高电子移动率晶体管及其制造方法

文档序号:1600470 发布日期:2020-01-07 浏览:7次 >En<

阅读说明:本技术 高电子移动率晶体管及其制造方法 (High electron mobility transistor and method for manufacturing the same ) 是由 杜尚儒 刘家呈 张宗正 杨亚谕 沈豫俊 綦振瀛 于 2019-06-27 设计创作,主要内容包括:本发明公开一种高电子移动率晶体管及其制造方法,其中该高电子移动率晶体管包含一基板;一通道层,形成于基板上;一阻障层,形成于通道层上,其中一二维电子气形成在通道层的邻近阻障层的一侧;一源极电极及一漏极电极,形成于阻障层上;一耗尽层,形成于阻障层上,且位于源极电极与漏极电极之间,耗尽层的材料包含氮化硼或氧化锌;以及一栅极电极,形成于耗尽层上。(The invention discloses a high electron mobility transistor and a manufacturing method thereof, wherein the high electron mobility transistor comprises a substrate; a channel layer formed on the substrate; a barrier layer formed on the channel layer, wherein a two-dimensional electron gas is formed on one side of the channel layer adjacent to the barrier layer; a source electrode and a drain electrode formed on the barrier layer; a depletion layer formed on the barrier layer and between the source electrode and the drain electrode, the depletion layer being made of boron nitride or zinc oxide; and a gate electrode formed on the depletion layer.)

高电子移动率晶体管及其制造方法

技术领域

本发明涉及晶体管,特别是涉及一种高电子移动率晶体管及其制造方法。

背景技术

近几年来,由于高频及高功率产品的需求与日俱增,以氮化镓为材料的半导体功率元件,例如包含氮化铝镓/氮化镓(AlGaN/GaN)的高电子移动率晶体管(High ElectronMobility Transistor,HEMT)装置,因具高速电子迁移率、可达到非常快速的切换速度、可于高频、高功率及高温工作环境下操作的元件特性,故广泛应用在电源供应器(powersupply)、DC/DC整流器(DC/DC converter)、DC/AC换流器(AC/DC inverter)以及工业运用,其领域包含电子产品、不断电系统、汽车、马达、风力发电等。

然而,一般的HEMT装置通常是常开型元件。因此,需要提供额外的负偏压,HEMT装置才会处于关闭的状态,此原因让HEMT装置的应用受到限制。

发明内容

本发明的一实施例是关于高电子移动率晶体管,其包含一基板;一通道层,形成于基板上;一阻障层,形成于通道层上,其中,一二维电子气形成在通道层的邻近阻障层的一侧;一源极电极及一漏极电极,形成于阻障层上;一耗尽层,形成于阻障层上,且位于源极电极与漏极电极之间,耗尽层的材料包含氮化硼或氧化锌;以及一栅极电极,形成于耗尽层上。

本发明另一实施例是关于高电子移动率晶体管结构的制造方法,其包含提供一基板;形成一通道层于基板上;形成一阻障层于通道层上;形成一耗尽层于阻障层上,其中,耗尽层的材料包含氮化硼或氧化锌;形成一栅极电极于耗尽层上;以及形成一源极电极及一漏极电极于阻障层上,且位于栅极电极的相对两侧。

附图说明

图1A~图1D为本发明的一实施例所形成的高电子移动率晶体管于各制作工艺阶段的剖面示意图;

图2为本发明的一实施例所形成的高电子移动率晶体管的能带与位置的关系图;

图3为图2的区域A的放大图;

图4为本发明的一实施例所形成的高电子移动率晶体管的空穴浓度与位置的关系图;

