micron line single photon detector ) 是由 贾小氢 杨舒超 鲍涵 徐韬 秦志 涂学凑 张蜡宝 赵清源 康琳 陈健 吴培亨 于 2021-06-17 设计创作,主要内容包括:本发明公开了一种大面积MoSi超导微米线单光子探测器的激光直写制备方法,将Si基片分别用丙酮、酒精和去离子水超声清洗;将清洗后的基片送入磁控溅射系统副室进行氩离子清洗;将离子铣后的基片送入主室,通过直流磁控溅射生长MoSi薄膜;在真空室中原位射频磁控溅射生长Nb-(5)N-(6)薄膜;绘制掩模版图形,并采用图形补偿的方法增加微米线拐角处的曝光面积;在样品表面旋涂S1805光刻胶,用激光直写光刻机进行光刻,然后放入正胶显影液显影30s,放入去离子水中定影1min,在光刻胶上形成微米线图案;用反应离子刻蚀的方式对做完激光直写的样品进行刻蚀,刻蚀后用丙酮超声1min除去残胶,从而形成微米线。本发明提高了大面积超导微米线单光子探测器的制备效率。(The invention discloses a laser direct writing preparation method of a large-area MoSi superconducting micron line single photon detector, which comprises the following steps of ultrasonically cleaning a Si substrate by acetone, alcohol and deionized water respectively; conveying the cleaned substrate into a secondary chamber of a magnetron sputtering system for argon ion cleaning; sending the substrate subjected to ion milling into a main chamber, and growing a MoSi film through direct-current magnetron sputtering; in-situ radio frequency magnetron sputtering growth of Nb in vacuum chamber 5 N 6 A film; drawing a mask plate graph, and increasing the exposure area at the corner of the micrometer line by adopting a graph compensation method; spin coating S1805 light on the surface of the sampleEtching photoresist, performing photoetching by using a laser direct writing photoetching machine, then placing into an orthofilm developing solution for developing for 30s, placing into deionized water for fixing for 1min, and forming a micron line pattern on the photoresist; and etching the sample subjected to laser direct writing in a reactive ion etching mode, and removing residual glue by using acetone ultrasonic for 1min after etching to form the micron line. The invention improves the preparation efficiency of the large-area superconducting micron-line single photon detector.)

大面积MoSi超导微米线单光子探测器的激光直写制备方法

技术领域

本发明属于红外单光子光探测领域,具体涉及一种大面积MoSi超导微米线单光子探测器的激光直写制备方法。

背景技术

单光子探测技术是量子信息和量子通信研究中的关键技术,是实现对单量子态进行操控、处理和研究的技术前提。超导单光子探测器对于空间通信、激光雷达、量子密钥分发等应用是一种理想的探测器。对于单光子探测器在空间上的应用来说,器件的探测面积尤为关键。普遍的观点认为随着探测光敏区面积的增加器件的灵敏度是降低的,但最近提出的微米线的单光子响应的理论模型和实验结果与先前的理解相矛盾,根据Vodolazov提出的理论,微米线的本征探测效率与微米线的宽度无关。前人研究已经验证了MoSi薄膜上线宽0.5μm-5μm的微桥饱和的探测效率。这为制备大面积微米线器件提供了理论基础。超导纳米线单光子探测器(SNSPD)常用电子束曝光来制备,电子束曝光可以制备出高精度的纳米线,但缺点是曝光时间长。用电子束曝光来制备探测区域为毫米量级的微米线器件的时间成本会大大增加,据估算大面积超导微米线单光子探测器(SMSPD)光敏区的曝光时间是传统SNSPD(面积约15μm×15μm)的30倍以上。曝光时间太长会影响电子束能量的稳定,从而影响到微米线的制备质量,并且制备成本也会响应增加。

发明内容

本发明的目的在于提出一种大面积MoSi超导微米线单光子探测器的激光直写制备方法。

实现本发明目的的技术解决方案为:一种大面积MoSi超导微米线单光子探测器的激光直写制备方法,包括如下步骤:

步骤1,将Si基片分别用丙酮、酒精和去离子水超声清洗3-5分钟,并在光学显微镜下观察其表面洁净度,无明显颗粒杂物,备用;

步骤2,将备用的基片送入磁控溅射系统副室,进行氩离子清洗,清除基片表面分子级别的杂质,并让薄膜与衬底更易结合;

步骤3,将离子铣后的基片送入主室,通过直流磁控溅射生长MoSi薄膜;

步骤4,MoSi薄膜生长完毕后,在真空室中原位射频磁控溅射生长Nb5N6薄膜;

步骤5,绘制大面积掩模版图形,并采用图形补偿的方法来补偿微米线拐角处的曝光不足;

步骤6,从磁控系统腔室取出样品,在样品表面旋涂S1805光刻胶,用激光直写光刻机进行光刻,,根据空间位置分布的不同设置曝光剂量70-75,然后放入正胶显影液显影30s,放入去离子水中定影1min,在光刻胶上形成微米线图案;

步骤7,用反应离子刻蚀的方式对做完激光直写的样品进行刻蚀,刻蚀后用丙酮超声1min除去残胶,从而形成微米线。

进一步的,步骤2中,进行氩离子清洗的条件如表1所示;

表1离子清洗条件

气体种类 气体流量 工作气压 离子束流 清洗时间
Ar 3sccm 4.2×10<sup>-2</sup>Pa 30mA 2min

进一步的,步骤3中,直流磁控溅射参数如表2所示;

表2直流溅射生长MoSi薄膜条件

背景真空度 优于2×10<sup>-5</sup>Pa
气体 Ar(99.999%)
靶材 Mo<sub>0.8</sub>Si<sub>0.2</sub>(纯度为99.99%)
溅射气压 1.5mTorr
Ar流量 22sccm
溅射电流 0.5A恒流直流溅射
沉积速率 60nm/min

进一步的,步骤4中,原位射频磁控溅射参数如表3所示;

表3射频溅射生长Nb5N6薄膜条件

进一步的,步骤6中,对曝光剂量在空间上的分布做出了修正,使得激光直写的曝光剂量在空间上分布均匀,修正后的剂量分布如表4所示。

表4修正后的曝光剂量阵列

75 70 75
75 70 75
75 70 75

进一步的,步骤6中,使用激光直写光刻机的型号是Microwriter ML3旗舰型,激光直写条件如表5所示;

表5激光直写光刻条件

进一步的,步骤7中,使用的刻蚀机型号是Samco RIE-10,刻蚀的具体参数如表6所示;

表6反应离子刻蚀条件

刻蚀材料 反应气体 流量/sccm 压强/Pa 功率/W 时间/s
MoSi CF<sub>4</sub> 30 2.0 50 75

本发明与现有技术相比,其显著优点为:通过本套工艺流程提高了大面积超导单光子微米线探测器的制备效率,在保证制备质量的前提下,制备相同面积的微米线图案,激光直写(1min)的制备效率大约是电子束曝光(90min)的90倍,并将光敏区的面积提高到1mm×1mm。

附图说明

图1是5nm厚MoSi薄膜的电阻-温度曲线图。

图2是器件的掩模图案,其中插图为探测区域补偿后的微米线掩模图。

图3是在光学显微镜下激光直写制备出1mm×1mm光敏区的器件图,其中上下两张插图分别是补偿后和补偿前的刻蚀出微米线的对比。

图4是用激光直写制备出的膜厚5nm,线宽1μm,光敏区600μm×600μm的MoSi大面积器件在1.7K下的电流-电压特性曲线图。

图5是图4器件在1.7K温度下测到的响应脉冲图。

图6是图4器件在1.7K下测到的暗计数和计数图。

具体实施方式

为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。

本发明提出一种大面积MoSi超导微米线单光子探测器的激光直写制备方法,步骤如下:

步骤1,将Si基片分别用丙酮、酒精和去离子水超声清洗基片3-5分钟,并在光学显微镜下观察其表面洁净度,无明显颗粒杂物,备用。

步骤2,将备用的基片送入磁控溅射系统副室,进行氩离子清洗,其目的是清除基片表面分子级别的杂质,并让薄膜与衬底更易结合,条件如表1所示。

表1离子清洗条件

气体种类 气体流量 工作气压 离子束流 清洗时间
Ar 3sccm 4.2×10<sup>-2</sup>Pa 30mA 2min

步骤3,将离子铣后的基片送入主室,通过直流磁控溅射生长MoSi薄膜,溅射参数如表2所示。

表2直流溅射生长MoSi薄膜条件

背景真空度 优于2×10<sup>-5</sup>Pa
气体 Ar(99.999%)
靶材 Mo<sub>0.8</sub>Si<sub>0.2</sub>(纯度为99.99%)
溅射气压 1.5mTorr
Ar流量 22sccm
溅射电流 0.5A恒流直流溅射
沉积速率 60nm/min

步骤4,薄膜生长完毕后,在真空室中原位射频磁控溅射生长Nb5N6薄膜,溅射参数如表3所示,然后测量其R-T曲线,筛选出Tc较高的薄膜以提高器件的成品率。

表3射频溅射生长Nb5N6薄膜条件

背景真空度 优于2×10<sup>-5</sup>Pa
气体 Ar(99.999%),N<sub>2</sub>(99.999%)
靶材 Nb(纯度为99.999%)
溅射气压 20mTorr
N2:Ar流量比 120sccm:30sccm
溅射功率 400W恒功率射频溅射
沉积速率 20nm/min

步骤5,在光刻之前要绘制掩模版图形,在这里先后设计了线宽1μm,间距2μm,探测面积为600μm×600μm和1mm×1mm的大面积器件。由于所制备的微米线区域属于高密度光栅,其微米线拐角处会存在曝光不足的现象,从而导致局部微米线短路,如图3插图所示。这里采用图形补偿的方法来解决,即增加微米线拐角处的曝光面积,来抵消曝光不足,从而增加曝光的稳定性。其中探测面积为600μm×600μm的器件补偿后的掩膜图形如图2插图所示,其曝光后对应的微米线图案在显微镜下如图3所示。

步骤6,从磁控系统腔室取出样品,然后在样品表面旋涂S1805光刻胶,然后用激光直写光刻机进行光刻,放入正胶显影液显影30s,然后放入去离子水中定影1min,在光刻胶上形成微米线图案。通过大量的实验还发现,激光直写的曝光剂量随空间的分布不均,这可能是因为曝光的高密度精细光栅(1μm)接近于激光直写的曝光极限所导致的。例如在一片面积20mm×20mm覆盖有MoSi薄膜的Si片上曝光一组3×3阵列的器件,可以明显的发现两边的曝光强度要小于中间的曝光强度,所以对曝光剂量在空间上的分布做出了修正,设置两侧器件的曝光剂量略大于中心区域,例如上述的3×3阵列修正后的剂量分布如表4所示。

表4修正后的曝光剂量阵列

75 70 75
75 70 75
75 70 75

使用激光直写光刻机的型号是Microwriter ML3旗舰型,激光直写条件如表5所示。

表5激光直写光刻条件

步骤7,用反应离子刻蚀的方式对做完激光直写的样品进行刻蚀,在这里为了使线条刻蚀均匀,刻蚀75s(过刻10左右)。刻蚀后用丙酮超声1min除去残胶,从而形成微米线。刻蚀后的器件线宽1μm,间距2μm。使用的刻蚀机型号是Samco RIE-10,刻蚀气体为CF4,刻蚀的具体参数如表6所示。

表6反应离子刻蚀条件

刻蚀材料 反应气体 流量/sccm 压强/Pa 功率/W 时间/s
MoSi CF<sub>4</sub> 30 2.0 50 75

实施例

为了验证本发明方案的有效性,进行如下实验设计,实验步骤如下:

(A)溅射

在实验室DE500磁控溅射系统上,用直流磁控反应溅射的方法在高阻Si(100)基片上生长MoSi薄膜,基片分别经过丙酮、酒精、去离子水各5分钟的超声清洗后,通过送样室送入副室,在副室中通过离子铣进行去污处理,然后通过推送杆将基片送入主室,在背景真空优于2.0×10-5Pa的时候,开始用直流源溅射MoSi薄膜,通过气体流量计调节Ar=100%,通过控制主室闸板阀使得溅射气压为1.5mtorr,0.5A恒流直流溅射5nm MoSi薄膜于Si(100)基片上。接下来原位磁控溅射Nb5N6薄膜作为抗氧化层,通过气体流量计调节N2:Ar=4∶1,通过控制主室闸板阀使得溅射气压为20mtorr,将射频源的射频功率定为400W,溅射10nm的Nb5N6薄膜于MoSi薄膜上,整个溅射过程中,底盘通过循环水水冷(T~300K),薄膜溅射完毕后,再次在主室中充入一定量的氮气(30-40sccm)使其充分氮化。然后在在飞斯科闭循环制冷机下测试了5nm MoSi的R-T特性,其薄膜的Tc如图1所示。

(B)匀胶

设置匀胶机参数,前转600r/min,后转4000r/min,前转时间6s,后转时间60s,旋涂500nm的S1805光刻胶。并用115℃烘2min。

(C)光刻绘图

采用英国Durham Magneto Optics研制的小型台式无掩模光刻系统,MicrowriterML3来绘制微米线图案。激光直写采用385nm的LED光源;直写的分辨率为0.6μm,1μm,2μm,5μm;对应的直写的速率分别为25mm2/min,50mm2/min,100mm2/min,180mm2/min。微米线区域和电极区域分别采用0.6μm,2μm的镜头。绘制微米线前首先对焦0.6μm和2μm的镜头,其中0.6μm的镜头用来曝光光敏区域,2μm镜头用来曝光电极部分;然后导入gds格式文件如图2;接着设置曝光剂量70-75,并选择高质量(high)模式和正常(normal)模式分别来曝光微米线和电极部分,由于所曝光的图案属于高密度光栅,在制备的高占空比器件中,微米线拐角处会出现曝光不足的现象,所以采用图形补偿来做优化,补偿前后的对比如图3插图。光刻后在MF-319中显影30s,去离子水中定影60s,最后用N2气枪吹干等待刻蚀。

(D)刻蚀

通过反应离子刻蚀的方法将未被覆盖光刻胶的MoSi薄膜刻蚀掉。使用的反应离子刻蚀机型号Samco RIE-10,通入CF4气体,流量分别为30sccm,在功率50W,工作压强2.0Pa的条件下,刻蚀75s,最后将刻蚀好的器件放入丙酮烧杯中用40W的功率超声1min去除残胶。

(E)器件性能表征

在光学显微镜下观察所制备的微米线,其具有很高的均匀性如图3,插图是对应区域的放大。接着在飞斯科1.7K闭循环制冷机的低温系统下,用1550nm波长的光源对制备的大面积超导微米线单光子探测器进行了表征。制备的探测面积600mm×600mm,线宽为1μm的SMSPD器件的I-V特性如图4,其超超导临界电流Ic在1.7K温度下达55μA,超导临界电流密度jc=1.1MA/cm2。器件的响应脉冲如图5,其脉冲幅值最高可达480mV,强光下的计数率和暗计数曲线如图6。

综上所述,本发明用激光直写来改善大面积超导微米线单光子探测器的制备工艺。激光直写分辨率的极限可达0.6μm,经过图形补偿和剂量随空间的优化可以满足高密度微米线光栅的制备要求。并且大面积器件曝光的光敏区域面积量级(约1mm×1mm)基本不会影响激光直写曝光的时间。通过器件的表征,证明了用激光直写制备出的大面积MoSi超导微米线单光子探测器具有良好的光子相应。对于大面积超导微米线单光子器件来说,在保证器件性能高质量的前提下,相比于电子束曝光,激光直写无论在制备的效率和成本上都优于电子束曝光。

以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种提升N型硅片硼扩散方阻均匀性的工艺

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类