图5为本发明的另一实施例所形成的高电子移动率晶体管的剖面示意图。

符号说明

100A 高电子移动率晶体管

100B 高电子移动率晶体管

110 基板

120 缓冲层

130 通道层

140 阻障层

142 凹陷

150 二维电子气

160 耗尽层

170 栅极电极

180 源极电极

190 漏极电极

210 导带

220 价带

A 区域

B 区域

C 区域

具体实施方式

以下针对本发明的实施例作详细说明。应了解的是,以下所述特定的元件及排列方式仅为简单清楚描述本发明的实施例。当然,这些仅用以举例而非本发明的限定。此外,在不同实施例中可能使用相同的标号或标示,其表示具有相同或是类似的结构、功能、原理的元件,且为业界具有一般知识能力者可以依据本发明的教导而推知。再者,当述及一第一材料层位于一第二材料层上或之上时,包括第一材料层与第二材料层直接接触的情形。或者,也可能间隔有一或更多其它材料层的情形,在此情形中,第一材料层与第二材料层之间可能不直接接触。

此外,实施例中可能使用相对性的用语,例如「下」、「上」、「之下」、「之上」、「较低」或「底部」及「较高」或「顶部」,以描述附图的一个元件对于另一元件的相对关系。能理解的是,如果将附图的装置翻转使其上下颠倒,则所叙述在「下」、「之下」、「较低」侧的元件将会成为在「上」、「之上」、「较高」侧的元件。而关于接合、连接的用语例如「连接」、「互连」等,除非特别定义,否则可指两个结构是直接接触,或非直接接触,亦即其中有其它结构设于此两个结构之间。

在此,「约」、「大约」、「大抵」的用语通常表示在一给定值或范围的20%之内,较佳是10%之内,且更佳是5%之内,或3%之内,或2%之内,或1%之内,或0.5%之内。在此给定的数量为大约的数量,亦即在没有特定说明「约」、「大约」、「大抵」的情况下,仍可隐含「约」、「大约」、「大抵」的含义。

实施例可能使用「第一」、「第二」、「第三」等用语来叙述各种元件、组成成分、区域、层、及/或部分,但不应被这些用语限定,这些用语仅用来区别不同的元件、组成成分、区域、层、及/或部分。因此,以下讨论的一第一元件、组成成分、区域、层、及/或部分可在不偏离本发明的实施例的教示下被称为一第二元件、组成成分、区域、层、及/或部分。

除非另外定义,在此使用的全部用语(包括技术及科学用语)具有与此篇揭露所属的一般技艺者所通常理解的相同涵义。能理解的是,这些用语,例如在通常使用的字典中定义的用语,应被解读成具有与相关技术及本发明的背景或上下文一致的意思,而不应以一理想化或过度正式的方式解读,除非在本发明实施例有特别定义。

本发明的实施例可配合附图一并理解,附图亦被视为本发明的实施例说明的一部分。需了解的是附图并未以实际装置及元件的比例绘示。在附图中可能夸大实施例的形状与厚度以便清楚表现出本发明的实施例的特征。此外,附图中的结构及装置系以示意的方式绘示,以便清楚表现出本发明实施例的特征。

参阅图1A~图1D,图1A~图1D为根据本发明的一实施例所形成的高电子移动率晶体管100A于各制作工艺阶段的剖面示意图。如图1A所示,提供基板110。基板110的材料可包含半导体材料或是非半导体材料,其中,半导体材料包含硅(Si)、氮化镓(GaN)、碳化硅(SiC)、砷化镓(GaAs),而非半导体材料包含蓝宝石(sapphire)。另外,当以导电性来区分时,基板110可为导电基板或者是绝缘基板,其中,导电基板包含硅(Si)基板、碳化硅(SiC)基板、氮化镓(GaN)基板、砷化镓(GaAs)基板等,而绝缘基板包含蓝宝石(sapphire)基板、氮化铝(AlN)基板、绝缘层上覆半导体(semiconductor-on-insulator,SOI)基板等。在本实施例中,基板110为硅基板。在一实施例中,基板110可以是晶片,例如为硅晶片,在硅晶片上完成高电子移动率晶体管100A各阶段制作工艺后再切割为多个高电子移动率晶体管100A。

接着,如图1B所示,在基板110上依序形成一缓冲层120、一通道层130及一阻障层140。缓冲层120用以减少基板110与后续形成的通道层130因彼此热膨胀系数不同所产生的应力(strain)或减少因彼此晶格常数不匹配(lattice mismatch)所产生的晶格缺陷(defects)。缓冲层120的厚度介于约0.1μm至约10μm间,且可为单一材料所构成的单层或由不同材料层所构成的复合层。缓冲层120的材料选自氮化镓(GaN)、氮化铝(AlN)、氮化铝镓(AlGaN)、氮化铝铟(AlInN)、及氮化铝铟镓(AlInGaN)所组成的群组的材料。举例来说,缓冲层120可为由氮化铝镓(AlGaN)层与氮化镓(GaN)层交互堆叠所构成的复合层。此外,缓冲层120可掺杂如碳的其他元素,其中,碳掺杂的浓度可依成长方向渐变或固定。缓冲层120靠近基板110侧可进一步包含由单一层或是复合层构成的成核层(图未示),举例来说,成核层可由AlN构成单一层,其厚度约50nm~500nm,或是可由一低温外延成长的AlN子层(厚度约40nm)及一高温外延成长的AlN子层(厚度约150nm)交互堆叠构成的复合层。

通道层130形成在缓冲层120上。通道层130由周期表上第III-V族的元素所形成的化合物所构成并具有第一能隙,且其厚度介于约50nm至约10μm间。在本实施例中,通道层130包含氮化铟镓(InxGa(1-x)N,0≤x<1),层。如图1B所示,阻障层140形成在通道层130上方。阻障层140的厚度介于约10nm至约50nm。阻障层140是由周期表上第III-V族的元素所形成的化合物所构成并具有第二能隙。在本实施例中,阻障层140包含氮化铝铟镓层(AlyInzGa(1-z)N,0<y<1,0≤z<1)。

如图1B所示,在通道层130及阻障层140之间构成一异质结(heterojunction),由于通道层130及阻障层140自身形成自发性极化(spontaneous polarization),以及因其不同的晶格常数产生压电极化(piezoelectric polarization),因此在通道层130内靠近异质结处会因上述极化现象造成能带弯曲而产生二维电子气150(以虚线表示于图1B中)。二维电子气150的浓度会和阻障层140的厚度有关,当阻障层140的厚度越大,二维电子气150的电子浓度越高。此外,阻障层140的铝含量也会影响二维电子气150的浓度,当阻障层140的铝含量越大(亦即,阻障层140的压电极性愈强),会使得通道层130与阻障层140之间产生的压电场越强,而使得二维电子气150的电子浓度越高。

缓冲层120、通道层130及阻障层140可通过化学气相沉积法(chemical vapordeposition,CVD)、有机金属化学气相沉积法(metal organic chemical vapordeposition,MOCVD)、分子束外延法(molecular-beam epitaxy,MBE)、物理气相沉积法(physical vapor deposition,PVD)、原子层沉积法(atomic layer deposition,ALD)、涂布、溅镀或其他适合的沉积制作工艺形成。

接着,如图1C所示,在阻障层140上形成耗尽层(depletion layer)160。耗尽层160对于阻障层140来说具有反极化的效果,因此能降低或空乏(depleting)其正下方通道层130内的二维电子气150的电子浓度。如此,之后形成的高电子移动率晶体管100A在未施加偏压时将处于未导通的状态,故高电子移动率晶体管100A又被称为常关型高电子移动率晶体管(normally–off HEMT)。耗尽层160的厚度介于约50nm至约100nm之间。在一实施例,耗尽层160的材料包括单晶的III-V族化合物层的半导体材料,例如六方晶系氮化硼(hexagonal–BN,hBN)。在另一实施例中,耗尽层160的材料包括单晶的II-VI化合物层的半导体材料,例如六方晶系氧化锌(ZnO)。当耗尽层160的材料选用六方晶系氧化锌时,ZnO与阻障层140之AlGaN材料在蚀刻制作工艺中可以达到较高的蚀刻选择比,因此当对ZnO进行蚀刻以形成图案化耗尽层160时,可精确停止于阻障层140层,避免造成过蚀。

此外,耗尽层160可通过杂质掺杂(doping),再经由活化程序后,杂质会取代耗尽层160的结晶内的一部分的原子(例如取代氮化硼中的硼或氧化锌中的氧),由此产生空穴,使得耗尽层160成为p型耗尽层。在上述六方晶系氮化硼中,掺杂的杂质包含至少一种材料选自于由镁(Mg)、铍(Be)、锌(Zn)、和镉(Cd)所组成的群组;而于上述六方晶系氧化锌中,掺杂的杂质包含氮(N)或磷(P),其中,N或P元素相较于Mg元素较为稳定,在后续制作工艺中,不易因高温环境而扩散至耗尽层160底下的其他层别进而影响元件特性。然而,根据耗尽层160的材料选择的不同,杂质在活化制作工艺中所需的能量(亦即活化能)也不同,进而影响到耗尽层160内空穴的浓度。若耗尽层160的材料选自氮化铝镓系列(AlxGa(1-x)N,0≤x≤1)且使用镁作为杂质时,则活化镁所需的活化能会随着铝含量的增加而从170meV增加至530meV。当活化杂质所需的活化能越高,表示耗尽层160内杂质越难被活化,造成在一定的活化条件下,耗尽层160内的空穴浓度也会随之降低,进而影响耗尽层160对二维电子气150的空乏能力。

在一实施例中,耗尽层160的材料选用六方晶系氮化硼时,可将杂质,例如镁,掺入耗尽层160后,并在温度介于600℃~800℃的环境下,活化耗尽层160内的镁杂质,此时,活化镁所需的活化能仅为31meV。由于活化能的降低,使得耗尽层160内产生的空穴浓度提升。由此,将其下方的阻障层140能带提升至高于费米能级,以降低其正下方的二维电子气150的电子浓度,或使其正下方的二维电子气150消失(depleted)。在一实施例,镁杂质的掺杂浓度介于1×1019atoms/cm3至1×1021atoms/cm3间。

接下来,如图1D所示,先于阻障层140上形成源极电极180及漏极电极190,通过退火制作工艺以使源极电极180与漏极电极190和阻障层140之间形成欧姆接触(Ohmiccontact),接着,在耗尽层160形成栅极电极170上,以形成高电子移动率晶体管100A。栅极电极170的材料可包含一或多层导体材料,如多晶硅、铝、铜、钛、钽、钨、钴、钼、氮化钽、镍硅化物(nickel silicide)、钴硅化物(cobalt silicide)、氮化钛、氮化钨、TiAl、TiAlN、TaCN、TaC、TaSiN、金属合金或其他适合的材料。源极电极180与漏极电极190包含一种或一种以上的导电材料,例如选自于由钛、铝、镍与金所组成的群组的金属。栅极电极170、源极电极180与漏极电极190可通过物理气相沉积法、化学气相沉积法、原子层沉积法(atomiclayer deposition,ALD、涂布、溅镀或其他适合的技术形成。

在另一实施例中,还可以于阻障层140的上表面及源极电极180与漏极电极190之间形成一介电层(dielectric layer)以覆盖耗尽层160,由此,进一步降低元件表面漏电流发生,提升元件可靠度。介电层的材料可包括氧化物或者氮化物,例如是氧化硅或氧化铝等氧化物,也可以是氮化硅等氮化物。参考图1D,因耗尽层160的反极化能力,使得其正下方的二维电子气150的电子浓度降低或消失,故在未对栅极电极170施加偏压的状态下,高电子移动率晶体管100A处于未导通的状态。若要导通高电子移动率晶体管100A,则需施加大于临界电压(threshold voltage,Vth)的偏压。

参阅图2及图3,图2为根据本发明的一实施例所形成的高电子移动率晶体管100A的导带210与价带220的能级与位置的关系图,图3则为图2的区域A的放大图。在本实施例中,缓冲层120的厚度约为0.1μm、通道层130的厚度约为50nm、阻障层140的厚度约为18nm及耗尽层160的厚度约为80nm,其中耗尽层160的材料选用p型六方氮化硼。如图2所示,费米能级的能量设定为0eV,栅极电极170与耗尽层160的界面位置设定为0nm。横轴的数字增加的方向代表自栅极电极170与耗尽层160的界面处朝向基板110的方向。纵轴则代表能级的能量。当高电子移动率晶体管100A的耗尽层160的材料选用p型六方晶系氮化硼时,如图2所示,在深度接近100nm附近(图中的区域B,即通道层130与阻障层140之间)的导带210的能级约为0.4eV至约0.7eV之间。相较于现有高电子移动率晶体管使用氮化镓作为耗尽层时,对应此区域的导带能量阶约介于0eV至约0.1eV之间。使用p型六方晶系氮化硼作为耗尽层106,则需要施以更多的偏压才能使高电子移动率晶体管100A导通,因此,可以提升高电子移动率晶体管的临界电压(threshold voltage,Vth),以减低因为外界干扰,例如突波(surge),造成高电子移动率晶体管误导通的机率。

另外,如图2及图3所示,在本实施例中,因高电子移动率晶体管100A之耗尽层160的材料选用p型六方晶系氮化硼时,也可看到价带220的能量将大于费米能级的能量,而在阻障层140内靠近耗尽层106处会产生二维空穴气(2DHG),如图3标示的区域C所示。参照图4,图4为上述实施例所形成的高电子移动率晶体管100A的空穴浓度与位置(或深度)的关系图。横轴的数字增加的方向代表自栅极电极170与耗尽层160的界面处朝向基板110的方向。纵轴则是空穴浓度。如图4所示,当深度小于约79nm或大于约82nm时,空穴的浓度均远小于1019/cm3。但在深度约等于80nm(亦即耗尽层160与阻障层140之间)时,空穴的浓度将高达3×1020/cm3,故在未有外加偏压的情况下,高电子移动率晶体管100A的阻障层140靠近耗尽层106处将自然形成一二维空穴气。

图5为根据本发明的另一实施例,高电子移动率晶体管100B的剖面示意图。高电子移动率晶体管100B与图1D的高电子移动率晶体管100A的不同处在于高电子移动率晶体管100B的阻障层140于对应耗尽层160处具有一凹陷142,其中耗尽层160的全部或一部分会位于凹陷142内。凹陷142的形成方式,可于如图1B所示形成阻障层140后,执行蚀刻制作工艺,移除阻障层140的一部分以形成凹陷142。蚀刻制作工艺可例如为干蚀刻制作工艺,例如反应性离子蚀刻(reactive ion etching,RIE)制作工艺或高密度等离子体蚀刻制作工艺(high density plasma etching)。蚀刻制作工艺的蚀刻剂包含卤素,例如氟或氯。蚀刻剂例如为CH3F、CH2F2、CHF3、CF4、Cl2、BCl3或其他适合的气体。如图5所示,凹陷142位于耗尽层160的正下方。通过凹陷142,可使位于耗尽层160正下方的阻障层140的厚度减薄,使得耗尽层160对于通道层130与阻障层140之间的反极性效果增强,故可在不需过厚的耗尽层160的情况下,使得耗尽层160正下方的二维电子气150的电子浓度降低或消失,以完成高电子移动率晶体管100B。

以上叙述许多实施例的特征,使所属技术领域中具有通常知识者能够清楚理解以下的说明。所属技术领域中具有通常知识者能够理解其可利用本发明揭示内容作为基础,以设计或更动其他制作工艺及结构而完成相同于上述实施例的目的及/或达到相同于上述实施例的优点。所属技术领域中具有通常知识者也能够理解不脱离本发明的精神和范围的等效构造可在不脱离本发明的精神和范围内作任意的更动、替代与润饰。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高压n沟道HEMT器件

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!